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ABSTRACT
Processing graphs, especially at large scale, is an increasingly use-
ful activity in a variety of business, engineering, and scientific do-
mains. Already, there are tens of graph-processing platforms, such
as Hadoop, Giraph, GraphLab, etc., each with a different design
and functionality. For graph-processing to continue to evolve, users
have to find it easy to select a graph-processing platform, and de-
velopers and system integrators have to find it easy to quantify the
performance and other non-functional aspects of interest. How-
ever, the state of performance analysis of graph-processing plat-
forms is still immature: there are few studies and, for the few
that exist, there are few similarities, and relatively little under-
standing of the impact of dataset and algorithm diversity on perfor-
mance. Our vision is to develop, with the help of the performance-
savvy community, a comprehensive benchmarking suite for graph-
processing platforms. In this work, we take a step in this direction,
by proposing a set of seven challenges, summarizing our previous
work on performance evaluation of distributed graph-processing
platforms, and introducing our on-going work within the SPEC Re-
search Group’s Cloud Working Group.

Categories and Subject Descriptors
C.4 [PERFORMANCEOF SYSTEMS]:Measurement techniques
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1. INTRODUCTION
Graph processing is of increasing interest for many revenue-

generating applications and scientific areas, such as social network-
ing, bioinformatics, and online retail and online gaming. To answer
to the growing diversity of graph datasets and graph-processing al-
gorithms, developers and system integrators have created a large
variety of graph-processing platforms—which we define as the com-
bined hardware, software, and programming system that is being
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used to complete a graph processing task [17]. Although these plat-
forms are already much used, it is currently difficult to decide on
deploying a new platform and to tune existing deployments, due
to a lack of comprehensive understanding of the performance of
these platforms. To gain more and more in-depth knowledge about
graph-processing platforms, and to enable their comparison, we en-
vision a comprehensive benchmarking suite, which is the focus of
this work.

At least three dimensions of diversity complicate gaining knowl-
edge about the performance of graph-processing platforms [17]:
dataset, algorithm, and platform diversity. Dataset diversity de-
rives from the data deluge we are experiencing—graphs from hun-
dreds of areas, from genomics to consumer profiles, from social
gaming networks to business decision support, with periodic up-
dates and different data structures. Algorithm diversity is a con-
sequence of the many different goals of processing graphs, with a
variety of graph algorithms for calculating basic graph metrics [22],
for traversing graphs [24, 27, 30], and for predicting graph evo-
lution [20], etc. Platform diversity is the result of the uncoordi-
nated effort of a multitude of developers, to answer their commu-
nity of users, sometimes additionally influenced by the wide di-
versity of infrastructure (compute and storage systems); this has
led, for example, to graph processing with generic platforms such
as Hadoop [29] and YARN [5], with distributed graph-processing
platforms such as Giraph [2] and GraphLab [21], etc.

Not understanding the performance of the graph-processing plat-
form can lead to significant time- and revenue-loss, and may even-
tually even limit the growth, for the entire community. For ex-
ample, it took many tries, but by now the community agrees that
using Hadoop as a graph-processing platform generally leads to
poor performance [17,23,25]. For specific datasets and algorithms,
platforms may experience crashes, due to inefficient data struc-
tures [17, 25], network-stack overloads [13, 17], etc. For different
datasets and algorithms, platforms may exhibit very different rela-
tive execution-profiles [17]; tuning for one input workload may be
lead to sub-optimal results for another.

Although sorely needed, relatively few studies focus on the per-
formance of graph-processing platforms; the few that do use few
datasets, few algorithms, and few metrics to characterize the plat-
form. The de-facto state-of-the-art in benchmarking, Graph500 [15]
and its energy-aware relative Green Graph500, is based on a sin-
gle dataset type, on a single algorithm, and on just a few metrics.
Most empirical comparisons of graph-processing platforms occur
in articles focusing on new designs, and thus may lack depth and
objectivity. For example, a recent study of Trinity [25] focuses on
novel techniques for in-memory graph processing, but the experi-
ments, although commendable, only compares Trinity with Giraph
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and PBGL [16], only uses three algorithms, and only reports aver-
age response time and memory usage.

We formulate in this work our vision for benchmarking graph-
processing platforms that considers all three sources of diversity.
Our work consists of defining a comprehensive evaluation process,
of selecting important performance metrics, representative datasets,
and typical algorithms, of conducting and executing the experi-
ments, and of analyzing and reporting the results. This vision ex-
tends our own recent work [17] and other recent experience re-
ports [6, 11, 12] with a set of methodological and practical chal-
lenges, a survey of graph-processing use, and a call to combine
efforts within the SPEC Research Group’s Cloud Working Group.
It also extends traditional benchmarking with graph-specific ele-
ments and with aspects related to new infrastructures (e.g., clouds).
Our main contribution is three-fold:

1. We discuss seven methodological and practical challenges in
benchmarking graph-processing platforms (Section 2).

2. We summarize our work towards evaluating and benchmark-
ing graph-processing platforms, including understanding the
workloads of graph processing, and our previous work [17]
about proposing a method for benchmarking graph-processing
platforms and a first comprehensive performance comparison
of six popular graph-processing platforms (Section 3).

3. We call for the entire community to participate in the cre-
ation of a benchmark and give examples of on-going work
(Section 4).

2. OUR VISION FOR BENCHMARKING
GRAPH-PROCESSING PLATFORMS

Benchmarking is a traditional approach to evaluate the perfor-
mance of systems, with many well-known challenges: simplicity,
cost- and time-effectiveness, verifiability, etc. However, bench-
marking systems under different application can lead to specific
challenges. In this section, we discuss seven challenges in bench-
marking graph-processing platforms. Although there are more chal-
lenges to resolve, we argue that these would lead to a good bench-
marking process, similar to what has been achieved by the TPC and
SPEC communities for benchmarking databases, CPU power and
energy, etc.

2.1 Methodological Challenges
Challenge 1. Evaluation process: Traditionally, it is a chal-

lenge to define an evaluation process that would define an equiv-
alent benchmarking process for each platform (for example, not
controlling the amount of tuning can lead to a war-of-wizards). For
graph-processing platforms, the evaluation process needs to fairly
define at least the data format, realistic processing workflows, and
the multi-tenancy rules—although these concepts have been con-
sidered in the past, they need revisiting for graph processing. Al-
though the mathematical notion of a graph allows for only a few va-
rieties, in graph-processing applications we have seen various data
structures, input formats, and number of dimensions for the dataset.
Similarly to the idea that a single query may expand in several data
operations, in graph-processing it is likely that processing work-
flows comprised of several atomic operations (single algorithms) is
representative of the typical analysis task; the evaluation process
should also include such workflows. Because graph-processing
platforms are typically serving multiple users, much like modern
databases and distributed batch-processing systems, the evaluation
process should also consider how the workloads of multiple system
tenants influence each other.
Challenge 2. Selection and design of performance metrics:

To serve more users, one important issue for benchmarking graph-

processing platforms is to provide performance metrics for a vari-
ety of platform characteristics. Typical performance metrics such
as execution time, resource utilization, scalability, system over-
head, power consumption, cost, etc., may be included. To com-
pare platforms on top of various types and amounts of hardware
resources (e.g. number of cores or size of memory), new normal-
ized metrics may need to be defined and adopted. For example,
Graph500 introduces the graph-specific metric traversed edges per
second (TEPS). We argue that there is much room for metric def-
inition. As another example, as the field spans database, parallel,
and distributed systems, normalized metrics for weak and strong
scaling of possibly heterogeneous platforms need to be devised.
Moreover, there is a need to adapt traditional metrics to an elastic
infrastructure, for example because the local infrastructure may be
complemented with nodes leased temporarily from Infrastructure-
as-a-Service clouds [14].
Challenge 3. Dataset selection: Selecting a representative dataset

is a traditional problem in benchmarking, which requires revis-
iting for each new domain. As we present in section 1, graphs
may differ significantly in size, structure, directivity, connectiv-
ity, etc. The main goal of the dataset selection is to choose rele-
vant graphs with different characteristics; to make the benchmark
time- and cost-effective, they should also be few, easy to generate
at different scales (see Challenge 5), and stored in a similar format
(see Challenge 1). Additionally, this challenge also requires that
the selected graphs should be able to stress bottlenecks of graph-
processing platforms.
Challenge 4. Algorithm coverage: Similar to Challenge 3,

we find challenging the selection of a representative, reduced set
of graph-processing algorithms, which may stress diverse compo-
nents of the graph-processing platform. To reduce the number of
algorithms, it should be possible to divide them into classes, based
on their functionality and to select representative algorithms from
each class. This solution also has some limitations: how to define
the classes? how to select a representative algorithm from a class?
how to allow future algorithms to participate in the benchmark?
etc.

2.2 Practical Challenges
Challenge 5. Scalability of evaluation and selection processes:

It is challenging to allow the users of a benchmark—developers
and integrators of platforms, graph analysts, etc.—to cope with the
scale of either the evaluation or the selection processes.

For the evaluation process, we aim at benchmarking platforms
deployed on both large-scale infrastructure (e.g., wide-area mul-
ticluster systems, large data centers, supercomputers, etc.) and
small-business infrastructure (e.g., clusters of only a few nodes, a
single albeit powerful machine). Thus, the benchmarking suite, and
in particular the input datasets, should match various operational
scales—for datasets, from megabytes to petabytes. Currently, few
real-world graphs of petabyte scale are available for bechmark-
ing activities, and even datasets of hundreds of gigabytes are rare.
Graph generators could produce graphs for testing of the required
scale, for example the Kronecker generator used in Graph500, but
pose important parallel/distributed computing challenges and may
not have the characteristics of real-world graphs.

For the selection process, a community-oriented benchmarking
process should also be able to match the possibly hundreds of met-
rics with the interests of the users. For graph analysts, a specific
application may need to be matched against an entire database of
benchmarking results, and a few most-promising systems should
be selected. For system integrators, it would be helpful to identify
which algorithms and graphs can stress the system for each selected
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metric. We believe that designing a community database of open
results would be beneficial in addressing this challenge, but its de-
sign should be able to accommodate a wide variety of settings and
thus remains an open challenge.
Challenge 6. Portability: As we discussed in the methodolog-

ical challenges, the benchmarking suite includes a number of per-
formance metrics, algorithms, and graphs. When benchmarking a
platform, the graph-processing algorithms need to be re-implemented
based on the platform’s programming language and model and,
possibly, also based on infrastructure characteristics. Re-implementing
algorithms correctly and re-configuring reasonably of a platform
need a solid experience of programming and a detailed understand-
ing of the platform. The challenge is, thus, to design a benchmark-
ing suite that balances the portability requirements with all the de-
sired features.
Challenge 7. Result reporting: Another non-trivial practical

aspect is to report benchmarking results, which should be done ac-
cording to a precisely defined format. Comprehensive and stan-
dardized reports traditionally facilitate the understanding and the
comparison of the performance of platforms. When users consider
several performance metrics when comparing graph-processing plat-
forms, a mechanism to combine the results from different perfor-
mance metrics and report a single result may not be straightforward—
in our experience [17], none of the distributed graph-processing
platforms can deliver the best performance across all datasets and
algorithms, even for the same metric. Other communities have
faced this challenge in the past and were able to solve it. For ex-
ample, SPEC benchmark results can include a full disclosure of the
system configuration parameters; SPEC users can report both base-
line (not tuned) and peak (tuned) performance results of systems.
However, it took years of development and effort to achieve this by
SPEC benchmarks.

3. TOWARDS ACHIEVING OUR VISION
In this section we summarize our work on benchmarking and

evaluating graph-processing platforms. We emphasize on two as-
pects: understanding graph-processing requirements, and propos-
ing a method for benchmarking and performance evaluation of graph-
processing platforms.

3.1 Understanding Graph-ProcessingWorkloads
We believe that a variety of workloads—in this work, defined

as combinations of datasets and algorithms, inter-dependencies be-
tween inputs of an algorithm and outputs of another (effectively, a
workflow structure), and a general process for submission for exe-
cution to the platform—have appeared in the context of graph pro-
cessing, with variety due to application domain, independent com-
munities developing their own workload policies, and perhaps even
due to the availability of different processing platforms. However,
there is no common repository of algorithms, datasets, workflows,
etc., which makes Challenges 1–4 difficult to address.

To address Challenges 2–4, we have conducted comprehensive
literature surveys of metrics, datasets, and algorithms used in prac-
tice (not reported in our previous work [17]). We have specifically
targeted articles about graph processing published in top research
conferences in the fields of databases, distributed systems, and in-
formation retrieval, such as SIGMOD, (P)VLDB, HPDC, etc.; our
assumption is that these prestigious conferences have attracted a
knowledgeable audience, and represent a meaningful sample of in-
dustry and scientific efforts in graph processing. We have searched
for articles including the words “graph processing”, “social net-
work”, etc. In total, we have extracted information from 124 ar-

Table 1: Survey of graph algorithms.
Class Typical algorithms Number Percentage [%]

General Statistics Triangulation [28], Diameter [19], BC [26] 24 16.1

Graph Traversal BFS, DFS, Shortest Path Search 69 46.3

Connected Components MIS [8], BiCC [10], Reachability [9] 20 13.4

Community Detection Clustering, Nearest Neighbor Search 8 5.4

Graph Evolution Forest Fire Model [20], Preferential Attachment Model [7] 6 4.0

Other Sampling, Partitioning 22 14.8

Total 149 100

ticles published in 10 representative conferences over the period
2009–2013.

Challenge 2: Few performance metrics are tested and reported in
these articles; most of the performance evaluation focuses only on
the job execution time, and, seldomly, they report on metrics such
as scalability and throughput, and on memory consumption.

Challenge 3: We have observed that a large number of datasets,
from various areas, are processed in previous research. In gen-
eral, these graphs can be divided into two categories, real-world
and synthetic. Real-world graphs are collected by researchers from
their own applications or from public graph archives, for example,
from the Stanford Network Analysis Project (SNAP) [4]) and from
the Game Trace Archive (GTA) [18]. Synthetic graphs with differ-
ent structures are generated from several graph generators, such as
Kronecker, Erdős-Rényi, and R-MAT. Notably, the maximum size
reported in these articles for real graphs (1.7 billion vertices and 7.9
billion edges) is significantly smaller than that of synthetic graphs
(274.9 billion vertices and 4.4 trillion edges).

Challenge 4: We have found that a large variety of graph-processing
algorithms are reported in practice. Table 1 summarizes the al-
gorithms identified in our survey—149 in 124 articles. We cate-
gorize these algorithms into several groups by functionality, con-
sumption of resources, etc. Almost half of the articles we survey
(46.3%) use some form of graph traversal in their experimental
work. The next most-represented classes of algorithms compute
general graph statistics (16.1%), and extract or use connected com-
ponents (13.4%). A variety of algorithms are present in less than
3% of the articles we have surveyed; together, they account for over
a seventh (14.8%) of the articles.

3.2 Method for and Performance Evaluation
of Graph-Processing Platforms

In our previous work [17], we have taken first steps to defining
an empirical method for benchmarking graph-processing platforms
(Challenge 1), applied it in practice by porting the benchmarks to
six different platforms (Challenge 6), and reported on the experi-
ence (Challenge 7). We summarize here our main achievements,
towards addressing the challenges.

Challenge 1: We have used both synthetic (Kronecker) and real
datasets (SNAP and GTA): both directed and undirected graphs,
with unweighted edges, and vertices represented by numeric iden-
tifiers. We have employed a vertex-based data storage; only atomic
operations (single algorithms, so no workflows); and a single user
(no multi-tenancy). We intend to extend our experiments towards
workflows and multi-tenancy. From our survey (see Section 3.1),
we have selected one exemplary algorithm for each of the most-
represented five algorithmic classes.

Challenge 6: We have ported the five graph-processing algo-
rithms on six popular graph-processing platforms: Hadoop, YARN,
Stratosphere, Giraph, GraphLab, and Neo4j [3]. The first five plat-
forms are distributed systems. We select the single-node platform
Neo4j as a reference for comparison. We have also analyzed the
time taken to port the codes to each platform; in total, between
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days and weeks. We have further deployed all these platforms in a
cluster of up to 50 computing nodes from the DAS4 cluster. [1].

Challenge 7: We have reported metrics on four typical perfor-
mance aspects: raw processing power, defined as the ability of a
platform to process (large-scale) graphs; resource utilization, de-
fined as the ability of a platform to efficiently utilize the resources
it has; scalability, defined as the ability of a platform to maintain
its performance behavior when resources are added to its infras-
tructure; and overhead, defined as the part of wall-clock time the
platform does not spend on true data processing. The metrics in-
clude traditional system parameters (e.g., job execution time, the
CPU and network load, and the OS memory consumption); nor-
malized graph-specific metrics, such as TEPS; etc.

4. A CALL TO ARMS
Graph processing is rapidly expanding in volume and diversity of

datasets, algorithms, and overall usage. To prevent that the domain
becomes too fragmented, and to allow graph analysts and system
integrators to compare existing platforms, we envision the creation
of a benchmarking suite for graph-processing platforms.

We have identified seven main challenges, and conducted work
in understanding graph-processing workloads and in the compre-
hensive performance evaluation of six popular platforms, but much
remains to be done. We urge the community to join forces and
conduct peer work in the SPEC Research Group’s Cloud Working
Group. The SPEC Research Group (RG) is a new group within the
Standard Performance Evaluation Corporation (SPEC). The Cloud
Working Group1 (CWG) is a branch of the SPEC RG that aims
to develop the methodological aspects of cloud benchmarking—
among its activities, we have included Graph Processing as a Ser-
vice, which relies on quantifiable service performance and thus
benchmarking. Within the Cloud Working Group, we are currently
addressing all the challenges introduced in Section 2, but in partic-
ular:

1. Challenge 1: Defining workloads that include processing
workflows and multi-tenancy aspects.

2. Challenges 2–4: Through a survey of relevant graph analysts
and system integrators2, understanding the metrics, datasets,
and algorithms used in practice.

3. Challenge 1, 2, and 7: Evaluating and reporting on the platform–
storage engine relationship.
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