
Modelling Database Lock-Contention in
Architecture-level Performance Simulation

Philipp Merkle
Chair for Software Design and Quality
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
merkle@kit.edu

Christian Stier
Chair for Software Design and Quality
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
christian.stier2@student.kit.edu

ABSTRACT
Databases are the origin of many performance problems
found in transactional information systems. Performance
suffers especially when databases employ locking to isolate
concurrent transactions. Software performance models there-
fore need to reflect lock contention in order to be a credible
source for guiding design decisions. We propose a hybrid
simulation approach that integrates a novel locking model
into the Palladio software architecture performance simula-
tor. Our model operates on a row level and is tailored to
be used with architecture-level performance models. An ex-
perimental evaluation leads to promising results close to the
measured performance.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modelling techniques

Keywords
Database; Lock Contention; Performance Prediction; Simu-
lation; Palladio Component Model

1. INTRODUCTION
Relational database management systems (DBMS) are an

integral part of many business information systems. They
encapsulate established practices from decades of research,
thereby hiding functional complexity from developers. Their
complex performance behaviour, however, can neither be
hidden from clients, nor be easily understood by develop-
ers. This dilemma gave rise to model-based approaches that
seek to explain different aspects of database performance
(cf. [10]). Database performance models can help software
engineers to proactively evaluate the performance impact of
design alternatives before they are translated into database
schemas, queries, or source code in general. Ideally, the
underlying methodology encapsulates knowledge of DBMS
performance behaviour, thus relieving software developers

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE’14, March 22–26, 2014, Dublin, Ireland.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2733-6/14/03 ...$15.00.

http://dx.doi.org/10.1145/2568088.2576762.

from understanding performance-influencing subtleties of a
database, its configuration or its workload.

In contrast to database performance models, architecture-
centric performance models (e.g. [1]) provide decision sup-
port on a higher level of granularity, such as component
composition and deployment. If database performance, how-
ever, dominates the overall system performance, architec-
ture models must also capture database-related performance
factors to achieve a sufficient accuracy. This is especially
true for software systems that employ locking-based data-
bases. Locking ensures proper isolation of concurrent trans-
actions, so that inconsistencies due to conflicting data ac-
cesses (e.g. reading and writing at the same time) are pre-
vented. Contention for locks on database items can severely
impact system performance. This is why we address lock
contention as a first step toward a performance modelling
method for database-intensive software systems as motivated
in our earlier work [5].

The contribution of this work-in-progress paper is an ap-
proach to modelling and simulation of database lock con-
tention within architecture-level software performance sim-
ulation. First, we suggest a hybrid simulation model of row-
level two-phase locking (2PL) tailored to architecture-level
simulation. Second, we integrate our locking model into
the Palladio software architecture simulator [1]. Third, we
present an experimental evaluation that compares simula-
tion results to measurements from a MySQL database.

2. SIMULATING LOCK CONTENTION
The transaction manager (TM) is responsible for lock man-

agement in a DBMS. It decides for arriving transactions if
requested locks may be granted or must be denied to pre-
serve the demanded isolation level. In the following, we
propose a performance model of a TM. It utilises a model
we establish for determining conflicts between transactions.
This model is referred to as conflict model throughout this
paper and will be introduced stepwise. Initially, we ignore
shared locking to establish the fundamentals of the conflict
model. On this basis, Sec. 2.3 outlines our extensions to
shared locking.

2.1 Model Assumptions
In our model, a table is characterised solely by the number

of contained rows. Rows neither have an identity nor any
other distinguishing feature—all appear the same. Transac-
tions are sequences of data access operations and end either
with a commit or an abort. An access operation refers to a
single table and is characterised by the number of accessed

285

Figure 1: Row-level lock information (left) translated to con-
flict objects without row identities (right)

tuples and by the access type (read or write). A transac-
tion submitting an access operation claims all rows at once.
In case a lock request has to be denied due to conflicts,
the transaction must wait for the lock to become available.
Locks acquired by a transaction are only released once the
transaction has been committed or aborted. This resem-
bles rigorous 2PL. Table accesses are uniformly distributed,
meaning every row is equally likely to be locked. Note that
access hot-spots can still be modelled as is discussed in [12].
Finally, tables do not change in size over the course of an
analysis.

2.2 Conflict Model (Exclusive Locks)
Our conflict model is inspired by the work of Morris and

Wong [7], namely by their use of hypergeometric distribu-
tions to determine the probability of lock conflicts under
2PL. In general, a hypergeometric distribution yields the
probability to select i balls of one type from an urn con-
taining two types of balls. For simplicity, balls of one type
are often referred to as successes, and one is then interested
in the probability for selecting i successes out of the pop-
ulation. The hypergeometric distribution as applied in [7]
takes as parameters the table size, the number of rows al-
ready locked, and the number of requested rows. These pa-
rameters provide a good level of abstraction for architectural
modelling of database conflicts where knowledge of query-
specific data distributions and access patterns should not be
taken for granted.

Morris and Wong abstract from individual tables and as-
sume that a database consists of a single table. Every trans-
action accesses the same number of tuples. The number of
accessed tuples needs to be known at the time a transaction
starts. Shared and exclusive accesses aren’t distinguished.
More importantly, however, the model of Morris and Wong
does not take into account lock dependencies between con-
flicting transactions. This means once a transaction ends,
every waiting transaction is equally likely to be continued,
regardless of its arrival time or its actual conflicts.

Especially the last assumption hampers the applicabil-
ity of their conflict model in software performance simu-
lators such as Palladio. At simulation runtime, system re-
quests have an identity that they inherit to their transac-
tions. Throughout simulation, each individual request is
tracked in order to collect corresponding performance mea-
sures. This can reveal, for example, a system design where
two components mutually degrade their performance by fre-
quently locking the same data items. By contrast, if conflict
dependencies are neglected, requests may regularly continue
their operation before their lock requests have actually been
granted. We therefore extend Morris and Wong’s stochastic
conflict model by bookkeeping of conflicts.

The conflict bookkeeping keeps track of lock ownership
and blocked transactions. This is similar to lock tables
known from ordinary TMs. A lock table maps database
elements (e.g. rows) to lock information about this element,

available

size: Integer
owner: Transaction
waiting: Queue<Transaction>

ConflictObject

size: Integer
available: Integer

Table

co1 co2

co3

Table partitioned into
conflict objects coi and
available rows

Figure 2: Bookkeeping of lock ownership and conflicts

including the current lock owner and waiting transactions
organised as a queue [4]. While lock tables usually maintain
an entry for each locked row, this fine-grained bookkeeping
of locks does not fit well in our case, where rows do not have
identities. We therefore abstract from individual rows using
conflict objects. A conflict object subsumes a set of locked
rows that share the same owner and the same waiting trans-
actions (cf. Fig. 1). It is characterised by the number of rows
it represents, by its owning transaction, and by the queue
of transactions waiting for the conflict object—or more pre-
cisely, the represented rows—to be released. Note that con-
flict objects never overlap; they partition the locked rows of
a table into disjoint subsets (cf. Fig. 2). Despite its name,
a conflict object must not be involved in a lock conflict; the
waiting queue remains empty until a conflict occurs.

Once a transaction requests access to one or more rows,
the TM must determine conflicts with other active transac-
tions. Only if the conflict size is zero, the transaction may
proceed. Otherwise, it is blocked. The procedure we use for
this is shown in Alg. 1. Depending on the access size, the ta-
ble size, and the number of locked rows, we draw a series of
samples from hypergeometric distributions. Each draw de-
termines the overlap either with an existing conflict object or
with the set of available (unlocked) rows. Step 1 calculates
the overlap between requested and available rows. Access
to these rows can be granted immediately. All remaining
requested rows must be involved in a lock conflict. Step 2
provides the cause of each lock conflict by calculating the
overlap of denied lock requests with existing conflict objects.
If the overlap is larger than zero (i.e. there is a conflict), the
requesting transaction needs to be enqueued as a waiting
transaction—but only for a subset of the conflict object if
the overlap does not involve the entire conflict object. In
such a case, we split the conflict object into two conflict ob-
jects with the same owner and waiting transactions. Their
size sums up to the size of the original conflict object. The
requesting transaction can then be enqueued with the newly
created conflict object representing the discovered conflict.
Step 2 is repeated until all denied lock requests have been at-
tributed to an existing conflict object. If the algorithm was
able to grant all lock requests, the transaction may proceed.
Otherwise, it is blocked and must wait.

Once a transaction commits or aborts, all held locks are
released. If no transaction waits for the released conflict
object, it is destroyed and the number of available rows is
increased accordingly. Otherwise, the simulator selects the
new owner from the queue of waiting transactions.

2.3 Conflict Model (Shared Locks)
So far we assumed exclusive access to data items. To

support shared locks, we distinguish between shared and
exclusive conflict objects. Shared conflict objects may have
multiple owners. For each transaction, we record its de-
manded access type (shared vs. exclusive) in relation to a

286

Algorithm 1: access operation of transaction tx on a
table t with k rows to be accessed
Input : t : Table, tx : Transaction, k : Integer
Output: blocked : Boolean

// Step 1: Determine overlap with available rows
1 grantedLocks : Integer ← draw sample from

hypergeometric distribution with population ← t.size,
successes ← t.available, sample ← k

2 tx.ownedLocks.add(new ConflictObject of size
grantedLocks))

3 t.available ← t.available− grantedLocks

// Step 2: Determine overlap with conflict objects
4 remainingConflicts : Integer ← k− grantedLocks
5 conflictCandidates : Integer ← t.size− t.available
6 foreach co ∈ t.conflictObjects do
7 conflictSize ← draw sample from hypergeometric

distribution with population ← conflictCandidates,
successes ← co.size, sample ← remainingConflicts

8 if conflictSize = 0 then continue
9 if co.owner �= tx then

10 if conflictSize = co.size then
11 co.waiting.enqueue(tx)
12 else
13 split ← clone co
14 split.size ← conflictSize
15 co.size ← co.size− conflictSize

split.waiting.enqueue(tx)

16 else
17 grantedLocks ← grantedLocks+ conflictSize

18 conflictCandidates ← conflictCandidates− co.size
19 remainingConflicts ← remainingConflicts− conflictSize

20 return grantedLocks �= k

conflict object. This applies to transactions that own a con-
flict object, as well as to transactions waiting in the queue of
a conflict object. A lock is only granted if the access type is
compatible to the conflict object’s type. This is referred to
as lock compatibility (cf. [4]). A modified access algorithm
that respects lock compatibility is discussed in detail in [11].

3. INTEGRATION INTO PALLADIO
In order to enable system-level QoS-analysis of transac-

tional software systems, we integrate our work into the Pal-
ladio approach [1]. Palladio provides modelling and simula-
tion capabilities for QoS-analysis of component-based soft-
ware systems. Such a system can be modelled using the Pal-
ladio Component Model (PCM), a domain-specific language
based on EMF1. A PCM instance includes the specifica-
tion of components in terms of their performance-related be-
haviour, their assembly, and their deployment. Typical use
cases of the modelled system are described in usage profiles.
A PCM instance serves not only documentation purposes,
but can especially be used for software quality simulation.
Our integration encompasses metamodel extensions to the
PCM, as well as extensions to EventSim [6], a discrete-event
simulator for PCM instances.

Our metamodel can be seen in Fig. 3. All shown su-
perclasses are imported from PCM. Component behaviour
in the PCM is modelled by means of resource-demanding
service-effect specifications (RDSEFFs). Similar to UML
activity diagrams, an RDSEFF comprises linked actions.
Unlike UML, however, the actions in an RDSEFF form a

1http://www.eclipse.org/modeling/emf/

chain. Control flow constructs, such as branches, are mod-
elled with nested RDSEFFs (ResourceDemandingBehaviour),
one for each branch transition in our example. Similarly, we
model a transaction (TransactionAction) as a nested RDSEFF
(TransactionActionBehaviour). It encapsulates operations to
be performed in the transaction’s scope. Besides regular
actions, transactions may contain DataAccessActions, which
represent READ or WRITE access to one or more entities
(e.g. tables). The accessSize attribute refers to the num-
ber of accessed data items (e.g. rows). It is characterised as
a PCMRandomVariable, which can be a constant, a variable, a
random variable, or a combination thereof.

DataEntities (e.g. customers or invoices) are declared in the
repository model. Their characterisation is outsourced to the
entitymapping model. This separation is mainly motivated
by the separation of developer roles in PCM. Component
developers that maintain the repository should not be forced
to characterise entities in terms of their table size (cardinality)
or their row size (bytesPerInstance). Furthermore, speaking
of entities leaves open the decision in favour of or against a
relational data persistence technology.

Instances of the extended PCM can be fed into EventSim,
which maps actions of the type TransactionAction and DataAc-

cessAction to calls to the coupled TM simulator. The cou-
pling ensures that requests in EventSim are blocked until
acquired locks are actually granted, thereby reflecting the
effects of concurrency control.

4. EXPERIMENTAL EVALUATION
We evaluated our approach by comparing simulation re-

sults to measurements from a database. We chose MySQL
5.6.14 in combination with the InnoDB storage engine. The
isolation level has been set to serializable so that InnoDB
uses 2PL. All experiments and measurements were conducted
through OLTP-Bench [3]—a benchmark suite for OLTP data-
base workloads. We used a modified subset of the Resource
Stresser benchmark that models a lock contention scenario.
It comprises a single table updated by multiple transactions
in parallel. Each transaction first updates a set of m rows
within a single query. Affected rows are drawn from a dis-
crete uniform distribution without replacement. Then, the
transaction sleeps for a second before it commits. Multiple
instances of this transaction are executed in a closed work-
load of size k.

Figure 3: PCM metamodel extensions

287

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response Time (in ms)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Simulated
Simulated (seq.)
Measured

(a) ECDF for workload size
k = 8, access size m = 10

21
22

23
24

10
20

100

5000

10000

WorkloadSize

AccessSize

EMD

(b) Earth mover’s distance
predicted vs. measured results

Figure 4: Measurements compared to simulation results

In our setting, the table holds 1024 entries. The workload
size k takes the values (2, 4, 8, 16); the access size m takes
the values (10, 20, 100). For each combination of k and m,
we measured the response time of approximately 1000 trans-
actions. In addition, each experiment has been modelled and
simulated with our Palladio extension. The earth mover’s
distance (Fig. 4b) between simulation results and measure-
ments indicates that simulation accuracy suffers from highly
contended tables. Results for low to moderate contention,
however, appear promising. Results for a moderate con-
tention scenario (k = 8, m = 10) are therefore compared
in Fig. 4a (ignore for the moment the sequential simula-
tion). The observed differences lead us to further analyses
of InnoDB’s locking behaviour. From the INNODB LOCKS

information schema, it becomes apparent that locks for a
query are not requested all at once. Rather, a transaction
in InnoDB blocks upon the first conflict and does not request
remaining locks before this conflict is resolved. This sequen-
tial locking policy leads to lower lock contention compared
with our conflict model. To emulate sequential locking in
PCM, we split the DataAccessAction representing the update
of m rows into a sequence of m sequential DataAccessActions,
each with m = 1. The results in Fig. 4a for the sequential
simulation are now close to the measurements. Remaining
differences can mostly be explained by the increased dead-
lock risk caused by the model adjustments. Being prone to
deadlocks and due to its increased modelling and compu-
tational complexity, the sequential modelling is impractical.
Still, the measurements suggest that our simulated conflict
model is a valid performance model of 2PL.

5. RELATED WORK
A multitude of approaches has been developed to evaluate

database performance. A recent survey by Osman and Knot-
tenbelt [10] provides an extensive comparison of queuing net-
work (QN) based approaches. While QNs are well-suited
for modelling database-induced hardware contention, they
lack expressiveness to capture lock-contention sufficiently.
Coulden et al. [2] therefore propose to use queueing Petri
nets (QPN) for modelling table-level 2PL. QPNs combine
the strengths of Petri nets and QNs, thus allowing for rep-
resenting both software and hardware contention. Based
on [2], Osman et al. [9] present their efforts toward row-level
2PL. The QPNs in [2] and [9] reflect the database schema but
abstract from the system architecture. Recently, Mozafari
et al. [8] introduced DBSeer, a holistic approach to database
performance evaluation based on statistical models. DBSeer

aims at supporting database administrators while our work
targets software engineers from early development stages on.

6. CONCLUSION
This paper presented our work towards performance simu-

lation of database-intensive software systems. We proposed
a novel locking model that resembles the performance be-
haviour of 2PL sufficiently. Its integration with Palladio’s
software architecture simulation enables software engineers
to evaluate transaction-related design decisions on a model
basis. So far high contention scenarios cannot be sufficiently
simulated: First, conflict objects might degenerate due to
continuous split operations until their size reaches one, lead-
ing to a computationally expensive access algorithm. Sec-
ond, simulation accuracy suffers from high contention. Re-
ducing these limitations is subject to future work. Our next
goal is to reflect different isolation levels in the simulation.

7. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The Palladio

component model for model-driven performance
prediction. The Journal of Systems and Software,
82:3–22, 2009.

[2] D. Coulden, R. Osman, and W. J. Knottenbelt.
Performance modelling of database contention using
queueing Petri nets. In Proceedings of the
International Conference on Performance
Engineering, 2013.

[3] D. E. Difallah, A. Pavlo, C. Curino, and
P. Cudre-Mauroux. OLTP-Bench: An extensible
testbed for benchmarking relational databases.
Proceedings of the VLDB Endowment, 7(4), 2013.

[4] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database system implementation. Prentice Hall, 2000.

[5] P. Merkle. Predicting transaction quality for balanced
data consistency and performance. In Proceedings of
the International Doctoral Symposium on Components
and Architecture, 2013.

[6] P. Merkle and J. Henss. EventSim – an event-driven
Palladio software architecture simulator. Karlsruhe
Reports in Informatics 32, KIT, 2011.

[7] R. Morris and W. Wong. Performance analysis of
locking and optimistic concurrency control algorithms.
Performance Evaluation, 5:105–118, 1985.

[8] B. Mozafari, C. Curino, A. Jindal, and S. Madden.
Performance and resource modeling in
highly-concurrent OLTP workloads. In Proceedings of
the SIGMOD International Conference on
Management of Data, 2013.

[9] R. Osman, D. Coulden, and W. J. Knottenbelt.
Performance modelling of concurrency control schemes
for relational databases. In Analytical and Stochastic
Modeling Techniques and Applications. Springer, 2013.

[10] R. Osman and W. J. Knottenbelt. Database system
performance evaluation models: A survey.
Performance Evaluation, 69(10):471 – 493, 2012.

[11] C. Stier. Transaction-aware software performance
prediction. Master’s thesis, KIT, 2014.

[12] Y. C. Tay, R. Suri, and N. Goodman. A mean value
performance model for locking in databases: The
no-waiting case. Journal of the ACM, 32:618–651,
1985.

288

