
Efficient and Accurate Stack Trace Sampling in the Java
Hotspot Virtual Machine (Work in Progress Paper)

Peter Hofer
Christian Doppler Laboratory on Monitoring and
Evolution of Very-Large-Scale Software Systems

Johannes Kepler University Linz, Austria
peter.hofer@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Sampling is a popular approach to collecting data for profiling
and monitoring, because it has a small impact on perfor-
mance and does not modify the observed application. When
sampling stack traces, they can be merged into a calling
context tree that shows where the application spends its
time and where performance problems lie. However, Java
VM implementations usually rely on safepoints for sampling
stack traces. Safepoints can cause inaccuracies and have a
considerable performance impact.

We present a new approach that does not use safepoints,
but instead relies on the operating system to take snapshots
of the stack at arbitrary points. These snapshots are then
asynchronously decoded to call traces, which are merged into
a calling context tree. We show that we are able to decode
over 90% of the snapshots, and that our approach has very
small impact on performance even at high sampling rates.

1. INTRODUCTION
Software profiling measures the execution frequency or the

run time of methods during program execution. It is useful
for finding bottlenecks, identifying dead code, or determining
test coverage. Typically, the profiling data is not captured
per method, but rather by calling context (or stack trace),
which is a chain of calls from the root method to an executing
method. Calling contexts are commonly merged into a calling-
context tree (CCT) [1]. In contrast to a call tree, a CCT
merges identical children (callees) of a node.

In general, there are two approaches for collecting calling
contexts. Instrumenting profilers insert code snippets in
methods to record calls in the CCT. This approach yields
a complete CCT, but the instrumentation can introduce
significant overhead and can distort other observations such
as method execution times. Sampling profilers, on the other
hand, periodically interrupt the application to take snapshots
of the entire chain of calls and to merge them into the CCT.
This approach requires no instrumentation and typically
causes less overhead, but it can miss method invocations and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2568088.2576759.

thus results in an approximate CCT with only statistically
significant information. Our research focuses on the sampling
approach, because we strive for minimal overhead.

The Java Virtual Machine Tool Interface (JVMTI) [7]
offers functions for both sampling calling contexts and in-
strumenting code and is supported by all common Java VM
implementations. Because of its lower overhead, many moni-
toring tools prefer sampling over exhaustive instrumentation.
However, implementations of JVMTI rely on safepoints for
sampling, which are special locations in code where it is safe
to pause the application, for example to perform garbage
collection. Whenever JVMTI takes a sample, it requires
all threads to run to the next safepoint, which introduces
considerable overhead and makes sampling intervals irregular.

Some JIT compiler optimizations add to these problems.
For example, a compiler may omit certain safepoint checks
to increase performance, which can considerably increase the
time to reach a safepoint. When safepoints in an inlined
method are omitted, the invocation of that method never
shows up in the samples. On the other hand, safepoints
in tiny methods such as getters or setters can cause these
methods to be overrepresented in the samples.

As a faster and more accurate alternative to JVMTI sam-
pling, Oracle’s Hotspot Java VM [8] offers an undocumented
sampling mechanism that does not use safepoints. Instead, it
uses a POSIX signal that is sent to Java threads to interrupt
them. The signal handler can then walk the thread’s stack
and build a call trace. Because threads can be interrupted
individually and at any point (not just at safepoints), this
mechanism has a much lower performance impact.

In this paper, we present yet another approach that relies
on the operating system and hardware timers to sample fixed-
size fragments of Java stacks and to copy them into a buffer.
An agent asynchronously reads this buffer, creates call traces
from the stack fragments and adds them to a CCT. The
agent uses a modified version of the OpenJDK 8 Hotspot
VM to decode the stack frames. Our approach achieves very
low overhead because analysis happens asynchronously and
threads are interrupted only for copying the stack fragments,
which can be done quite efficiently.

The main contributions of this paper are:

1. We describe a new technique for collecting call traces
of Java applications. It is more efficient than JVMTI
sampling and allows for higher sampling rates. Our
technique also provides more accurate call traces than
JVMTI and thus gives a better picture of where an
application spends its time.

277

ICPE’14, March 22–26, 2014, Dublin, Ireland.

2. We describe new heuristics for analyzing stack contents
at arbitrary sampling points.

3. We demonstrate the efficiency of our approach with
the DaCapo benchmark suite, and the accuracy of our
approach by comparing the generated calling context
trees to those produced with JVMTI.

2. APPROACH

2.1 Taking Stack Samples
For sampling the stacks, we rely on the operating system

to set up a timer to interrupt the application at regular inter-
vals, and when these interrupts trigger, to copy a 16 KByte
fragment of the executing thread’s current stack. We chose
to use the perf subsystem of the Linux kernel which already
offers this functionality [5, 11]. Sampling a running thread
with perf is enabled through a system call that takes a wealth
of parameters including the sampling interval, the kinds of
data to sample, and the size of the stack fragments. Once
perf is enabled, it makes a buffer of collected data available
via a file descriptor. This file can be mapped into user-space
memory and then acts as a ring buffer of events with the
requested data.

The perf subsystem even provides functionality for building
call traces by following frame pointers on the stack. However,
Java stacks are too complex for this mechanism and even
native compilers can omit these links to increase performance,
so we perform the stack analysis in user space.

2.2 Retrieving the Samples
For retrieving and processing the samples, we implemented

a native agent that runs within the Java VM and interfaces
with it using JVMTI. The agent registers for a callback
when the Java application’s main thread is launched. In
that callback, it calls perf to start sampling stack fragments
as well as the instruction pointer, stack pointer and frame
pointer on that thread. The agent also enables inheritance,
so sampling automatically applies to all threads the Java
application launches.

Next, the agent launches a separate reader thread that
periodically reads the buffer supplied by perf. The reader
thread waits until the buffer is filled to a “watermark” that
can be set in the initial system call. It then retrieves samples
from the buffer and first copies each stack snapshot to a local
buffer where it can be modified. Next, it scans the snapshot
for addresses that point into the live stack, and adjusts them
to point into the snapshot itself. The reader thread then
submits the adjusted snapshot as well as the frame pointer
(adjusted to point into the snapshot) and the instruction
pointer to the Java VM using a JVMTI extension method
that we introduced. This method finally returns a call trace
that the reader thread merges into a single CCT.

In some cases, it is necessary to process the collected
samples before the buffer is filled to the watermark. One
of these cases is when the VM decides to unload compiled
methods. Snapshots in which the instruction pointer or
return addresses refer to unloaded code could otherwise no
longer be transformed to call traces. Similarly, when the
VM decides to unload entire classes, it disposes metadata
that can then no longer be used to decode snapshots. Hence,
our agent registers callbacks for the corresponding JVMTI
events to process all buffered samples when one of these

situations occurs. Callbacks for such events are invoked
from application or VM threads, so they need to synchronize
access to the buffer with the reader thread.

2.3 Analyzing the Samples
Decoding stack snapshots to call traces requires knowledge

of the frame layout, the frame sizes and other VM-internal
information. Because all this is readily available within the
VM, we decided to implement the analysis of stack snapshots
within the OpenJDK 8 Hotspot VM and to make it available
to the agent via JVMTI extension methods. Using JVMTI’s
extension mechanism also has the advantage that agents can
probe for this capability and can fall back to some other type
of sampling when it is not available.

We based our implementation on that of AsyncGetCall-
Trace, an undocumented function of the Hotspot VM for
walking stacks from within a POSIX signal handler. This
function already handles several of the intricacies of analyz-
ing stacks in a state where the topmost Java frame cannot be
clearly identified. However, unlike AsyncGetCallTrace, our
approach analyzes stacks asynchronously and thus cannot
access the VM state at the time the sample was taken.

One case where it is difficult to walk the stack is when
the sample was taken while the thread was executing native
code, which the VM has no knowledge about. This occurs
frequently because Java relies heavily on native calls for I/O.
If the native code does not establish a proper chain of frame
pointers (e.g., due to a compiler optimization), its frames
cannot be walked and the topmost Java frame, where the
native call occurred, cannot be determined. In such cases,
AsyncGetCallTrace can retrieve the location of this frame
from a VM-internal structure where it was recorded at the
time of the call, but since we are analyzing the samples asyn-
chronously, we have no access to this information. Therefore,
we resort to a heuristic: we leave a “breadcrumb” of two
words with specific “magic” values on the stack when a Java-
to-native call occurs. When the top of the Java stack cannot
be found, we simply scan for a breadcrumb and perform
additional checks when found.

Native code invoked from Java can again call Java code
via the Java Native Interface (JNI). In such cases, the stack
consists of alternating sequences of Java frames and native
frames. The resulting stack trace should contain all Java
frames on the stack and not just the top frames, which
again requires detecting Java/native boundaries. In this case
however, we need not rely on breadcrumbs: when native
code calls Java methods, the call leaves an entry frame on
the stack with a link to the last Java frame below the native
caller. Using this link, the stack walk can reliably skip the
native frames.

Another problem occurs when frames from stub code are
on top of the stack. Stub code refers to snippets of machine
code that the Hotspot VM dynamically generates as call
wrappers, compiler intrinsics and other helper code. Stub
frames have no common layout and some do not even have a
known frame size. When a snapshot contains a stub frame
with unknown size, we merely scan the words below the stack
pointer for a word that looks like a return address into Java
code. When such an address is found and additional checks
reassure that it is at the boundary to a Java frame, the stub
frame is ignored and the call trace is created starting from
the Java frame.

278

Occasionally, samples are also taken in a method’s prologue,
which is the entry code that saves the caller’s frame pointer
on the stack, makes the current stack pointer the new frame
pointer and moves the stack pointer to the end of the new
frame. These samples then have an incomplete frame on
top, but this can be detected because Hotspot records where
in each compiled method the prologue ends. Instead of
discarding these snapshots, we use simple heuristics to find
the frame below: we compare the word on top of the stack
to the stack pointer and frame pointer to test if the caller’s
frame pointer has been pushed on the stack yet. The word
below, or if the frame pointer has not be pushed, the word
on top, should be a return address to Java code and the
boundary to the frame below. We then start the stack walk
from that frame, ignoring the incomplete frame.

Every sample contains only a fixed-size fragment of the
stack. Thus, the stack walk can arrive at the end of the
fragment before reaching the end of the stack. The end of
the Java stack is denoted by a special entry frame. When
this entry frame is not reached, we set a flag that signals to
the agent that the stack trace is incomplete.

Our heuristics considerably increase the percentage of stack
snapshots that can be turned into stack traces. However,
there are still situations in which the topmost Java frame
cannot be determined conclusively. The analysis method then
simply returns an error and the agent ignores the sample.

3. EVALUATION
We evaluated our approach using the DaCapo 9.12 bench-

mark suite [3], which consists of open source, real-world
applications with pre-defined, non-trivial workloads1. To
compensate for the warm-up phase of the VM, we chose
to run ten successive iterations of each benchmark and to
use only metrics collected in the last iteration. We used a
stack fragment size of 16 KB and intervals of 10ms, 1ms
and 0.1ms between samples. These translate to sampling
rates of at most 100, 1000 and 10000 samples per thread per
second, which we refer to below. We executed 50 runs of
each benchmark at each of these three sampling rates.

3.1 Success Rate
First, we measured how many collected samples could be

successfully decoded to a stack trace. Table 1 shows the
percentages for each benchmark at 10000 samples per second
in the row labeled Res. On average over all benchmarks,
90.7% of all stack snapshots could be successfully processed.
The avrora benchmark shows the lowest rate at 84.3%, while
nearly all samples could be used in the sunflow benchmark
at 96.8%. In almost all cases where the stack walk fails, the
problem was in identifying the top Java frame or its caller
frame. Hence, additional or better heuristics could improve
this rate further and are part of our ongoing research.

3.2 Completeness of Traces
We measured how often the Java stack was larger than the

fragment size, leading to incomplete stack traces. The Inc.
row in Table 1 shows the resulting percentages by benchmark
at 10000 samples per second. For ten out of the twelve
benchmarks, less than 0.06% of stack traces were incomplete.

1We did not use the DaCapo suite’s batik and eclipse bench-
marks because they do not run on OpenJDK 8.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

G.M
ean

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

100 samples/s
1000 samples/s

10000 samples/s

Figure 1: Sampling and analysis overhead for the
DaCapo benchmarks

This shows that stack fragments with a size of 16 KB are
typically sufficient to produce full stack traces.

With 4.09% incomplete stack traces, the tomcat benchmark
seems to be an exception to this rule. However, increasing the
fragment size had no substantial effect. We noticed that most
of the incomplete stack traces are related to class loading
and exception handling, and will examine these cases more
closely to increase the completeness of our traces.

3.3 Performance Impact
Figure 1 shows the median execution time for each bench-

mark at the sampling rates of 100, 1000 and 10000 samples
per second, normalized to the benchmark’s median execu-
tion time without sampling. The error bars indicate the
first and third quartiles. The G.Mean bars on the left show
the geometric means over all benchmarks, which are 1.45%,
2.21% and 6.83% overhead at 100, 1000 and 10000 samples
per second, respectively. Only the avrora benchmark shows
consistently above 10% overhead.

For comparison, we implemented an additional agent that
collects samples using JVMTI and builds a CCT from them
as well. With OpenJDK 8, we determined a geometric
mean overhead over all benchmarks of 5.4% at 100 samples
per second, 45.2% at 1000 samples per second and 73.0%
overhead at 10000 samples per second. Hence, our approach
is clearly superior to JVMTI sampling, particularly at high
sampling rates.

3.4 Accuracy
For assessing the accuracy of our approach, we compared

the CCTs produced by our agent to those from the JVMTI
agent. Our tests confirm that JVMTI frequently misrep-
resents how an application spends its time. An extreme
example is SciMark 2.0 [9], a scientific computing benchmark
that spends roughly equal times in five different computa-
tional kernels. The CCT with data from JVMTI, however,
suggests that the program spends over 40% of its time in
kernel.measureLU(), which represents just one of the five
kernels, and in fact calls another method LU.factor() that
performs the actual work. This suggests that the safepoints
are placed unfavorably in SciMark so that the distribution of
samples is distorted. The CCT produced with our approach
distributes the execution time more evenly and attributes it
to the computationally intensive methods.

279

Mean avrora fop h2 jython luindex lusearch pmd sunflow tomcat tradebeans tradesoap xalan
Res. 90.7% 84.3% 91.6% 88.7% 91.9% 96.0% 95.7% 85.8% 96.8% 87.8% 87.7% 88.3% 93.6%
Inc. 0.41% 0.00% 0.48% 0.01% 0.05% 0.04% 0.01% 0.06% 0.00% 4.09% 0.01% 0.03% 0.11%

Table 1: Fraction of resolved and incomplete stack traces by benchmark

3.5 Achievable Sampling Rates
Our approach allows for high sampling rates because of

its low impact on performance and because taking samples
is triggered by a hardware timer and is not delayed by any
software mechanism. We were able to achieve sampling rates
of more than 30000 samples per second. In comparison,
the quickly increasing overhead of JVMTI sampling sets
a much lower practical limit. Using POSIX signals with
AsyncGetCallTrace has a practical limit as well, because
rapidly successive signals are either coalesced into one signal
or are all handled at once without the application running
in between, producing samples of an identical state.

3.6 Redundancy of Samples
With both JVMTI sampling and AsyncGetCallTrace, it

is not possible to determine whether a thread has been active
before taking a sample. As a result, samples are often taken
of unchanged states, such as when a thread is waiting. With
our approach, the operating system only takes samples while
a monitored thread is executing, or when a context switch
occurs, which allows us to capture a thread’s calling context
before it enters a waiting state. This reduces the amount of
collected data that needs to be processed.

4. RELATED WORK
Problems with Java stack sampling have been analyzed

before. Mytkowicz et al. [6] demonstrate that four commonly
used Java profilers often produce incorrect profiles due to
safepoints and optimizations. They propose a profiler that
pauses threads at arbitrary locations, but they choose to
implement it entirely outside the VM, which restricts its use
in the presence of optimizations. Binder [2] confirms the high
overhead of sampling with JVMTI and presents a pure Java
profiler that rewrites bytecode to maintain a shadow stack
and periodically capture samples, which he claims is more
accurate than JVMTI at comparable overhead.

To our knowledge, copying stack fragments for fast Java
profiling has not been attempted before. Whaley [12] de-
scribes an in-VM Java profiler that samples threads at arbi-
trary points and avoids full stack walks by marking visited
stack frames, claiming a low overhead of 2-4% at 1000 sam-
ples per second. However, the used VM performs thread
scheduling itself (“green threads”), which permits certain as-
sumptions and direct access to thread states. Green threads
are uncommon in modern Java VMs because of their disad-
vantages in multi-processor systems. Inoue and Nakatani [4]
describe a Java profiler that uses hardware events to take
samples of only the executing method and the stack depth.
It builds a CCT based on matching stack depths and caller
information, and is reported to achieve an overhead of 2.2%
at 16000 samples per second. Serrano et al. [10] present a
Java profiler that uses hardware branch tracing to create
partial call traces and attempt to merge them optimally
into approximate CCTs, claiming to produce highly accurate
CCTs at negligible overhead. Unlike our approach, both of
these techniques require specific hardware and their accuracy
can suffer from ambiguous callers.

5. CONCLUSIONS AND FUTURE WORK
We described an approach for Java stack trace sampling

that relies on the operating system to capture stack frag-
ments which are then asynchronously retrieved and analyzed.
We further described a set of heuristics for identifying the
topmost Java frame in these fragments for building stack
traces from them. Our preliminary results show that these
heuristics work for over 90% of the collected fragments, and
that a fragment size of 16 KB is sufficient to obtain complete
stack traces from more than 99.5% of samples. We further
showed that the accuracy of our approach is high while its
performance impact is very low even at high sampling rates,
particularly when compared to JVMTI sampling.

As next steps, we plan to experiment with smaller frag-
ments and to determine how well incomplete stack traces
can be correctly matched to a CCT. We also consider using
hardware performance counters instead of taking samples at
fixed time intervals, which could further reduce overhead.

6. ACKNOWLEDGEMENTS
This work was supported by the Christian Doppler Forschungs-

gesellschaft, and by Compuware Austria GmbH.

7. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting

hardware performance counters with flow and context
sensitive profiling. PLDI ’97, pages 85–96, 1997.

[2] W. Binder. Portable and accurate sampling profiling
for Java. Software: Practice and Experience,
36(6):615–650, 2006.

[3] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. OOPSLA ’06,
pages 169–190, Oct. 2006.

[4] H. Inoue and T. Nakatani. How a Java VM can get
more from a hardware performance monitor. OOPSLA
’09, pages 137–154, 2009.

[5] kernel.org. perf: Linux profiling with performance
counters. https://perf.wiki.kernel.org/.

[6] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Evaluating the accuracy of Java profilers.
PLDI ’10, pages 187–197, 2010.

[7] Oracle. JVMTMTool Interface version 1.2.1.
http://docs.oracle.com/javase/7/docs/platform/

jvmti/jvmti.html.

[8] Oracle. OpenJDK HotSpot group.
http://openjdk.java.net/groups/hotspot/.

[9] R. Pozo and B. Miller. SciMark 2.0.
http://math.nist.gov/scimark2/.

[10] M. Serrano and X. Zhuang. Building approximate
calling context from partial call traces. CGO ’09, pages
221–230, 2009.

[11] V. Weaver. The unofficial Linux perf events web-page.
http://web.eece.maine.edu/~vweaver/projects/

perf_events/.

[12] J. Whaley. A portable sampling-based profiler for Java
virtual machines. Java Grande ’00, pages 78–87, 2000.

280

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.compuware.com
https://perf.wiki.kernel.org/
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://openjdk.java.net/groups/hotspot/
http://math.nist.gov/scimark2/
http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://web.eece.maine.edu/~vweaver/projects/perf_events/

	Introduction
	Approach
	Taking Stack Samples
	Retrieving the Samples
	Analyzing the Samples

	Evaluation
	Success Rate
	Completeness of Traces
	Performance Impact
	Accuracy
	Achievable Sampling Rates
	Redundancy of Samples

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

