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ABSTRACT 
As an important element of the Smart Grid, Advanced Metering 
Infrastructure (AMI) systems have been implemented and 
deployed throughout the world in the past several years. An AMI 
system connects millions of end devices (e.g., smart meters and 
sensors in the residential level) with utility control centers via an 
efficient two-way communication infrastructure. AMI systems are 
able to exchange substantial meter data and control information 
between utilities and end devices in real-time or near real-time. 
The major challenge our research was to scale ABB’s Meter Data 
Management System (MDMS) to manage data that originates 
from millions of smart meters. We designed a lightweight 
architecture capable of collect ever-increasing large amount of 
meter data from various metering systems, clean, analyze, and 
aggregate the meter data to support various smart grid 
applications. To meet critical high performance requirements, 
various concurrency processing techniques were implemented and 
integrated in our prototype. Our experiments showed that on 
average the implemented data file parser took about 42 minutes to 
complete parsing, cleaning, and aggregating 5.184 billion meter 
reads on a single machine with the hardware configuration of 12-
core CPU, 32G RAM, and SSD Hard Drives. The throughput is 
about 7.38 billion meter reads (206.7GB data) per hour (i.e., 
1811TB/year). In addition, well-designed publish/subscribe and 
communication infrastructures ensure the scalability and 
flexibility of the system.  

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
Parallel programming; F.1.2 [Computation by Abstract 
Devices]: Modes of Computation – Parallelism and concurrency; 
H.3.4 [Information Storage and Retrieval]: System and 
Software – Performance evaluation (efficiency and effectiveness).  

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Verification. 

Keywords 
Architecture, Concurrency, Parallelism. 

1. INTRODUCTION 
A “Smart Grid” generally refers to a modern electric utility grid 
that uses computer-based information and communication 
technology to collect and manage information in an automated 
fashion [22]. Smart Grid technologies are able to significantly 
improve the quality of the production and distribution of 
electricity, especially in efficiency and economics.  Stimulated by 
the concept of Smart Grid, Advanced Metering Infrastructure 
(AMI) systems have been widely deployed in the world in the 
past several years. An AMI system usually consists of smart 
meters, two-way communications networks, and data 
management systems.  Unlike traditional home energy monitors, 
smart electrical meters not only record consumption of electric 
energy in intervals of 15 minutes or even every minute, but also 
communicate information back to the utility for monitoring and 
billing purposes. Additionally, unlike legacy utility 
communication systems, such as Supervisory Control and Data 
Acquisition (SCADA), an AMI system offers an efficient two-
way communication infrastructure, connecting millions of end 
devices (e.g., smart meters and sensors in the residential level) 
with utility control centers, and exchanging substantial meter data 
and control information between them in real-time or near real-
time. AMI systems break through the traditional fences of 
substations and transformers, pushing forward the boundaries of 
grid visibility to the residential territory [20]. 

A Meter Data Management System (MDMS) is responsible for 
collecting meter data that originates from large amount of smart 
meters, storing and transforming meter data into information that 
may be used by utility applications, such as Demand Response 
(DR) billing, Customer Information Systems (CIS), Outage 
Management Systems (OMS), Distribution State Estimation 
(DSE), and Voltage Var Optimization (VVO). These utility 
applications can now access and analyze interval meter 
measurements via AMI to provide more sophisticated 
functionality. For example, DR billing systems can offer better 
analytic results and a more flexible pricing infrastructure based on 
Time-of-Use (TOU). As a key component for managing large 
amount of meter data and unleashing the potentials of AMI, an 
MDMS not only simplifies IT integration of AMI, but also 
facilitates the distribution of the meter data across the utility 
enterprise by framing the volumes of interval data retrieved from 
the field into manageable and understandable information 
packets. 

In the past few years, enhancements and benefits brought by AMI 
and MDMS to the utility customer information system have been 
widely witnessed and accepted and in return have attracted more 
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efforts to build larger scale applications on top of AMI.  Based on 
estimations from IDC Energy Insights, the North American 
market in MDMS will grow up to $869.1 million (USD) in 2013, 
in which a smaller utility will spend up to $250,000 on MDMS 
solutions while large utilities will potentially sign contracts 
ranging from $2 million to $4 million [8]. 

As one of the primary vendors with a good reputation in the 
power grid management market, ABB has produced power grid 
management products that are widely accepted by major utilities 
in the US [21]. However, ABB’s existing MDMS products were 
not designed to manage meter data generated by millions of smart 
meters. The desired MDMS is required to collect ever-increasing 
large amount of meter data from various metering systems (e.g., 
AMI and advanced meter read (AMR)), clean, analyze and 
aggregate the meter data to support its customer information 
system in the short term, and a plethora of smart grid systems and 
applications in the long run. The input to the desired MDMS is 
the interval meter data measurements collected from 3~5 million 
residential smart meters every 15 minutes or even every minute in 
the future. The collected measurements are not only energy 
consumption but also engineering measurements (e.g., current and 
voltage) and/or power quality events (e.g., outage information). 

We designed a lightweight architecture to fulfill the non-
functional requirements, especially in the aspects of performance 
and scalability, of such a system. In order to meet critical high 
performance requirements, various concurrency processing 
techniques, such as Task Parallel Library (TPL) [18] and in-
memory lock-free data structures, were implemented and/or 
integrated in our prototype (henceforth called the System). Our 
experiments demonstrated that on average the data parser for data 
files was able to complete parsing, cleaning, and aggregating 
5.184 billion meter reads in 42 minutes 8 seconds on a single 
machine with the hardware configuration of 12-core CPU, 32G 
RAM, and SSD Hard Drives. The throughput is about 7.38 billion 
meter reads (206.7GB data) per hour (i.e., 1811TB/year). 

In addition, well-designed publish/subscribe that provides a 
flexible interface to easily integrate with other systems and 
applications, as well as the communication infrastructure ensure 
the high scalability and flexibility of the system. 

The rest of this industrial paper is organized as follows. Section 
2 introduces the background and related work. Section 3 presents 
research challenges and constraints, as well as critical 
architectural requirements. Section 4 describes the design and 
implementation in detail. Section 5 shows the performance 
evaluation results. Section 6 provides further discussion. Section 7 
presents conclusions and future work of this study. 

2. BACKGROUND AND RELATED WORK 
In this section, background information and related work of Meter 
Data Management Systems (MDMS), and Data Extract, 
Transform, and Load (ETL) are described in Section 2.1 and 
Section 2.2, respectively. 

2.1 Meter Data Management Systems 
As a centralized storage facility, a MDMS collects meter data 
from various metering systems, processes them, and provides the 
processed meter information to various utility applications (e.g., 
outage management, workforce management, and customer 
billing system). In addition, beyond collecting data from metering 

systems, most MDMS can also send signals back to smart meters 
and control them. 

At the time of this study, based on the Pike Pulse Report in 2011 
[14], Oracle, eMeter, and Itron were ranking the top three of 
MDMS vendors in the North American Market. Oracle attained 
the highest overall score due to its broad MDMS product line, 
massive scale, geographic presence, technical innovations, and 
integration of MDM with other Oracle products. At the time of 
this study, according to [23], the announced test results 
demonstrated that a system, consisting of Oracle Smart Meter 
Gateway, Oracle utilities meter data management system, and 
Oracle utilities customer care and billing system, can process 
more than 1 billion records and generate 500,000 customer bills 
within an eight hour nightly window. The tests were conducted 
against real business scenarios, in which the meter measurements 
are generated by 10 million smart meters in every 15 minutes 
[23]. In 2011, Siemens Energy announced the acquisition of 
eMeter and integrated its meter data management software into 
Siemens smart grid product line [6] [26]. Thereby, the new 
product, called EnergyIP, having both the meter data management 
the smart grid applications, appeared on the market. Siemens 
announced its MDMS centralized architecture that can manage up 
to 50 million smart meters [6].  Itron also has a strong metering 
system product line, which ranges from smart meters, AMI 
communication infrastructures, AMI high-end meter data 
collectors, and meter data management, but relatively weak in 
developing smart grid applications based on top of its MDMS 
[12][27]. As far as we had known when we were conducting this 
study, none of the above work dealt with meter read data in one 
minute interval. Also our experiments demonstrated that our 
design and prototype was able to meet the high performance 
requirements in processing big data files, meanwhile maintaining 
a relatively small footprint. 

2.2 Data Extract, Transform, and Load 
In the area of data processing, Extract, transform, and load (ETL) 
refers to a process of (1) extracts data from outside sources, (2) 
transforms the data to fit operational needs, and (3) loads the data 
into data storage such as database or data warehouse. ETL may be 
parallelized to obtain higher performance.  

Agarwal et al. proposed an approach of parallel processing of 
ETL jobs involving XML documents. Their approach parallelizes 
ETL jobs by performing a shallow parsing of XML documents in 
parallel on one or more processors. [1] The method needs to 
generate intermediate XML documents, while our method will not 
have any intermediate XML documents. Also the producer and 
consumer are in same processor in their method, while the 
producer and multiple consumers will run in different 
threads/processors in our method.  

Candea et al. provided a method of high-throughput ETL of 
program events for subsequent analysis. An event tap associated 
with a server was utilized to transform a server event into a tuple. 
They used the event tap to reduce the computational burden on 
the database and at the same time keep the server event data in the 
database relatively fresh. [3] [3]Our major challenge in ETL was 
to process files or file stream that contains bulk data.  

Chen et al. proposed an ETL method for data cleaning in electric 
company based on genetic neural network to handle missing 
values. The method was able to improve the accuracy of missing 
data prediction by the global search ability of genetic algorithm 
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and the nonlinear mapping ability of neural network. [4] We 
focused on the throughput of the ETL process for huge and ever 
increased meter data. 

3. ARCHITECTURAL REQUIREMENTS 
In this section, we will introduce general challenges and 
constraints, as well as critical architectural requirements, in this 
research. 

3.1 General Challenges and Constraints 
The foremost challenge was to effectively managing a large 
amount of data with minimal machine footprint. An MDMS that 
claimed to manage millions of meters usually has a large machine 
footprint. For example, Oracle demonstrated a MDMS system 
consisting of 32 servers to manage data from 10 million meters 
[23]. However, the high costs of building and maintaining a large 
cluster may prevent the MDMS from being widely deployed. 
Additionally, following long-term technical strategy of adopting 
the Microsoft technology stack for future products, Microsoft 
.NET and C# technologies were required to prototype the 
architecture design.  

3.2 Critical Architectural Requirements 
Although we needed to consider many quality attributes in the 
process of architecture design (e.g., scalability and flexibility), 
performance, especially throughput, was the most critical quality 
attribute type. 

According to the functional requirements, the meter 
measurements are imported either from a bulk data file (Data File 
Scenario) or from an interval-based data stream (AMI Data 
Stream Scenario). Section 3.2.1 and 3.2.2 describes these two 
scenarios in detail, respectively. 

3.2.1 Data File Scenario 
The typical Data File Scenario is to import the previous day’s 
meter reads from a bulk data file, and process the meter data load 
accumulated in 24 hours in only one hour. 

Depending on the load style, the file scenario can be classified 
into the following two cases: the Regular Case and the Extreme 
Case. In the Regular Case, the regular intervals of meter loads are 
15 minutes, i.e., 96 times per day. Each meter load contain three 
“channels” which means three data reads (i.e., records) with the 
values of energy consumption, current, and voltage, respectively. 
So there are 288 regular reads per day for each meter.  In 
addition, for each day, three hours of Demand Response (DR) 
reads with only the energy consumption value are also collected. 
However, DR reads are collected in only one-minute intervals 
(i.e., 180 data reads per day). In total 468 data reads are collected 
per day for each meter. So in the Regular Case, 1.404 billion data 
reads are contained in a bulk data file for 3 million meters. The 
Extreme Case further extends the DR reads from three hours to 24 
hours per day, i.e., 1440 DR data reads per day.  

Based on the requirements, all the meter data shall be imported, 
cleaned, and aggregated in one hour. To clarify our analysis, we 
define the concept of throughput as the number of processed 
meter reads per hour. Based on this definition, the throughput in 
the Extreme Case is 5,184 billion meter reads per hour, which is 
far higher than that of the major competitors (e.g., the throughput 
of Siemens’s system was 200 million meter reads per hour and the 

throughput of Oracle’s MDMS was about 40 million meter reads 
per hour) at the time of this study. 

The formal performance – throughput requirement for the 
Extreme Case of the File Scenario is as follows: 

PERF_1 - The Extreme Case of the File Scenario 

Requirement Statement: 

The System shall load bulk data file in CSV format that contains 
up to 5.184 billion meter reads (i.e., data from up to 3,000,000 
meters per day), store raw data, fill missing data, aggregate data, 
and export aggregated data to the CIS system in 1 hour. The 
maximum file size is 145.152 GB under Assumption (1). The 
maximum throughput is to process 5.184 billion meter reads per 
hour (i.e., 145.152 GB data per hour under Assumption (1)). 

Calculation: 

- 96 fifteen-minute reads per day * 3 channels for 288 regular 
reads/meter, plus 24 hours * 60 minutes for 1,440 Demand 
Response reads/meter. (288 + 1440) * 3 million meters for 5.184 
billion meter reads per day. 

- 5.184 billion meter reads * 28 bytes / meter reads = 145.152 GB 
data. 

Assumption: 

(1) Data size (in CSV format) for each meter read is 28 bytes. 

(2) Multiple day's file can be processed separately by multiple 
servers in the System in one hour. 

3.2.2 AMI Data Stream Scenarios 
Unlike importing data from bulk data file, a typical AMI Data 
Stream Scenario is to import data stream from AMI, in which 
meter loads are evenly distributed in a day. Also, each meter read 
from AMI contains more bytes because AMI meter data is in 
XML format instead of CSV format. 

The formal performance – throughput requirements for the 
Regular Case and the Extreme Case of the Stream Scenario are as 
follows: 

PERF_2 – The Regular Case of Stream Scenario 

Requirement Statement: 

During the non-peak times of Demand Response (i.e., for regular 
reads), the System shall receive data from up to 5,000,000 meters 
from AMI in 15 minutes interval (i.e., up to 1.44 billion meter 
reads per day), store raw data, fill missing data, aggregate data, 
and export aggregated data to the ROMO system. The maximum 
throughput is to process 15 million meter reads per 15 minutes 
(i.e., 1.5 GB data per 15 minutes). 

PERF_3 – The Extreme Case of Stream Scenario 

Requirement Statement: 

During the peak times of Demand Response, the System shall 
receive, store, and manage data that originates from up to 
5,000,000 meters in 1 minute interval in addition to the regular 
reads described in the PERF_2 requirement, i.e., up to 8.64 
billion meter reads per day. The maximum throughput is to 
process 20 million meter reads per 1 minute (i.e., 2 GB data per 1 
minute). 
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Calculation: 

96 fifteen-minute reads per day * 3 channels for 288 reads/meter, 
plus 24 hours * 60 minutes for 1,440 Demand Response 
reads/meter. (288 + 1440) * 5 million meters for 8.64 billion 
meter reads per day.   (5 million “regular” meter reads per 1 
minute * 3 channels + 5 million Demand Response meter reads 
per 1 minute * 1 channel) for 20 million meter reads per 1 minute. 

Assumption: 

(1) The demand response reads are in addition to the “regular” 
reads during the peak times. 

(2) The data stream is in XML format in CIM model [6]. 

(3) Data size for each meter read is 100 bytes. 

Table 1 shows a summary of the performance – throughput 
requirements for all the cases of both the Data File Scenario and 
the AMI Data Stream Scenario.  Among these cases, the Extreme 
Case of the Data File Scenario has the largest processing 
throughput (5.184 billion reads per hour) and data throughput 
(145.152 GB data per hour). 

4. DESIGN AND IMPLEMENTATION 
In this section, we will highlight key techniques that contribute to 
the high performance and scalability of the System. 

4.1 Overall Architecture 
Figure 1 shows the component diagram for the System. At the 
high level, the components of the System can be classified into the 
following four parts: the meter data input layer in the left part of 
the figure, the meter data storage and the message coordinator in 
the middle part of the figure, and the application connectors in the 
right part of the figure. 

Meter Data Input Layer 

The meter data input layer consists of three modules: the protocol 
translation module, the stream parser module and the file parser 
module. The protocol translation module supports different AMI 
communication protocols and information models used by AMI, 
translating the input data into a standard information model (e.g., 
IEC61968-9) and sending it to the stream parser for processing.  

The stream parser construes, cleans, and aggregates the meter data 
received from the protocol translation module. The file parser 
construes, cleans, and aggregates the meter data received from the 
bulk file in CSV format that contains one-day meter 
measurements. The parsers have two types of output: cleaned raw 
data and aggregated data. The former will be stored into the data 
repository, and the latter will be stored and also sent to Smart 
Grid applications (e.g., CIS). Section 4.2 describes the file parser 
in detail. 

Meter Data Storage 

The meter data storage is used to store both aggregated data and 
cleaned raw data. It consists of two parts: a relational database 
(RDBMS) and flat files. The former is used to store the aggregated 
data, and the latter are used to store the raw data. Section 4.3 
describes the hybrid flat file / RDMBS storage mechanism. 

Message Coordinator 

The message coordinator is a publish/subscribe infrastructure, 
coordinating the behaviors of components in the System. As 
connected through the publish/subscribe infrastructure, the 

components of the System are loosely coupled: by sending a 
message to the Message Coordinator, one component can 
coordinate its behavior with other components that subscribed to 
the sent message. Traditional applications of publish/subscribe 
infrastructures extend across the entire enterprise, whereas the use 
of publish/subscribe here is limited to the confines of the System. 
There is no need to deploy a heavy-duty middleware function to 
fulfill this function.  

Table 1. Summary of Throughput Requirements 

 
Data File Scenario 

AMI Data Stream 
Scenario 

Extreme  
Case 

Regular 
Case 

Regular 
DR 

Extreme 
DR 

Data Format CSV CSV XML XML 

# of meters 3M 3M 5M 5M 

# of 
channels 

3 for 
regular 
reads, 1 
for DR 
reads 

3 for 
regular 
reads, 1 
for DR 
reads 

3 

3 for 
regular 
reads, 1 
for DR 
reads 

# of regular 
reads / day 

for each 
meter 

288 288 288 288 

# of DR 
reads / day 

for each 
meter 

1440 180 0 1440 

# of reads / 
day 

5.184 
billion 

1.404 
billion 

1.44 
billion 

8.64 
billion 

Max 
processing 
throughput 

5.184 
billion 
reads / 
hour 

1.404 
billion 
reads / 
hour 

15 
million 
reads / 

15 mins 

20 
million 

reads / 1 
min 

Data size for 
each read / 
command 

28 bytes 28 bytes 
100 

bytes 
100 

bytes 

Max data 
throughput 

145.152 
GB / 
hour 

39.312 
GB / 
hour 

1.5 GB / 
15 mins 
(6 GB / 
hour) 

2 GB / 1 
min (120 

GB / 
hour) 

As components in the System are loosely coupled and connected 
through messages, adding a new component to the System 
becomes easy: register messages sent by the new components to 
the message coordinator, identify the subscribers who are 
interested in these messages and link the subscribers with the 
newly added component by subscribing to the messages sent by 
the newly added component. In addition, each component only 
focuses on one specific function (e.g., the file parser only process 
the large data file), which makes the whole system easy to 
maintain. Section 4.5 provides detailed information in how the 
Message Coordinator works. 

Application Connectors 

Application Connectors are responsible for sending meter 
information tailored to certain Smart Grid applications. A 
connector tailors information from a standard meter information 
model to diversified information models and conforms to the 
communication protocols used by different Smart Grid 
applications. 
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Figure 1. Overall Architecture 

4.2 Meter Data Parser 
The meter data parser works with large amount of meter data in 
the following steps. 

Step 1: Large amount of mostly structured raw data is generated 
by various sensors, end devices, automatic data generation 
infrastructures, and/or other data sources.  The raw data may be 
imported as files in different predefined formats, such as Comma-
Separated Values (CSV), Extensible Markup Language (XML), 
or other user-defined formats. Partial of the dataset may be 
missing or duplicated, and there may be mistakes in the generated 
raw data. 

Step 2: Before loading the raw data from the field, the data parser 
creates and initializes well-designed large-scale data structures in 
memory in order to stage and organize input data, and preserve 
aggregated datasets before storing them into databases or files.  
These data structures are thread-safe so that they can be accessed 
by multiple threads concurrently without any concurrency defects.  
The data parser also loads necessary metadata, such as 
configuration data for aggregation and summary of historical data, 
from databases or other data storage mechanisms.  Different 
metadata may be loaded depending on different accumulative 
aggregation/analysis algorithms to be conducted in memory after 
loading the raw data. 

Step 3: After the initialization described in Step 2, the data parser 
concurrently loads the raw data files or collects the raw data 
stream from the data sources in the stream fashion.  Each thread 
works on one file. For each line or block of raw data, the data 
parser parses the raw data depending on the predefined data 
formats, eliminates useless text such as commas, spaces, and 
XML tags, and converts useful data from plain text to 
corresponding data types. 

Step 4: Various algorithms of validation, estimation, and editing 
(VEE), such as foreign key validation, individual numeric data 

validation, duplication validation, and missing data estimation, 
are applied to the converted raw data in order to clean up the 
input data.  During the scanning of the raw data, many statistical 
and aggregation algorithms can also be executed to 
accumulatively analyze and aggregate the cleaned staging data.  
In-memory configuration information and historical aggregation 
data that has been loaded in Step 2 can help to perform 
aggregation for broader time periods.  Large-scale thread-safe 
data structures constructed and maintained in memory are suitable 
for efficiently accepting and organizing both cleaned staging data 
and aggregated data.  These data structures also help to remove a 
large amount of redundant or duplicated information in input data. 

The technique of layered key/value pairs is used to implement the 
in-memory input data dictionary. In this data structure, the value 
of each key/value pair is a set of key/value pairs, except for the 
last layer. Figure 2 illustrates an example of the layered key/value 
pairs (two layers) that is used as the input data dictionary for one 
day meter reads generated from 3 million meters. 

Assuming that each meter read contain four fields: 1) meter ID, 2) 
timestamp, 3) read type, and 4) read value of either energy or 
current or voltage, depending on the read type.  The set of 
key/value pairs in the first layer is implemented by thread-safe 
Concurrent Dictionary [16] in order to avoid data racing.  There 
are 3 million entries in the first layer thread-safe dictionary. For 
each entry of the first layer key/value pairs, the key is a unique 
meter ID, and the value is a Sorted List [17].  Sorted Lists cost 
smaller size of memory comparing to other types of key/value 
pairs, because a Sorted List stores data in linear arrays but 
Dictionaries store data in tree structures. For each entry of the 
Sorted List, the key is a concatenated string. The string is one of 
the possible combinations of the hour and the minute in a day and 
the meter read type. The value of each entry of the Sorted List is a 
float variable that stores the read value of this meter read.  During 
the initialization step, the float variable is set to a special value 
such as -1, indicating this specific meter read has not been 
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received.  When receiving a piece of meter read, the layered 
key/value pairs allows the data parser to find the corresponding 
position in the large-scale data structures for this piece of meter 
read using an O(1) operation. Then the float variable is changed 
to the read value in this piece of meter read, indicating this 
specific meter read has been received.  With the help of the data 
dictionary, the data parser is able to organize and sort the whole 
raw datasets with an O(n) operation while loading them.  
Duplicated meter reads can be easily detected as well.  After this 
step, the data parser converts input raw data into cleaned staging 
data and aggregated data and stores all the data in the large scale 
thread-safe data structures in memory. 

 

Figure 2. In-memory Data Dictionary Using Layered 
Key/Value Pairs 

Step 5: The well-organized cleaned staging data and aggregated 
data in memory can be conveniently traversed and stored into 
relational database management systems and/or flat files on hard 
drives for future usage. 

A key advantage of the design is the ability to receive and process 
data at a very high throughput.  Section 5.2 shows the detailed 
results of performance evaluation. 

4.3 Hybrid Flat-file / RDBMS Storage 
The traditional RDBMS stores not only the data set but also 
related meta-data that are used to accelerate data retrieval. When 
the size of managed data set is small, the cost and performance 
overhead caused by the meta-data can be effectively covered 
because of its performance gain. For instance, the purpose of 
index is to define a short-cut path to access data. Because of the 
index, the performance of data retrieval can be significantly 
improved. 

However, the cost and overhead of building, managing and 
utilizing meta-data are significantly increased when the data size 
is getting large. Our experiments demonstrated that inserting 1.5 
billion meter reads, each of which carries the information on 
energy consumption and its related timestamp, into a table in an 
Oracle database, took more than ten hours. By contrast, creating 
and storing the same amount of data into flat files took less than 
10 minutes on the same hardware configuration because of no 
such meta-data related overhead. 

The performance of querying a large relational table deteriorates 
with the data set getting large. Based on our experiments, a query 
that conducts the sum operation against a data set with 1.19 
million meter reads in Oracle 11g spent more than four hours. 
While the same operation fulfilled by flat files and streaming took 
less than six minutes. These experiments demonstrated that the 
traditional relational database management system becomes 
inefficiency when the data set is getting large. On the contrary, 
the flat file technologies become efficient under the same 
situation. 

Nowadays, the size of raw data collected from millions of end 
devices at a certain time interval (e.g., every 15 minutes or even 
shorter) is huge and ever increased. In the Extreme Case of the 
Data File Scenario, the daily data collected from three millions 
smart meters maximally contains 5.184 billion reads (about 
145GB), which already surpasses the size of data that a traditional 
database application can handle in its life cycle. 

Figure 3 illustrates the infrastructure of the newly designed data 
storage solution, which is suitable for managing a large amount 
and ever-increasing data. Unlike traditional database 
technologies, the storage of the database is split into two parts: the 
relational DB and flat files. The relational DB is used to store 
aggregated data, which is in small volume, while the flat files are 
used to store the raw data, which is in huge volume. 

The data parser collects meter measurements from data stream 
and/or data files. After cleaning and aggregation, the data are 
classified into two parts: the aggregated data and the cleaned raw 
measurements. The aggregated data, such as the maximal daily or 
monthly energy usage, are eventually stored to the relational 
database and the cleaned raw measurements are saved to the flat 
files. The query engine is used to analyze and redirect the income 
queries to either the relational DB or the flat files. Generally, the 
aggregated data stored in the relational DB can answer most 
queries.  For those queries that cannot be handled by relational 
DB, such as queries on data in long time span have to be extracted 
from flat files, will be processed by streaming the flat files.   

 

Figure 3. Hybrid Flat-file / RDBMS Storage Infrastructure 

The performance of querying large data files eventually 
overpasses the performance of querying a large relational table 
when the size of the data set large enough to reach a certain point. 
In our experiments, conducting an aggregation operation against a 
large relational table with 0.8 billion reads took 30 minutes (i.e., 
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1.6 billion reads per hour). Conducting the same aggregation 
operation by streaming a large file containing 4.8 billion reads 
spent only 6 minutes (i.e., 48 billion reads per hour). 

4.4 Communication Infrastructure 
In the System, the scenario of transporting data through a 
communication infrastructure occurs in several places (e.g., 
transporting the collected meter data from the protocol translation 
module to the stream parser module and transporting the 
aggregated meter measurements from the CIS adapter to the CIS 
system). We abstracted a common communication infrastructure, 
which can be applied to each individual transportation scenario in 
the System. 

The Communication Infrastructure is composed of nodes and 
bindings. A node has a unified address describing where a 
message should be sent and logic defining what the message 
should look like and how the message is sent. A binding is a 
communication channel decorated by a set of binding elements, 
which “stack” one on top of the other to create the communication 
infrastructure. The binding elements can be transportation 
protocols (e.g., HTTP and TCP/IP), encoding approaches (e.g., 
text or binary) and other advanced features (e.g., security). 
Decoupling the node and binding make it easy to combine a node 
with different bindings. For example, originally a node sends 
messages through a HTTP binding. As a node is decoupled with a 
binding, it only needs to construct a new TCP/IP binding and link 
the node with the newly created binding. In this way, a message 
can be sent through the TCP/IP communication channel. The 
permutations and combinations of the binding elements can 
construct diversified communication channels in reality. 

Figure 4 illustrates the queue-based communication infrastructure. 
Instead of sending a message directly to a receiver, a sender sends 
a message over a queue to a receiver. The transportation processes 
that send messages from a sender to a queue and from a queue to 
a receiver are transaction-based. Therefore, during the 
transportation, if an error happens, the transportation processes 
would be rolled back. This makes the communication more stable 
and therefore, enhances the availability of the System. The queue-
based communication greatly improves the communication 
efficiency by saving the communication bandwidth from the 
sender to the queue. 

 

Figure 4. Queue-based Communication 

Concurrently processing the received messages is another primary 
way to improve the throughput of the communication channel. 
Concretely, on receiving a package, the receiver quickly launches 
a new thread to process (parsing, cleaning and aggregating) the 
message, meanwhile the receiver itself starts receiving the next 
package. 

The Windows Communication Foundation (WCF) in .NET 4.5 
was used to implement the designed communication 
infrastructure. Nodes and bindings are available in WCF. 

Generally a node has a unified address, visible by other nodes 
from different locations/machines. In the WCF library, various 
communication channels and their decorations have been 
implemented. A developer only needs to configure the features of 
the communication channel, such as communication protocol 
(e.g., HTTP and TCP/IP) and security facilities, through a 
configuration file, rather than develop them from scratch. 

Two scenarios were primarily implemented in the prototype: 
queue-based (MSMQ) communication and HTTP-based 
communication. The former is suitable when both sender and 
receiver are in the .NET platform, primarily implementing a 
communication channel with high performance and high 
availability. The latter emphasizes the interoperability of the 
communication channel: through HTTP + SOAP, components in 
the System can communicate with the component implemented by 
technologies other than windows and .NET (such as Linux and 
Java). In this case, interoperability is the major focus. 

4.5 Message Coordinator 
From the architectural aspect, it is important for the System to 
extend its capability to interface with the potential systems and 
applications, which may use different communication protocols 
and information models. In addition, low cost maintainability is a 
highly desired feature too.  

A message-based publish/subscribe infrastructure, called Message 
Coordinator, was designed to address the above two requirements. 
In the publish/subscribe infrastructure, all components are 
connected through messages. Modifying one component will not 
influence other components. In addition, each component can 
have its own special functionalities. The above loosely coupled 
relationship between components increases the System’s 
maintainability and extensibility. Additionally, unlike the 
“formal” publish/subscribe architecture, which is across the entire 
enterprise and supported by a heavy commercial middleware, the 
proposed publish/subscribe architecture is a lightweight structure 
that is limited to the System, potentially connecting only tens of 
components.  

The publish/subscribe infrastructure is composed of three types of 
components, as shown in Figure 5: a publisher, a message 
coordinator and a subscriber. The publisher publishes message to 
the message coordinator. The message coordinator maintains the 
relationship between the publisher and subscribers. When a new 
message arrives, the message coordinator identifies the 
subscribers of the incoming message and broadcasts the message 
to them. A subscriber registers itself to the message coordinator 
for certain messages during the initialization. After registration, 
the subscriber will receive the registered messages once they are 
published. 

For example, the file parser and the stream parser of the System 
are message publishers, while the CIS connector is a message 
subscriber. The file parser will send out a message to the message 
coordinator once it finishes processing bulk data files. On 
receiving this message, the message coordinator will forward the 
message to subscribers. By parsing the message, the CIS 
connector knows that the data has been cleaned up and 
aggregated. Based on this message, it will pick up the data from 
the public area (either database or shared memory) and send it to 
CIS. 
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It is easy to add a new component to the message-based 
infrastructure. For example, assume that we want to integrate the 
System with a system that fulfills Demand Response (DR) 
functionality. A new subscriber, called the DR connector, is 
developed using Java technologies, which packs the DR 
information received from the file parser and sends it to the DR 
system; to connect to the message coordinator, the new message 
is defined for the DR connector. During the whole process, only 
the message coordinator and the DR connector are involved. The 
rest of the system is not affected. 

 

Figure 5. Message Coordinator 

The publish/subscribe infrastructure may be considered as the 
control center of the System, which coordinates the status of the 
components in the System through messages. In our prototype, to 
make the System more scalable and extensible, the 
publish/subscribe infrastructure was hosted in Internet 
Information Service (IIS) and the HTTP communication protocol 
was used to transport messages. In such a configuration, the 
components located in different machines can communicate with 
the logic of the publish/subscribe infrastructure hosted in the IIS. 
As a major advantage, hosting the service in IIS automatically 
utilizes the functions of IIS, such as listening for incoming 
message and automatically waking up the publish/subscribe logic 
when the message arrives, greatly reducing the development 
efforts.   

5. PERFORMANCE EVALUATION 
In this section, we will present results of performance evaluation 
of the System. 

5.1 Testing Environment 
Two computer systems were configured for the evaluation. We 
highlighted our thoughts on selecting hardware components of the 
testing systems as follows: 

- High performance CPU for intensive computation 

- High throughput disk for frequent disk I/O 

- Four-channel high speed memory for high performance memory 
operations (e.g., parsing and cleaning meter data in memory) 

- Large capacity of memory for pre-storage VEE tasks 

Additionally, Visual studio 2012 was selected for fully utilizing 
advanced data structures (e.g., the lock-free concurrent 
dictionary), the user-friendly multithreading API, and the latest 
version of the WCF implementation. Table 2 summarizes the 
configuration of the testing system. 

Table 2. Testing System Configuration 

Resource Specification 

CPU 
Intel Core i7-3930K @ 3.20GHz, 6 cores with 
Hyper threads (12 logical cores), 15 M L3 

Memory 32GB DDR3 (1600MHz) Four-Channel 

Hard Disk SSD (from Samsung and OCZ) 

Network 1Gb/s 

OS Windows 7 Enterprise 64 

Dev. Tool Microsoft Visual Studio 2012 Ultimate 

 

5.2 Data File Parser 
To prototype the meter data parser described in Section 4.2, 
Solid-State Disk (SSD) hard drives [7] were used due to the 
tremendous disk I/O throughput. The new Task Parallel Library 
(TPL) [18] in .NET 4.5 was selected to address the high 
throughput requirement because TPL has easy understanding 
multi-thread APIs, through which launching multi tasks becomes 
simple and straightforward.  

The input of our experiments is 12 bulk files in CSV format with 
meter read data including meter ID, Timestamp, read type, and 
read value. The size of each read (i.e., line) is within 24~29 bytes. 
Parsing a CSV string into memory variables was the most time-
consuming task in the file parser. In comparison with several CSV 
parsers in state of the art, a fast CSV parser [15] was selected, 
which was claimed to be the fastest CSV parser in the .NET 
platform at the time of this study and free for use.  Regarding the 
VEE rules, without loss of generality, a comprehensive survey 
was conducted against the VEE rules used by primary MDMS 
products in the current market, based on which we selected and 
implemented seven popular VEE rules as follows:   

(1) Device ID Validation: To validate if data is received from a 
valid meter, 

(2) Timestamp Validation: To validate if meter reads have valid 
timestamps, 

(3) Interval Validation: To validate if meter reads have valid 
intervals, 

(4) Individual Numeric Data Validation: To validate if the 
energy consumption value in each read is within a proper 
range, 

(5) Summary Numeric Data Validation: To validate if the total 
energy consumption value for each meter is within a proper 
range, 

(6) Duplication Validation: To validate if the received data has 
duplicated reads, and  

(7) Missing Data Estimation: To estimate missing mete read 
data.  

Additionally, the data processing includes a billing aggregation 
based on Time-of-Use (TOU). The TOU-based billing 
aggregation calculates the bill charges for each meter for a day 
according to the pre-defined TOU configuration. The 
implemented TOU configuration includes the following impact 
factors: (1) Daylight Saving Time; (2) Season; and (3) Peak 
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Hours.  The input of this data analytics is the 15-minute interval 
data of consumption for each meter. 

Table 3 shows the performance of the Data File Parser based on 
different input workloads. We conducted experiments five times 
for each workload. For a testing workload with 0.1404 billion 
meter reads from 0.3 million meters, it took about 11 seconds to 
complete the initialization step, i.e., creating and initializing 
large-scale thread-safe data structures in memory. Then it spent 
around 71 seconds on completing the whole data processing, 
including concurrently loading data files, reading and parsing 
lines, converting text to proper data types for analysis, 7 VEEs, 
and the TOU-based billing aggregation.  For the workload of the 
Regular Case, the initialization time and processing time was 3 
minutes 37 seconds and 12 minutes 19 seconds on average, 
respectively. With regard to the Extreme Case, on average it spent 
9 minutes 28 seconds on completing the initialization followed by 
42 minutes 8 seconds on finishing up the data processing. As a 
normalization, the experiments demonstrated that in the Extreme 
Case the data parser for data files has a throughput about 7.38 
billion meter reads (206.7GB data) per hour (i.e., 1811 TB/year) 
for parsing, cleaning, and aggregating meter reads data on a single 
machine with the system configuration shown in Table 2. 
Unfortunately we did not conduct more experiments to show the 
linear scalability more clearly due to budget limitations. 

Table 4 lists the data processing time for each of the 12 threads 
for all these experiments. All threads completed their work at 
almost the same time in the testing case and Regular Case. In the 
Extreme Case, the differences between the fastest thread and the 
slowest thread in these five runs ranged from 31 seconds to 48 
seconds. Comparing to more than 40 minutes’ data processing 
time, we still consider that the performance of the data file parser 
is stable. 

Table 3. Performance of Data File Parser 

Workloa
d (billion 

meter 
reads) 

Avg. 
Initialization 

Time 
(min:sec) 

Avg. 
Processing 

Time 
(min:sec) 

Avg. Processing 
Throughput 

(million reads 
per sec) 

0.1404 0:11 1:11 1.9775 

1.404 3:37 12:19 1.8999 

5.184 9:28 42:08 2.0506 

 

The data parser appropriately allocates the load among various 
computer resources, such as CPU power, RAM, and hard drives, 
to achieve best performance (specifically, responsiveness and 
throughput).  The data parser is able to utilize all CPU cores 
(90+% overall CPU usage) to load the raw data files (or collect 
the raw data stream) and perform data cleaning and analysis. 

5.3 Communication Infrastructure 
The permutations and combinations of features of the 
communication channel generate a variety of communication 
scenarios (HTTP with no security, HTTP with security and 
TCP/IP with security). Enumerating and evaluating all of these 
scenarios is beyond the budget of this study. Therefore, we chose 
the queue-based communication scenario as shown in Figure 4, 
which is a relatively complex and highly stable communication 
approach. 

Table 4. Performance of Each Thread for Each Test 

Workload Test 
Completion Time for Each Thread 

(minute:second) 

0.1404 
billion 

meter reads 

1.1 
1:11, 1:11, 1:11, 1:11, 1:11, 1:11, 
1:11, 1:11, 1:12, 1:12, 1:12, 1:12 

1.2 
1:10, 1:10, 1:10, 1:10, 1:10, 1:10, 
1:10, 1:11, 1:11, 1:11, 1:11, 1:11 

1.3 
1:10, 1:10, 1:10, 1:10, 1:11, 1:11, 
1:11, 1:11, 1:11, 1:11, 1:11, 1:11 

1.4 
1:10, 1:10, 1:10, 1:10, 1:10, 1:10, 
1:10, 1:10, 1:10, 1:10, 1:11, 1:11 

1.5 
1:10, 1:10, 1:10, 1:10, 1:10, 1:10, 
1:11, 1:11, 1:11, 1:11, 1:11, 1:11 

1.404 
billion 

meter reads 

2.1 
12:03, 12:08, 12:10, 12:11, 12:11, 12:12, 
12:12, 12:14, 12:15, 12:15, 12:15, 12:16 

2.2 
12:06, 12:09, 12:09, 12:09, 12:09, 12:10, 
12:10, 12:10, 12:12, 12:13, 12:14, 12:16 

2.3 
12:05, 12:10, 12:14, 12:16, 12:16, 12:17, 
12:17, 12:18, 12:19, 12:19, 12:19, 12:21 

2.4 
12:11, 12:12, 12:15, 12:15, 12:16, 12:16, 
12:16, 12:17, 12:17, 12:18, 12:19, 12:23 

2.5 
12:05, 12:07, 12:09, 12:12, 12:12, 12:13, 
12:14, 12:14, 12:15, 12:15, 12:17, 12:18 

5.184 
billion 

meter reads 

3.1 
41:25, 41:30, 41:30, 41:31, 41:36, 41:42, 
41:42, 41:45, 41:45, 41:50, 41:58, 41:59 

3.2 
41:21, 41:26, 41:31, 41:31, 41:31, 41:37, 
41:40, 41:41, 41:44, 41:47, 41:50, 42:08 

3.3 
41:25, 41:26, 41:29, 41:35, 41:37, 41:40, 
41:42, 41:42, 41:48, 41:51, 42:01, 42:13 

3.4 
41:23, 41:33, 41:40, 41:44, 41:44, 41:48, 
41:49, 41:51, 41:56, 41:58, 41:59, 42:03 

3.5 
41:48, 41:53, 41:55, 41:56, 41:57, 41:58, 
41:59, 42:08, 42:11, 42:13, 42:13, 42:19 

 

The queue-based communication architecture is composed of a 
sender, a receiver and a queue. In the prototype, both sender and 
receiver were .NET console applications. The queue used the 
MSMQ 4.0 service, the queue service in the .NET platform. To 
make the communication more stable, the queue was decorated 
with the transaction feature. In other words, the communication 
between .NET consoles (e.g., sender and receiver) and queue was 
transaction based: if a transaction fails, the delivery would be 
rolled back.  

The sender packed each meter measurement into an XML string. 
The example of the XML formatted meter measurement was as 
follows:  

    <Meter> 

      <MeterID>abcd1234</MeterID> 

      <Timestamp>10:15 4/15/2012</Timestamp> 

      <Energy>10.3</Energy> 

      <Category>1</Category> 

    </Meter> 

A package, the basic unit of the transportation, consisted of 250 of 
the above XML formatted meter measurements. Transporting 3 
million meters data required 12,000 packages, and transporting 5 
million meters data required 20,000 packages. The receiver was 
integrated with VEE functionalities used in the Data File 
Scenario. The receiver concurrently launched a new thread to 
conduct VEE and aggregation algorithms on receiving a package. 
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Table 5 illustrates the performance of the queue-based 
transportation. On average it took about 1 minute and 40 seconds 
to transport 3 million meters data between two computers and 
conduct VEE and aggregation, and about 3 minutes and 12 
seconds to transport and process 5 million meters data.  

Table 5. Performance of Queue-based Transportation 

Workload 
(records) 

Number of 
Packages 

Average Transportation 
Time (minute:second) 

3 million 12,000 1:40 

5 million 20,000 3:12 

 

Based on the performance requirements, during the regular meter 
read phase, 5 million meters measurements arrive in every 15 
minutes. Since the queue-based transportation took less than 4 
minutes, the requirement of receiving the meter data stream from 
5 million meter measurements can be met. Regarding delivering 
the aggregated meter measurements for 3 million meters data 
generated in the Data File Scenario to CIS, with the consideration 
of the transportation time, the total time spent was about 50 
minutes on parsing, cleaning, and aggregating, and 1 minute and 
40 seconds on transportation, which met the one hour 
requirement.  

In the Regular Case, where the meter data includes regular meter 
reads and DR reads, the total data that needs to be transferred was 
(15 + 1) x 3 = 48 million meter reads (15 is the DR reads from 3 
million meter in 1 minute). Considering the transfer and cleaning 
of the 3 million meters data took 1:40, transporting the 48 million 
meter reads spent about 26.6 minutes beyond the 15 minutes 
scope. Two alternative solutions for this situation: one is to 
increase the transportation speed using 10Gb/s network card, 
which is ten times faster than the current network in theory. The 
other one is to keep the current setup and increase the size of the 
queue. In the Regular Case, the three hours DR reads can be 
temporarily put into the queue and processed after the peak hour.  

In the Extreme Case, as the DR reads come in every minute, the 
queue solution wouldn’t work. We had to construct several 10Gb-
based communication channels to transport data from one 
machine to the other. The messaging based architecture allows us 
to perform such transportation. 

6. OTHER QUALITY ATTRIBUTES 
Regarding scalability, the System is able to be scaled up and 
scaled out to meet the performance requirements in the future. 
Scaling up refers to enhancing hardware for the existing machine, 
while scaling out means extending the System across machines. 
Since the Message Coordinator is deployed in the IIS, and HTTP 
is used as the primary communication protocol, it is easy to build 
a system across multiple machines. 

With regard to maintainability, the message-based system is 
composed of loosely coupled modules. When changing the 
functionality of a module, the source code changes will be 
restricted only within the module itself, or within the modules that 
are directly connected to the initially changed module in the 
modules call graph to adapt the updated messages or newly 
defined messages.   

In terms of reliability, as the components in the architecture are 
loosely decoupled, it is easy to build “hot” backup for important 

components. In addition, the queue-based communication can 
effectively handle the network failures and therefore increase the 
reliability of the whole M3 system. 

Additionally, two aspects of security, authentication and 
authorization of the local machines or a domain, were 
implemented by the .NET infrastructure. The communication 
security is implemented by the WCF.   

7. CONCLUSIONS AND FUTURE WORK 
AMI systems are an important element of the Smart Grid as they 
offer an efficient bidirectional communication infrastructure. AMI 
systems connect millions of end devices with utility control 
centers and exchange substantial meter data and control 
information between them in real-time or near real-time. As 
deployment of AMI systems become more ubiquitous, the amount 
of smart meters and data handled by these systems continues to 
grow exponentially. Therefore, it is imperative to design a system 
capable of collecting, cleaning, analyzing, aggregating and 
manipulating this data to support smart grid applications and 
semi-automated decision making.  

This paper discusses the development of a lightweight 
architecture that is able to manage data that originates from 
millions of smart meters to enhance the capabilities of the Smart 
Grid. We implemented the prototype system using various 
concurrency processing techniques, including new Task Parallel 
Library and latest Windows Communication Foundation, fast 
CSV parser, in-memory lock-free data structure, layered 
key/value pairs, hybrid flat-file/RDBMS storage, and SSD, to 
satisfy critical high performance requirements. Our experiments 
demonstrated that in the Extreme Case the throughput of the data 
parser for data files is about 7.38 billion meter reads (206.7GB 
data) per hour (i.e., 1811TB/year) for parsing, cleaning, and 
aggregating meter reads data on a single machine with the 
hardware configuration of 12-core CPU, 32G RAM, and SSD 
Hard Drives. In addition, well-designed publish/subscribe and 
communication infrastructures ensure the scalability and 
flexibility of the system. 

It is important that the implementation of an AMI system requires 
incorporating important quality attributes in the system such as 
maintainability, reliability, and security, besides high 
performance and scalability. In our future work, we will continue 
to enhance the architecture to address other quality attributes, and 
balance the tradeoffs of architectural design. 

Another discussion was that, Hadoop [2] might not be very 
suitable for implementing the System mainly because that there is 
a high risk of not meeting throughput requirements when Hadoop 
processes small amount of data with a small cluster. Executing 
Hadoop on a limited amount of data on a small number of nodes 
may not demonstrate particularly high performance as the 
overhead involved in starting Hadoop programs is relatively high. 
Other parallel/distributed programming paradigms may perform 
much better on two, four, or perhaps a dozen machines. 
[9][10][28] Hadoop is built to process "web-scale" data on the 
order of terabytes or petabytes. It is not recommended to use 
Hadoop if the data and computation fit on one machine. Hadoop 
requires large footprint to demonstrate its power in processing 
really huge data. In the Extreme Case, the performance 
(throughput) goal was to complete processing 5.184 billion meter 
reads in one hour. Our experiments proved that one computer was 
enough to process this amount of data. Our design and prototype 
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provide a lightweight way to conduct validation, estimation and 
editing as well as some analytics in memory for relatively large 
amount of data.  However, it would be more convincing if we 
have hands-on performance and scalability measurements to 
compare the Hadoop implementation with our existing 
implementation. It would be more useful to explore and 
understand the expected boundaries and scope limitations of the 
alternate solutions. We will establish Hadoop clusters, write 
MapReduce programs, and conduct more experiments on Hadoop 
in the future. 
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