
Speeding Up Processing Data From
Millions of Smart Meters

Jiang Zheng, Zhao Li, Aldo Dagnino
ABB Inc., US Corporate Research

940 Main Campus Drive, Raleigh, NC, USA
{jiang.zheng, zhao.li, aldo.dagnino}@us.abb.com

ABSTRACT
As an important element of the Smart Grid, Advanced Metering
Infrastructure (AMI) systems have been implemented and
deployed throughout the world in the past several years. An AMI
system connects millions of end devices (e.g., smart meters and
sensors in the residential level) with utility control centers via an
efficient two-way communication infrastructure. AMI systems are
able to exchange substantial meter data and control information
between utilities and end devices in real-time or near real-time.
The major challenge our research was to scale ABB’s Meter Data
Management System (MDMS) to manage data that originates
from millions of smart meters. We designed a lightweight
architecture capable of collect ever-increasing large amount of
meter data from various metering systems, clean, analyze, and
aggregate the meter data to support various smart grid
applications. To meet critical high performance requirements,
various concurrency processing techniques were implemented and
integrated in our prototype. Our experiments showed that on
average the implemented data file parser took about 42 minutes to
complete parsing, cleaning, and aggregating 5.184 billion meter
reads on a single machine with the hardware configuration of 12-
core CPU, 32G RAM, and SSD Hard Drives. The throughput is
about 7.38 billion meter reads (206.7GB data) per hour (i.e.,
1811TB/year). In addition, well-designed publish/subscribe and
communication infrastructures ensure the scalability and
flexibility of the system.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel programming; F.1.2 [Computation by Abstract
Devices]: Modes of Computation – Parallelism and concurrency;
H.3.4 [Information Storage and Retrieval]: System and
Software – Performance evaluation (efficiency and effectiveness).

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation, Verification.

Keywords
Architecture, Concurrency, Parallelism.

1. INTRODUCTION
A “Smart Grid” generally refers to a modern electric utility grid
that uses computer-based information and communication
technology to collect and manage information in an automated
fashion [22]. Smart Grid technologies are able to significantly
improve the quality of the production and distribution of
electricity, especially in efficiency and economics. Stimulated by
the concept of Smart Grid, Advanced Metering Infrastructure
(AMI) systems have been widely deployed in the world in the
past several years. An AMI system usually consists of smart
meters, two-way communications networks, and data
management systems. Unlike traditional home energy monitors,
smart electrical meters not only record consumption of electric
energy in intervals of 15 minutes or even every minute, but also
communicate information back to the utility for monitoring and
billing purposes. Additionally, unlike legacy utility
communication systems, such as Supervisory Control and Data
Acquisition (SCADA), an AMI system offers an efficient two-
way communication infrastructure, connecting millions of end
devices (e.g., smart meters and sensors in the residential level)
with utility control centers, and exchanging substantial meter data
and control information between them in real-time or near real-
time. AMI systems break through the traditional fences of
substations and transformers, pushing forward the boundaries of
grid visibility to the residential territory [20].

A Meter Data Management System (MDMS) is responsible for
collecting meter data that originates from large amount of smart
meters, storing and transforming meter data into information that
may be used by utility applications, such as Demand Response
(DR) billing, Customer Information Systems (CIS), Outage
Management Systems (OMS), Distribution State Estimation
(DSE), and Voltage Var Optimization (VVO). These utility
applications can now access and analyze interval meter
measurements via AMI to provide more sophisticated
functionality. For example, DR billing systems can offer better
analytic results and a more flexible pricing infrastructure based on
Time-of-Use (TOU). As a key component for managing large
amount of meter data and unleashing the potentials of AMI, an
MDMS not only simplifies IT integration of AMI, but also
facilitates the distribution of the meter data across the utility
enterprise by framing the volumes of interval data retrieved from
the field into manageable and understandable information
packets.

In the past few years, enhancements and benefits brought by AMI
and MDMS to the utility customer information system have been
widely witnessed and accepted and in return have attracted more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
permissions@acm.org.

Copyright 2014 ACM 978-1-4503-2733-6/14/03…$15.00.
http://dx.doi.org/10.1145/2568088.2576798

27

ICPE’14, March 22–26, 2014, Dublin, Ireland.

efforts to build larger scale applications on top of AMI. Based on
estimations from IDC Energy Insights, the North American
market in MDMS will grow up to $869.1 million (USD) in 2013,
in which a smaller utility will spend up to $250,000 on MDMS
solutions while large utilities will potentially sign contracts
ranging from $2 million to $4 million [8].

As one of the primary vendors with a good reputation in the
power grid management market, ABB has produced power grid
management products that are widely accepted by major utilities
in the US [21]. However, ABB’s existing MDMS products were
not designed to manage meter data generated by millions of smart
meters. The desired MDMS is required to collect ever-increasing
large amount of meter data from various metering systems (e.g.,
AMI and advanced meter read (AMR)), clean, analyze and
aggregate the meter data to support its customer information
system in the short term, and a plethora of smart grid systems and
applications in the long run. The input to the desired MDMS is
the interval meter data measurements collected from 3~5 million
residential smart meters every 15 minutes or even every minute in
the future. The collected measurements are not only energy
consumption but also engineering measurements (e.g., current and
voltage) and/or power quality events (e.g., outage information).

We designed a lightweight architecture to fulfill the non-
functional requirements, especially in the aspects of performance
and scalability, of such a system. In order to meet critical high
performance requirements, various concurrency processing
techniques, such as Task Parallel Library (TPL) [18] and in-
memory lock-free data structures, were implemented and/or
integrated in our prototype (henceforth called the System). Our
experiments demonstrated that on average the data parser for data
files was able to complete parsing, cleaning, and aggregating
5.184 billion meter reads in 42 minutes 8 seconds on a single
machine with the hardware configuration of 12-core CPU, 32G
RAM, and SSD Hard Drives. The throughput is about 7.38 billion
meter reads (206.7GB data) per hour (i.e., 1811TB/year).

In addition, well-designed publish/subscribe that provides a
flexible interface to easily integrate with other systems and
applications, as well as the communication infrastructure ensure
the high scalability and flexibility of the system.

The rest of this industrial paper is organized as follows. Section
2 introduces the background and related work. Section 3 presents
research challenges and constraints, as well as critical
architectural requirements. Section 4 describes the design and
implementation in detail. Section 5 shows the performance
evaluation results. Section 6 provides further discussion. Section 7
presents conclusions and future work of this study.

2. BACKGROUND AND RELATED WORK
In this section, background information and related work of Meter
Data Management Systems (MDMS), and Data Extract,
Transform, and Load (ETL) are described in Section 2.1 and
Section 2.2, respectively.

2.1 Meter Data Management Systems
As a centralized storage facility, a MDMS collects meter data
from various metering systems, processes them, and provides the
processed meter information to various utility applications (e.g.,
outage management, workforce management, and customer
billing system). In addition, beyond collecting data from metering

systems, most MDMS can also send signals back to smart meters
and control them.

At the time of this study, based on the Pike Pulse Report in 2011
[14], Oracle, eMeter, and Itron were ranking the top three of
MDMS vendors in the North American Market. Oracle attained
the highest overall score due to its broad MDMS product line,
massive scale, geographic presence, technical innovations, and
integration of MDM with other Oracle products. At the time of
this study, according to [23], the announced test results
demonstrated that a system, consisting of Oracle Smart Meter
Gateway, Oracle utilities meter data management system, and
Oracle utilities customer care and billing system, can process
more than 1 billion records and generate 500,000 customer bills
within an eight hour nightly window. The tests were conducted
against real business scenarios, in which the meter measurements
are generated by 10 million smart meters in every 15 minutes
[23]. In 2011, Siemens Energy announced the acquisition of
eMeter and integrated its meter data management software into
Siemens smart grid product line [6] [26]. Thereby, the new
product, called EnergyIP, having both the meter data management
the smart grid applications, appeared on the market. Siemens
announced its MDMS centralized architecture that can manage up
to 50 million smart meters [6]. Itron also has a strong metering
system product line, which ranges from smart meters, AMI
communication infrastructures, AMI high-end meter data
collectors, and meter data management, but relatively weak in
developing smart grid applications based on top of its MDMS
[12][27]. As far as we had known when we were conducting this
study, none of the above work dealt with meter read data in one
minute interval. Also our experiments demonstrated that our
design and prototype was able to meet the high performance
requirements in processing big data files, meanwhile maintaining
a relatively small footprint.

2.2 Data Extract, Transform, and Load
In the area of data processing, Extract, transform, and load (ETL)
refers to a process of (1) extracts data from outside sources, (2)
transforms the data to fit operational needs, and (3) loads the data
into data storage such as database or data warehouse. ETL may be
parallelized to obtain higher performance.

Agarwal et al. proposed an approach of parallel processing of
ETL jobs involving XML documents. Their approach parallelizes
ETL jobs by performing a shallow parsing of XML documents in
parallel on one or more processors. [1] The method needs to
generate intermediate XML documents, while our method will not
have any intermediate XML documents. Also the producer and
consumer are in same processor in their method, while the
producer and multiple consumers will run in different
threads/processors in our method.

Candea et al. provided a method of high-throughput ETL of
program events for subsequent analysis. An event tap associated
with a server was utilized to transform a server event into a tuple.
They used the event tap to reduce the computational burden on
the database and at the same time keep the server event data in the
database relatively fresh. [3] [3]Our major challenge in ETL was
to process files or file stream that contains bulk data.

Chen et al. proposed an ETL method for data cleaning in electric
company based on genetic neural network to handle missing
values. The method was able to improve the accuracy of missing
data prediction by the global search ability of genetic algorithm

28

and the nonlinear mapping ability of neural network. [4] We
focused on the throughput of the ETL process for huge and ever
increased meter data.

3. ARCHITECTURAL REQUIREMENTS
In this section, we will introduce general challenges and
constraints, as well as critical architectural requirements, in this
research.

3.1 General Challenges and Constraints
The foremost challenge was to effectively managing a large
amount of data with minimal machine footprint. An MDMS that
claimed to manage millions of meters usually has a large machine
footprint. For example, Oracle demonstrated a MDMS system
consisting of 32 servers to manage data from 10 million meters
[23]. However, the high costs of building and maintaining a large
cluster may prevent the MDMS from being widely deployed.
Additionally, following long-term technical strategy of adopting
the Microsoft technology stack for future products, Microsoft
.NET and C# technologies were required to prototype the
architecture design.

3.2 Critical Architectural Requirements
Although we needed to consider many quality attributes in the
process of architecture design (e.g., scalability and flexibility),
performance, especially throughput, was the most critical quality
attribute type.

According to the functional requirements, the meter
measurements are imported either from a bulk data file (Data File
Scenario) or from an interval-based data stream (AMI Data
Stream Scenario). Section 3.2.1 and 3.2.2 describes these two
scenarios in detail, respectively.

3.2.1 Data File Scenario
The typical Data File Scenario is to import the previous day’s
meter reads from a bulk data file, and process the meter data load
accumulated in 24 hours in only one hour.

Depending on the load style, the file scenario can be classified
into the following two cases: the Regular Case and the Extreme
Case. In the Regular Case, the regular intervals of meter loads are
15 minutes, i.e., 96 times per day. Each meter load contain three
“channels” which means three data reads (i.e., records) with the
values of energy consumption, current, and voltage, respectively.
So there are 288 regular reads per day for each meter. In
addition, for each day, three hours of Demand Response (DR)
reads with only the energy consumption value are also collected.
However, DR reads are collected in only one-minute intervals
(i.e., 180 data reads per day). In total 468 data reads are collected
per day for each meter. So in the Regular Case, 1.404 billion data
reads are contained in a bulk data file for 3 million meters. The
Extreme Case further extends the DR reads from three hours to 24
hours per day, i.e., 1440 DR data reads per day.

Based on the requirements, all the meter data shall be imported,
cleaned, and aggregated in one hour. To clarify our analysis, we
define the concept of throughput as the number of processed
meter reads per hour. Based on this definition, the throughput in
the Extreme Case is 5,184 billion meter reads per hour, which is
far higher than that of the major competitors (e.g., the throughput
of Siemens’s system was 200 million meter reads per hour and the

throughput of Oracle’s MDMS was about 40 million meter reads
per hour) at the time of this study.

The formal performance – throughput requirement for the
Extreme Case of the File Scenario is as follows:

PERF_1 - The Extreme Case of the File Scenario

Requirement Statement:

The System shall load bulk data file in CSV format that contains
up to 5.184 billion meter reads (i.e., data from up to 3,000,000
meters per day), store raw data, fill missing data, aggregate data,
and export aggregated data to the CIS system in 1 hour. The
maximum file size is 145.152 GB under Assumption (1). The
maximum throughput is to process 5.184 billion meter reads per
hour (i.e., 145.152 GB data per hour under Assumption (1)).

Calculation:

- 96 fifteen-minute reads per day * 3 channels for 288 regular
reads/meter, plus 24 hours * 60 minutes for 1,440 Demand
Response reads/meter. (288 + 1440) * 3 million meters for 5.184
billion meter reads per day.

- 5.184 billion meter reads * 28 bytes / meter reads = 145.152 GB
data.

Assumption:

(1) Data size (in CSV format) for each meter read is 28 bytes.

(2) Multiple day's file can be processed separately by multiple
servers in the System in one hour.

3.2.2 AMI Data Stream Scenarios
Unlike importing data from bulk data file, a typical AMI Data
Stream Scenario is to import data stream from AMI, in which
meter loads are evenly distributed in a day. Also, each meter read
from AMI contains more bytes because AMI meter data is in
XML format instead of CSV format.

The formal performance – throughput requirements for the
Regular Case and the Extreme Case of the Stream Scenario are as
follows:

PERF_2 – The Regular Case of Stream Scenario

Requirement Statement:

During the non-peak times of Demand Response (i.e., for regular
reads), the System shall receive data from up to 5,000,000 meters
from AMI in 15 minutes interval (i.e., up to 1.44 billion meter
reads per day), store raw data, fill missing data, aggregate data,
and export aggregated data to the ROMO system. The maximum
throughput is to process 15 million meter reads per 15 minutes
(i.e., 1.5 GB data per 15 minutes).

PERF_3 – The Extreme Case of Stream Scenario

Requirement Statement:

During the peak times of Demand Response, the System shall
receive, store, and manage data that originates from up to
5,000,000 meters in 1 minute interval in addition to the regular
reads described in the PERF_2 requirement, i.e., up to 8.64
billion meter reads per day. The maximum throughput is to
process 20 million meter reads per 1 minute (i.e., 2 GB data per 1
minute).

29

Calculation:

96 fifteen-minute reads per day * 3 channels for 288 reads/meter,
plus 24 hours * 60 minutes for 1,440 Demand Response
reads/meter. (288 + 1440) * 5 million meters for 8.64 billion
meter reads per day. (5 million “regular” meter reads per 1
minute * 3 channels + 5 million Demand Response meter reads
per 1 minute * 1 channel) for 20 million meter reads per 1 minute.

Assumption:

(1) The demand response reads are in addition to the “regular”
reads during the peak times.

(2) The data stream is in XML format in CIM model [6].

(3) Data size for each meter read is 100 bytes.

Table 1 shows a summary of the performance – throughput
requirements for all the cases of both the Data File Scenario and
the AMI Data Stream Scenario. Among these cases, the Extreme
Case of the Data File Scenario has the largest processing
throughput (5.184 billion reads per hour) and data throughput
(145.152 GB data per hour).

4. DESIGN AND IMPLEMENTATION
In this section, we will highlight key techniques that contribute to
the high performance and scalability of the System.

4.1 Overall Architecture
Figure 1 shows the component diagram for the System. At the
high level, the components of the System can be classified into the
following four parts: the meter data input layer in the left part of
the figure, the meter data storage and the message coordinator in
the middle part of the figure, and the application connectors in the
right part of the figure.

Meter Data Input Layer

The meter data input layer consists of three modules: the protocol
translation module, the stream parser module and the file parser
module. The protocol translation module supports different AMI
communication protocols and information models used by AMI,
translating the input data into a standard information model (e.g.,
IEC61968-9) and sending it to the stream parser for processing.

The stream parser construes, cleans, and aggregates the meter data
received from the protocol translation module. The file parser
construes, cleans, and aggregates the meter data received from the
bulk file in CSV format that contains one-day meter
measurements. The parsers have two types of output: cleaned raw
data and aggregated data. The former will be stored into the data
repository, and the latter will be stored and also sent to Smart
Grid applications (e.g., CIS). Section 4.2 describes the file parser
in detail.

Meter Data Storage

The meter data storage is used to store both aggregated data and
cleaned raw data. It consists of two parts: a relational database
(RDBMS) and flat files. The former is used to store the aggregated
data, and the latter are used to store the raw data. Section 4.3
describes the hybrid flat file / RDMBS storage mechanism.

Message Coordinator

The message coordinator is a publish/subscribe infrastructure,
coordinating the behaviors of components in the System. As
connected through the publish/subscribe infrastructure, the

components of the System are loosely coupled: by sending a
message to the Message Coordinator, one component can
coordinate its behavior with other components that subscribed to
the sent message. Traditional applications of publish/subscribe
infrastructures extend across the entire enterprise, whereas the use
of publish/subscribe here is limited to the confines of the System.
There is no need to deploy a heavy-duty middleware function to
fulfill this function.

Table 1. Summary of Throughput Requirements

Data File Scenario

AMI Data Stream
Scenario

Extreme
Case

Regular
Case

Regular
DR

Extreme
DR

Data Format CSV CSV XML XML

of meters 3M 3M 5M 5M

of
channels

3 for
regular
reads, 1
for DR
reads

3 for
regular
reads, 1
for DR
reads

3

3 for
regular
reads, 1
for DR
reads

of regular
reads / day

for each
meter

288 288 288 288

of DR
reads / day

for each
meter

1440 180 0 1440

of reads /
day

5.184
billion

1.404
billion

1.44
billion

8.64
billion

Max
processing
throughput

5.184
billion
reads /
hour

1.404
billion
reads /
hour

15
million
reads /

15 mins

20
million

reads / 1
min

Data size for
each read /
command

28 bytes 28 bytes
100

bytes
100

bytes

Max data
throughput

145.152
GB /
hour

39.312
GB /
hour

1.5 GB /
15 mins
(6 GB /
hour)

2 GB / 1
min (120

GB /
hour)

As components in the System are loosely coupled and connected
through messages, adding a new component to the System
becomes easy: register messages sent by the new components to
the message coordinator, identify the subscribers who are
interested in these messages and link the subscribers with the
newly added component by subscribing to the messages sent by
the newly added component. In addition, each component only
focuses on one specific function (e.g., the file parser only process
the large data file), which makes the whole system easy to
maintain. Section 4.5 provides detailed information in how the
Message Coordinator works.

Application Connectors

Application Connectors are responsible for sending meter
information tailored to certain Smart Grid applications. A
connector tailors information from a standard meter information
model to diversified information models and conforms to the
communication protocols used by different Smart Grid
applications.

30

Figure 1. Overall Architecture

4.2 Meter Data Parser
The meter data parser works with large amount of meter data in
the following steps.

Step 1: Large amount of mostly structured raw data is generated
by various sensors, end devices, automatic data generation
infrastructures, and/or other data sources. The raw data may be
imported as files in different predefined formats, such as Comma-
Separated Values (CSV), Extensible Markup Language (XML),
or other user-defined formats. Partial of the dataset may be
missing or duplicated, and there may be mistakes in the generated
raw data.

Step 2: Before loading the raw data from the field, the data parser
creates and initializes well-designed large-scale data structures in
memory in order to stage and organize input data, and preserve
aggregated datasets before storing them into databases or files.
These data structures are thread-safe so that they can be accessed
by multiple threads concurrently without any concurrency defects.
The data parser also loads necessary metadata, such as
configuration data for aggregation and summary of historical data,
from databases or other data storage mechanisms. Different
metadata may be loaded depending on different accumulative
aggregation/analysis algorithms to be conducted in memory after
loading the raw data.

Step 3: After the initialization described in Step 2, the data parser
concurrently loads the raw data files or collects the raw data
stream from the data sources in the stream fashion. Each thread
works on one file. For each line or block of raw data, the data
parser parses the raw data depending on the predefined data
formats, eliminates useless text such as commas, spaces, and
XML tags, and converts useful data from plain text to
corresponding data types.

Step 4: Various algorithms of validation, estimation, and editing
(VEE), such as foreign key validation, individual numeric data

validation, duplication validation, and missing data estimation,
are applied to the converted raw data in order to clean up the
input data. During the scanning of the raw data, many statistical
and aggregation algorithms can also be executed to
accumulatively analyze and aggregate the cleaned staging data.
In-memory configuration information and historical aggregation
data that has been loaded in Step 2 can help to perform
aggregation for broader time periods. Large-scale thread-safe
data structures constructed and maintained in memory are suitable
for efficiently accepting and organizing both cleaned staging data
and aggregated data. These data structures also help to remove a
large amount of redundant or duplicated information in input data.

The technique of layered key/value pairs is used to implement the
in-memory input data dictionary. In this data structure, the value
of each key/value pair is a set of key/value pairs, except for the
last layer. Figure 2 illustrates an example of the layered key/value
pairs (two layers) that is used as the input data dictionary for one
day meter reads generated from 3 million meters.

Assuming that each meter read contain four fields: 1) meter ID, 2)
timestamp, 3) read type, and 4) read value of either energy or
current or voltage, depending on the read type. The set of
key/value pairs in the first layer is implemented by thread-safe
Concurrent Dictionary [16] in order to avoid data racing. There
are 3 million entries in the first layer thread-safe dictionary. For
each entry of the first layer key/value pairs, the key is a unique
meter ID, and the value is a Sorted List [17]. Sorted Lists cost
smaller size of memory comparing to other types of key/value
pairs, because a Sorted List stores data in linear arrays but
Dictionaries store data in tree structures. For each entry of the
Sorted List, the key is a concatenated string. The string is one of
the possible combinations of the hour and the minute in a day and
the meter read type. The value of each entry of the Sorted List is a
float variable that stores the read value of this meter read. During
the initialization step, the float variable is set to a special value
such as -1, indicating this specific meter read has not been

31

received. When receiving a piece of meter read, the layered
key/value pairs allows the data parser to find the corresponding
position in the large-scale data structures for this piece of meter
read using an O(1) operation. Then the float variable is changed
to the read value in this piece of meter read, indicating this
specific meter read has been received. With the help of the data
dictionary, the data parser is able to organize and sort the whole
raw datasets with an O(n) operation while loading them.
Duplicated meter reads can be easily detected as well. After this
step, the data parser converts input raw data into cleaned staging
data and aggregated data and stores all the data in the large scale
thread-safe data structures in memory.

Figure 2. In-memory Data Dictionary Using Layered
Key/Value Pairs

Step 5: The well-organized cleaned staging data and aggregated
data in memory can be conveniently traversed and stored into
relational database management systems and/or flat files on hard
drives for future usage.

A key advantage of the design is the ability to receive and process
data at a very high throughput. Section 5.2 shows the detailed
results of performance evaluation.

4.3 Hybrid Flat-file / RDBMS Storage
The traditional RDBMS stores not only the data set but also
related meta-data that are used to accelerate data retrieval. When
the size of managed data set is small, the cost and performance
overhead caused by the meta-data can be effectively covered
because of its performance gain. For instance, the purpose of
index is to define a short-cut path to access data. Because of the
index, the performance of data retrieval can be significantly
improved.

However, the cost and overhead of building, managing and
utilizing meta-data are significantly increased when the data size
is getting large. Our experiments demonstrated that inserting 1.5
billion meter reads, each of which carries the information on
energy consumption and its related timestamp, into a table in an
Oracle database, took more than ten hours. By contrast, creating
and storing the same amount of data into flat files took less than
10 minutes on the same hardware configuration because of no
such meta-data related overhead.

The performance of querying a large relational table deteriorates
with the data set getting large. Based on our experiments, a query
that conducts the sum operation against a data set with 1.19
million meter reads in Oracle 11g spent more than four hours.
While the same operation fulfilled by flat files and streaming took
less than six minutes. These experiments demonstrated that the
traditional relational database management system becomes
inefficiency when the data set is getting large. On the contrary,
the flat file technologies become efficient under the same
situation.

Nowadays, the size of raw data collected from millions of end
devices at a certain time interval (e.g., every 15 minutes or even
shorter) is huge and ever increased. In the Extreme Case of the
Data File Scenario, the daily data collected from three millions
smart meters maximally contains 5.184 billion reads (about
145GB), which already surpasses the size of data that a traditional
database application can handle in its life cycle.

Figure 3 illustrates the infrastructure of the newly designed data
storage solution, which is suitable for managing a large amount
and ever-increasing data. Unlike traditional database
technologies, the storage of the database is split into two parts: the
relational DB and flat files. The relational DB is used to store
aggregated data, which is in small volume, while the flat files are
used to store the raw data, which is in huge volume.

The data parser collects meter measurements from data stream
and/or data files. After cleaning and aggregation, the data are
classified into two parts: the aggregated data and the cleaned raw
measurements. The aggregated data, such as the maximal daily or
monthly energy usage, are eventually stored to the relational
database and the cleaned raw measurements are saved to the flat
files. The query engine is used to analyze and redirect the income
queries to either the relational DB or the flat files. Generally, the
aggregated data stored in the relational DB can answer most
queries. For those queries that cannot be handled by relational
DB, such as queries on data in long time span have to be extracted
from flat files, will be processed by streaming the flat files.

Figure 3. Hybrid Flat-file / RDBMS Storage Infrastructure

The performance of querying large data files eventually
overpasses the performance of querying a large relational table
when the size of the data set large enough to reach a certain point.
In our experiments, conducting an aggregation operation against a
large relational table with 0.8 billion reads took 30 minutes (i.e.,

32

1.6 billion reads per hour). Conducting the same aggregation
operation by streaming a large file containing 4.8 billion reads
spent only 6 minutes (i.e., 48 billion reads per hour).

4.4 Communication Infrastructure
In the System, the scenario of transporting data through a
communication infrastructure occurs in several places (e.g.,
transporting the collected meter data from the protocol translation
module to the stream parser module and transporting the
aggregated meter measurements from the CIS adapter to the CIS
system). We abstracted a common communication infrastructure,
which can be applied to each individual transportation scenario in
the System.

The Communication Infrastructure is composed of nodes and
bindings. A node has a unified address describing where a
message should be sent and logic defining what the message
should look like and how the message is sent. A binding is a
communication channel decorated by a set of binding elements,
which “stack” one on top of the other to create the communication
infrastructure. The binding elements can be transportation
protocols (e.g., HTTP and TCP/IP), encoding approaches (e.g.,
text or binary) and other advanced features (e.g., security).
Decoupling the node and binding make it easy to combine a node
with different bindings. For example, originally a node sends
messages through a HTTP binding. As a node is decoupled with a
binding, it only needs to construct a new TCP/IP binding and link
the node with the newly created binding. In this way, a message
can be sent through the TCP/IP communication channel. The
permutations and combinations of the binding elements can
construct diversified communication channels in reality.

Figure 4 illustrates the queue-based communication infrastructure.
Instead of sending a message directly to a receiver, a sender sends
a message over a queue to a receiver. The transportation processes
that send messages from a sender to a queue and from a queue to
a receiver are transaction-based. Therefore, during the
transportation, if an error happens, the transportation processes
would be rolled back. This makes the communication more stable
and therefore, enhances the availability of the System. The queue-
based communication greatly improves the communication
efficiency by saving the communication bandwidth from the
sender to the queue.

Figure 4. Queue-based Communication

Concurrently processing the received messages is another primary
way to improve the throughput of the communication channel.
Concretely, on receiving a package, the receiver quickly launches
a new thread to process (parsing, cleaning and aggregating) the
message, meanwhile the receiver itself starts receiving the next
package.

The Windows Communication Foundation (WCF) in .NET 4.5
was used to implement the designed communication
infrastructure. Nodes and bindings are available in WCF.

Generally a node has a unified address, visible by other nodes
from different locations/machines. In the WCF library, various
communication channels and their decorations have been
implemented. A developer only needs to configure the features of
the communication channel, such as communication protocol
(e.g., HTTP and TCP/IP) and security facilities, through a
configuration file, rather than develop them from scratch.

Two scenarios were primarily implemented in the prototype:
queue-based (MSMQ) communication and HTTP-based
communication. The former is suitable when both sender and
receiver are in the .NET platform, primarily implementing a
communication channel with high performance and high
availability. The latter emphasizes the interoperability of the
communication channel: through HTTP + SOAP, components in
the System can communicate with the component implemented by
technologies other than windows and .NET (such as Linux and
Java). In this case, interoperability is the major focus.

4.5 Message Coordinator
From the architectural aspect, it is important for the System to
extend its capability to interface with the potential systems and
applications, which may use different communication protocols
and information models. In addition, low cost maintainability is a
highly desired feature too.

A message-based publish/subscribe infrastructure, called Message
Coordinator, was designed to address the above two requirements.
In the publish/subscribe infrastructure, all components are
connected through messages. Modifying one component will not
influence other components. In addition, each component can
have its own special functionalities. The above loosely coupled
relationship between components increases the System’s
maintainability and extensibility. Additionally, unlike the
“formal” publish/subscribe architecture, which is across the entire
enterprise and supported by a heavy commercial middleware, the
proposed publish/subscribe architecture is a lightweight structure
that is limited to the System, potentially connecting only tens of
components.

The publish/subscribe infrastructure is composed of three types of
components, as shown in Figure 5: a publisher, a message
coordinator and a subscriber. The publisher publishes message to
the message coordinator. The message coordinator maintains the
relationship between the publisher and subscribers. When a new
message arrives, the message coordinator identifies the
subscribers of the incoming message and broadcasts the message
to them. A subscriber registers itself to the message coordinator
for certain messages during the initialization. After registration,
the subscriber will receive the registered messages once they are
published.

For example, the file parser and the stream parser of the System
are message publishers, while the CIS connector is a message
subscriber. The file parser will send out a message to the message
coordinator once it finishes processing bulk data files. On
receiving this message, the message coordinator will forward the
message to subscribers. By parsing the message, the CIS
connector knows that the data has been cleaned up and
aggregated. Based on this message, it will pick up the data from
the public area (either database or shared memory) and send it to
CIS.

33

It is easy to add a new component to the message-based
infrastructure. For example, assume that we want to integrate the
System with a system that fulfills Demand Response (DR)
functionality. A new subscriber, called the DR connector, is
developed using Java technologies, which packs the DR
information received from the file parser and sends it to the DR
system; to connect to the message coordinator, the new message
is defined for the DR connector. During the whole process, only
the message coordinator and the DR connector are involved. The
rest of the system is not affected.

Figure 5. Message Coordinator

The publish/subscribe infrastructure may be considered as the
control center of the System, which coordinates the status of the
components in the System through messages. In our prototype, to
make the System more scalable and extensible, the
publish/subscribe infrastructure was hosted in Internet
Information Service (IIS) and the HTTP communication protocol
was used to transport messages. In such a configuration, the
components located in different machines can communicate with
the logic of the publish/subscribe infrastructure hosted in the IIS.
As a major advantage, hosting the service in IIS automatically
utilizes the functions of IIS, such as listening for incoming
message and automatically waking up the publish/subscribe logic
when the message arrives, greatly reducing the development
efforts.

5. PERFORMANCE EVALUATION
In this section, we will present results of performance evaluation
of the System.

5.1 Testing Environment
Two computer systems were configured for the evaluation. We
highlighted our thoughts on selecting hardware components of the
testing systems as follows:

- High performance CPU for intensive computation

- High throughput disk for frequent disk I/O

- Four-channel high speed memory for high performance memory
operations (e.g., parsing and cleaning meter data in memory)

- Large capacity of memory for pre-storage VEE tasks

Additionally, Visual studio 2012 was selected for fully utilizing
advanced data structures (e.g., the lock-free concurrent
dictionary), the user-friendly multithreading API, and the latest
version of the WCF implementation. Table 2 summarizes the
configuration of the testing system.

Table 2. Testing System Configuration

Resource Specification

CPU
Intel Core i7-3930K @ 3.20GHz, 6 cores with
Hyper threads (12 logical cores), 15 M L3

Memory 32GB DDR3 (1600MHz) Four-Channel

Hard Disk SSD (from Samsung and OCZ)

Network 1Gb/s

OS Windows 7 Enterprise 64

Dev. Tool Microsoft Visual Studio 2012 Ultimate

5.2 Data File Parser
To prototype the meter data parser described in Section 4.2,
Solid-State Disk (SSD) hard drives [7] were used due to the
tremendous disk I/O throughput. The new Task Parallel Library
(TPL) [18] in .NET 4.5 was selected to address the high
throughput requirement because TPL has easy understanding
multi-thread APIs, through which launching multi tasks becomes
simple and straightforward.

The input of our experiments is 12 bulk files in CSV format with
meter read data including meter ID, Timestamp, read type, and
read value. The size of each read (i.e., line) is within 24~29 bytes.
Parsing a CSV string into memory variables was the most time-
consuming task in the file parser. In comparison with several CSV
parsers in state of the art, a fast CSV parser [15] was selected,
which was claimed to be the fastest CSV parser in the .NET
platform at the time of this study and free for use. Regarding the
VEE rules, without loss of generality, a comprehensive survey
was conducted against the VEE rules used by primary MDMS
products in the current market, based on which we selected and
implemented seven popular VEE rules as follows:

(1) Device ID Validation: To validate if data is received from a
valid meter,

(2) Timestamp Validation: To validate if meter reads have valid
timestamps,

(3) Interval Validation: To validate if meter reads have valid
intervals,

(4) Individual Numeric Data Validation: To validate if the
energy consumption value in each read is within a proper
range,

(5) Summary Numeric Data Validation: To validate if the total
energy consumption value for each meter is within a proper
range,

(6) Duplication Validation: To validate if the received data has
duplicated reads, and

(7) Missing Data Estimation: To estimate missing mete read
data.

Additionally, the data processing includes a billing aggregation
based on Time-of-Use (TOU). The TOU-based billing
aggregation calculates the bill charges for each meter for a day
according to the pre-defined TOU configuration. The
implemented TOU configuration includes the following impact
factors: (1) Daylight Saving Time; (2) Season; and (3) Peak

34

Hours. The input of this data analytics is the 15-minute interval
data of consumption for each meter.

Table 3 shows the performance of the Data File Parser based on
different input workloads. We conducted experiments five times
for each workload. For a testing workload with 0.1404 billion
meter reads from 0.3 million meters, it took about 11 seconds to
complete the initialization step, i.e., creating and initializing
large-scale thread-safe data structures in memory. Then it spent
around 71 seconds on completing the whole data processing,
including concurrently loading data files, reading and parsing
lines, converting text to proper data types for analysis, 7 VEEs,
and the TOU-based billing aggregation. For the workload of the
Regular Case, the initialization time and processing time was 3
minutes 37 seconds and 12 minutes 19 seconds on average,
respectively. With regard to the Extreme Case, on average it spent
9 minutes 28 seconds on completing the initialization followed by
42 minutes 8 seconds on finishing up the data processing. As a
normalization, the experiments demonstrated that in the Extreme
Case the data parser for data files has a throughput about 7.38
billion meter reads (206.7GB data) per hour (i.e., 1811 TB/year)
for parsing, cleaning, and aggregating meter reads data on a single
machine with the system configuration shown in Table 2.
Unfortunately we did not conduct more experiments to show the
linear scalability more clearly due to budget limitations.

Table 4 lists the data processing time for each of the 12 threads
for all these experiments. All threads completed their work at
almost the same time in the testing case and Regular Case. In the
Extreme Case, the differences between the fastest thread and the
slowest thread in these five runs ranged from 31 seconds to 48
seconds. Comparing to more than 40 minutes’ data processing
time, we still consider that the performance of the data file parser
is stable.

Table 3. Performance of Data File Parser

Workloa
d (billion

meter
reads)

Avg.
Initialization

Time
(min:sec)

Avg.
Processing

Time
(min:sec)

Avg. Processing
Throughput

(million reads
per sec)

0.1404 0:11 1:11 1.9775

1.404 3:37 12:19 1.8999

5.184 9:28 42:08 2.0506

The data parser appropriately allocates the load among various
computer resources, such as CPU power, RAM, and hard drives,
to achieve best performance (specifically, responsiveness and
throughput). The data parser is able to utilize all CPU cores
(90+% overall CPU usage) to load the raw data files (or collect
the raw data stream) and perform data cleaning and analysis.

5.3 Communication Infrastructure
The permutations and combinations of features of the
communication channel generate a variety of communication
scenarios (HTTP with no security, HTTP with security and
TCP/IP with security). Enumerating and evaluating all of these
scenarios is beyond the budget of this study. Therefore, we chose
the queue-based communication scenario as shown in Figure 4,
which is a relatively complex and highly stable communication
approach.

Table 4. Performance of Each Thread for Each Test

Workload Test
Completion Time for Each Thread

(minute:second)

0.1404
billion

meter reads

1.1
1:11, 1:11, 1:11, 1:11, 1:11, 1:11,
1:11, 1:11, 1:12, 1:12, 1:12, 1:12

1.2
1:10, 1:10, 1:10, 1:10, 1:10, 1:10,
1:10, 1:11, 1:11, 1:11, 1:11, 1:11

1.3
1:10, 1:10, 1:10, 1:10, 1:11, 1:11,
1:11, 1:11, 1:11, 1:11, 1:11, 1:11

1.4
1:10, 1:10, 1:10, 1:10, 1:10, 1:10,
1:10, 1:10, 1:10, 1:10, 1:11, 1:11

1.5
1:10, 1:10, 1:10, 1:10, 1:10, 1:10,
1:11, 1:11, 1:11, 1:11, 1:11, 1:11

1.404
billion

meter reads

2.1
12:03, 12:08, 12:10, 12:11, 12:11, 12:12,
12:12, 12:14, 12:15, 12:15, 12:15, 12:16

2.2
12:06, 12:09, 12:09, 12:09, 12:09, 12:10,
12:10, 12:10, 12:12, 12:13, 12:14, 12:16

2.3
12:05, 12:10, 12:14, 12:16, 12:16, 12:17,
12:17, 12:18, 12:19, 12:19, 12:19, 12:21

2.4
12:11, 12:12, 12:15, 12:15, 12:16, 12:16,
12:16, 12:17, 12:17, 12:18, 12:19, 12:23

2.5
12:05, 12:07, 12:09, 12:12, 12:12, 12:13,
12:14, 12:14, 12:15, 12:15, 12:17, 12:18

5.184
billion

meter reads

3.1
41:25, 41:30, 41:30, 41:31, 41:36, 41:42,
41:42, 41:45, 41:45, 41:50, 41:58, 41:59

3.2
41:21, 41:26, 41:31, 41:31, 41:31, 41:37,
41:40, 41:41, 41:44, 41:47, 41:50, 42:08

3.3
41:25, 41:26, 41:29, 41:35, 41:37, 41:40,
41:42, 41:42, 41:48, 41:51, 42:01, 42:13

3.4
41:23, 41:33, 41:40, 41:44, 41:44, 41:48,
41:49, 41:51, 41:56, 41:58, 41:59, 42:03

3.5
41:48, 41:53, 41:55, 41:56, 41:57, 41:58,
41:59, 42:08, 42:11, 42:13, 42:13, 42:19

The queue-based communication architecture is composed of a
sender, a receiver and a queue. In the prototype, both sender and
receiver were .NET console applications. The queue used the
MSMQ 4.0 service, the queue service in the .NET platform. To
make the communication more stable, the queue was decorated
with the transaction feature. In other words, the communication
between .NET consoles (e.g., sender and receiver) and queue was
transaction based: if a transaction fails, the delivery would be
rolled back.

The sender packed each meter measurement into an XML string.
The example of the XML formatted meter measurement was as
follows:

 <Meter>

 <MeterID>abcd1234</MeterID>

 <Timestamp>10:15 4/15/2012</Timestamp>

 <Energy>10.3</Energy>

 <Category>1</Category>

 </Meter>

A package, the basic unit of the transportation, consisted of 250 of
the above XML formatted meter measurements. Transporting 3
million meters data required 12,000 packages, and transporting 5
million meters data required 20,000 packages. The receiver was
integrated with VEE functionalities used in the Data File
Scenario. The receiver concurrently launched a new thread to
conduct VEE and aggregation algorithms on receiving a package.

35

Table 5 illustrates the performance of the queue-based
transportation. On average it took about 1 minute and 40 seconds
to transport 3 million meters data between two computers and
conduct VEE and aggregation, and about 3 minutes and 12
seconds to transport and process 5 million meters data.

Table 5. Performance of Queue-based Transportation

Workload
(records)

Number of
Packages

Average Transportation
Time (minute:second)

3 million 12,000 1:40

5 million 20,000 3:12

Based on the performance requirements, during the regular meter
read phase, 5 million meters measurements arrive in every 15
minutes. Since the queue-based transportation took less than 4
minutes, the requirement of receiving the meter data stream from
5 million meter measurements can be met. Regarding delivering
the aggregated meter measurements for 3 million meters data
generated in the Data File Scenario to CIS, with the consideration
of the transportation time, the total time spent was about 50
minutes on parsing, cleaning, and aggregating, and 1 minute and
40 seconds on transportation, which met the one hour
requirement.

In the Regular Case, where the meter data includes regular meter
reads and DR reads, the total data that needs to be transferred was
(15 + 1) x 3 = 48 million meter reads (15 is the DR reads from 3
million meter in 1 minute). Considering the transfer and cleaning
of the 3 million meters data took 1:40, transporting the 48 million
meter reads spent about 26.6 minutes beyond the 15 minutes
scope. Two alternative solutions for this situation: one is to
increase the transportation speed using 10Gb/s network card,
which is ten times faster than the current network in theory. The
other one is to keep the current setup and increase the size of the
queue. In the Regular Case, the three hours DR reads can be
temporarily put into the queue and processed after the peak hour.

In the Extreme Case, as the DR reads come in every minute, the
queue solution wouldn’t work. We had to construct several 10Gb-
based communication channels to transport data from one
machine to the other. The messaging based architecture allows us
to perform such transportation.

6. OTHER QUALITY ATTRIBUTES
Regarding scalability, the System is able to be scaled up and
scaled out to meet the performance requirements in the future.
Scaling up refers to enhancing hardware for the existing machine,
while scaling out means extending the System across machines.
Since the Message Coordinator is deployed in the IIS, and HTTP
is used as the primary communication protocol, it is easy to build
a system across multiple machines.

With regard to maintainability, the message-based system is
composed of loosely coupled modules. When changing the
functionality of a module, the source code changes will be
restricted only within the module itself, or within the modules that
are directly connected to the initially changed module in the
modules call graph to adapt the updated messages or newly
defined messages.

In terms of reliability, as the components in the architecture are
loosely decoupled, it is easy to build “hot” backup for important

components. In addition, the queue-based communication can
effectively handle the network failures and therefore increase the
reliability of the whole M3 system.

Additionally, two aspects of security, authentication and
authorization of the local machines or a domain, were
implemented by the .NET infrastructure. The communication
security is implemented by the WCF.

7. CONCLUSIONS AND FUTURE WORK
AMI systems are an important element of the Smart Grid as they
offer an efficient bidirectional communication infrastructure. AMI
systems connect millions of end devices with utility control
centers and exchange substantial meter data and control
information between them in real-time or near real-time. As
deployment of AMI systems become more ubiquitous, the amount
of smart meters and data handled by these systems continues to
grow exponentially. Therefore, it is imperative to design a system
capable of collecting, cleaning, analyzing, aggregating and
manipulating this data to support smart grid applications and
semi-automated decision making.

This paper discusses the development of a lightweight
architecture that is able to manage data that originates from
millions of smart meters to enhance the capabilities of the Smart
Grid. We implemented the prototype system using various
concurrency processing techniques, including new Task Parallel
Library and latest Windows Communication Foundation, fast
CSV parser, in-memory lock-free data structure, layered
key/value pairs, hybrid flat-file/RDBMS storage, and SSD, to
satisfy critical high performance requirements. Our experiments
demonstrated that in the Extreme Case the throughput of the data
parser for data files is about 7.38 billion meter reads (206.7GB
data) per hour (i.e., 1811TB/year) for parsing, cleaning, and
aggregating meter reads data on a single machine with the
hardware configuration of 12-core CPU, 32G RAM, and SSD
Hard Drives. In addition, well-designed publish/subscribe and
communication infrastructures ensure the scalability and
flexibility of the system.

It is important that the implementation of an AMI system requires
incorporating important quality attributes in the system such as
maintainability, reliability, and security, besides high
performance and scalability. In our future work, we will continue
to enhance the architecture to address other quality attributes, and
balance the tradeoffs of architectural design.

Another discussion was that, Hadoop [2] might not be very
suitable for implementing the System mainly because that there is
a high risk of not meeting throughput requirements when Hadoop
processes small amount of data with a small cluster. Executing
Hadoop on a limited amount of data on a small number of nodes
may not demonstrate particularly high performance as the
overhead involved in starting Hadoop programs is relatively high.
Other parallel/distributed programming paradigms may perform
much better on two, four, or perhaps a dozen machines.
[9][10][28] Hadoop is built to process "web-scale" data on the
order of terabytes or petabytes. It is not recommended to use
Hadoop if the data and computation fit on one machine. Hadoop
requires large footprint to demonstrate its power in processing
really huge data. In the Extreme Case, the performance
(throughput) goal was to complete processing 5.184 billion meter
reads in one hour. Our experiments proved that one computer was
enough to process this amount of data. Our design and prototype

36

provide a lightweight way to conduct validation, estimation and
editing as well as some analytics in memory for relatively large
amount of data. However, it would be more convincing if we
have hands-on performance and scalability measurements to
compare the Hadoop implementation with our existing
implementation. It would be more useful to explore and
understand the expected boundaries and scope limitations of the
alternate solutions. We will establish Hadoop clusters, write
MapReduce programs, and conduct more experiments on Hadoop
in the future.

8. ACKNOWLEDGMENTS
We would like to thank our software development teams for their
assistance in understanding the requirements of the System. We
are also very thankful of Marisa Zindler, Kevin Burandt, and
Samantha Hines for their expert knowledge.

9. REFERENCES
[1] Agarwal, M. K., Bhide, M. A., Kotwal, S., Mittapalli, S. K.,

and Padmanabhan, S. March 2011. Parallel Processing of
ETL Jobs Involving Extensible Markup Language
Documents. U.S. Patent, Pub. No.: US 2011/072319 A1.

[2] Apache. Hadoop. http://hadoop.apache.org/. Retrieved
November 2013.

[3] Candea, G., Argyros, A., and Bawa, M. July 2008. High-
throughput Extract-Transform-Load (ETL) of Program
Events for Subsequent Analysis. World Intellectual Property,
Pub. No.: WO 2008/079510 A2.

[4] Chen, X. and Zhang, X. October 2010. Extract-Transform-
Load of Data Cleaning Method in Electric Company. In
Proceedings of the International Conference on Artificial
Intelligence and Computational Intelligence 2010. 345-349.

[5] Dean J. and Ghemawat, S. December 2004. MapReduce:
Simplified Data Processing on Large Clusters. In
Proceedings of the Sixth Symposium on Operating System
Design and Implementation. OSDI'04.

[6] Edwards, C. A., Johnson, L. M., King, C. S., Prasad, N.,
Wambaugh, J. O., and Lofgren, T. D. March 2008. Message-
Bus-Based Advanced Meter Information System with
Applications for Cleaning, Estimating, and Validating Meter
Data. United States Patent, Pub. No.: US 2008/0074284 A1.

[7] Ekker, N., Coughlin, T., and Handy, J. January 2009. Solid
State Storage 101: An introduction to Solid State Storage.
Technical Report. Solid State Storage Initiative (SNIA).

[8] Geschickter, C. August 2010. The Emergence of Meter Data
Management (MDM): A Smart Grid Information Strategy
Report. Technical Report. GTM Research.

[9] Glover, A. Java development 2.0: Big data analysis with
Hadoop MapReduce. http://www.ibm.com/developerworks/
java/library/j-javadev2-15/index.html. Retrieved Nov. 2013.

[10] Google. Introduction to Parallel Programming and
MapReduce. http://code.google.com/edu/parallel/mapreduce-
tutorial.html. Retrieved November 2013.

[11] IEC. 2009. IEC61968-9, Application integration at electric
utilities – System interfaces for distribution management –
Part 9: Interfaces for meter reading and control.

[12] Itron, “Itron Enterprise Edition™ Meter Data Management”,
https://www.itron.com/na/productsAndServices/Pages/Itron
Enterprise Edition Meter Data Management.aspx. 2011.

[13] Li, Z., Wang, Z., Tournier, J., Peterson, W., Li, W., and
Wang, Y. October 2010. A Unified Solution for Advanced
Metering Infrastructure Integration with a Distribution
Management System. In Proceedings of the First IEEE
International Conference on Smart Grid Communications.
SmartGridComm'10. 566 - 571.

[14] Lockhart, B. and Gohn, B. 2011. Pike Pulse Report: Meter
Data Management - Assessment of Strategy and Execution
for 11 Leading MDM Vendors. Tech. Report. Pike Research.

[15] Lorion, S. November 2011. The Fast CSV Reader. http://
www.codeproject.com/Articles/9258/A-Fast-CSV-Reader.

[16] Microsoft. ConcurrentDictionary <TKey, TValue> Class.
http://msdn.microsoft.com/en-us/library/dd287191(v=vs.
110).aspx. Retrieved November 2013.

[17] Microsoft. SortedList<TKey, TValue> Class.
http://msdn.microsoft.com/en-us/library/ms132319(v=vs.
110).aspx. Retrieved November 2013.

[18] Microsoft. Task Parallel Library (TPL).
http://msdn.microsoft.com/en-us/library/dd460717.aspx.
Retrieved November 2013.

[19] Mohagheghi, S., Stoupis, J., Wang, Z., Li, Z., and
Kazemzadeh, H. October 2010. Demand Response
Architecture: Integration into the Distribution Management
System. In Proceedings of the First IEEE International
Conference on Smart Grid Communications.
SmartGridComm'10. 501-506.

[20] National Energy Technology Laboratory. February 2008.
Advanced Metering Infrastructure. Technical Report. U.S.
Department of Energy.

[21] Network Manager. Retrieved November 2013. ABB Inc.
http://www.abb.com/industries/us/9AAC30300663.aspx

[22] Office of Electricity Delivery and Energy Reliability.
February 2008. The Smart Grid: An Introduction. Technical
Report. U.S. Department of Energy.

[23] Oracle. Meter-To-Cash Performance Using Oracle Utilities
Applications on Oracle Exadata and Oracle Exalogic.
January 2012. Technical Report.

[24] Ramachandran, V., Hubbard, D., and Skog, J. October 2005.
Method and System for Validation, Estimation and Editing
of Daily Meter Read Data. United States Patent, Pub. No.:
US 2005/234837 A1.

[25] Rustagi, A. September 2008. Parallel Processing for ETL
Processes. U.S. Patent, Pub. No.: US 2008/222634 A1.

[26] Siemens/eMeter, “Siemens to Acquire eMeter to Enhance
Smart Grid Offering”, http://www.emeter.com/company/
news/2011-press-releases/siemens-to-acquire-emeter-to-
enhance-smart-grid-offering/. December 2011.

[27] Sonderegger, R. May 2010. System and Method of High
Volume Import, Validation and Estimation of Meter Data.
United States Patent, Pub. No.: US 2010/0117856 A1.

[28] Yahoo Developer Network. Hadoop Tutorial.
http://developer.yahoo.com/hadoop/tutorial/module1.html.
Retrieved November 2013.

37

