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ABSTRACT
JAQL is a query language for large-scale data that connects
BigData analytics and MapReduce framework together. Also
an IBM product, JAQL’s performance is critical for IBM In-
foSphere BigInsights, a BigData analytics platform. In this
paper, we report our work on improving JAQL performance
from multiple perspectives. We explore the parallelism of
JAQL, profile JAQL for performance analysis, identify I/O
as the dominant performance bottleneck, and improve JAQL
performance with an emphasis on reducing I/O data size and
increasing (de)serialization efficiency. With TPCH bench-
mark on a simple Hadoop cluster, we report up to 2x perfor-
mance improvements in JAQL with our optimization fixes.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Performance attributes

Keywords
BigInsights, JAQL, MapReduce, Multi-thread, I/O optimiza-
tion, Java performance

1. INTRODUCTION
The proliferation of cheaper technologies for collecting and

transmitting data of different modalities and formats from
different sources such as sensors, cameras, Internet feeds,
social networks, mobile phones etc. has rendered the busi-
ness world with vast amount of data. This plethora of data,
if properly processed, can provide significant new insights
for tracking markets, customers and business performance.
Information management of such vast amount of Big Data
is critical and technologies for efficient and cost-effective fil-
tering, storing and accessing of data are increasingly sought
after. Big Data [2] is typically characterized by having 4
Vs: high Volume, high Velocity, high Variety and Verac-
ity which is a measure of uncertainty in data. Processing
of Big Data within reasonable time requires programming
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models supporting large-scale, parallel and efficient execu-
tion of queries on scale-out infrastructure. The MapRe-
duce programming paradigm, first introduced by Google [10]
provides a framework for large-scale parallel data process-
ing. Apache Hadoop [1] is an open-source implementation
of MapReduce.

While highly scalable, MapReduce is notoriously difficult
to use. The Java API is tedious and requires programming
expertise. Query languages like Apache Hive [17], Apache
Pig [11] and JAQL [9] provide high-level abstraction to ex-
press queries which are then compiled into low-level MapRe-
duce jobs.

IBM InfoSphere BigInsights [4] is a platform for scalable
processing of Big Data analytics applications in an enter-
prise. BigInsights builds on top of open-source Hadoop by
adding several features for cost effective management, pro-
cessing and analysis of enterprise Big Data.

JAQL [9] is an integral part of BigInsights where it pro-
vides both the run time and an integration point for var-
ious analytics including text analytics, statistical analysis,
machine learning, and ad-hoc analysis. Figure 1 shows the
BigInsights platform stack. BigInsights applications are exe-
cuted either entirely in JAQL or JAQL instantiates Hadoop
MapReduce jobs for scalable query execution. In BigIn-
sights, JAQL also provides modules to connect to various
data sources like local and distributed file systems, relational
databases, NoSQL databases. Performance of BigInsights
applications is integrally tied with the performance of JAQL
and Hadoop run-time.
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Figure 1: BigInsights Architecture
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BigInsights needs a fast run-time to improve performance
and needs an ability to run SQL queries. Big SQL is a
new and important component of BigInsights providing sup-
port for SQL queries execution. Big SQL server is multi-
threaded supporting multiple sessions and thus can exploit
performance scaling offered by multi-thread, multi-core sys-
tems. Since JAQL provides run-time environment for Bi-
gInsights applications, the focus on run-time efficiency and
support for multi-thread execution in JAQL is important
for scalable execution of Big SQL and other multi-threaded
applications supported by BigInsights including IBM Info-
Sphere DataStage [5], Tableau [6], and IBM BigSheets [3].
Our work improves JAQL run-time performance in multi-
thread, multi-core environments through: (i) Enabling run-
time support for multi-threaded applications running on top
of JAQL, and (ii) Speeding-up query execution time by iden-
tifying performance bottlenecks and fixing them.

Section 2 provides background information on query pro-
cessing in BigInsights. Various run-time performance issues
of JAQL are highlighted in Section 3. Our solution for en-
abling multi-thread execution in JAQL run-time is discussed
in Section 4. Experiments showcasing improvements in Big
SQL/JAQL run-time performance as a result of our opti-
mizations are presented in Section 5. Related work is cov-
ered in Section 6 followed by conclusion and future work in
Section 7.

2. BACKGROUND
JAQL [9] consists of three major components as shown in

Figure 2: a scripting language, a compiler and a runtime
component for MapReduce framework to transparently ex-
ploit parallelism. JAQL scripting language is designed for
analyzing complex/nested semi-structured data. It provides
a flexible data model based on JSON (Java Script Object
Notation), an easy-to-extend modular design including first-
class functions and a set of syntax for supporting control-
flow statements and SQL queries. JAQL compiler is the
central-piece that detects parallelism in a JAQL script and
translates it into a set of MapReduce jobs. JAQL runtime
component for MapReduce framework defines map, com-
bine, reduce, (de)serialization and etc. functions that will
be executed in the MapReduce framework.

Low Level Scripting/Query Language

JAQL script

Compiler
(Parser, Optimizer, Rewriter)

Evaluator

Local Execution MapReduce Job (with JAQL runtime)

MapReduce

framework such as 

Hadoop

MapReduce

framework such as 

Hadoop

Figure 2: JAQL components

JAQL programming language has been utilized for a num-
ber of years for developing large scale analytics on Hadoop

clusters. With the release of IBM BigInsights 2.1 (itself a
Hadoop distribution) JAQL began to play a more important
role by acting as the query parallelization engine and exe-
cution runtime for the Big SQL component and, as a result,
it was important to dramatically increase the performance
of JAQL, particularly when applied to the structured data
world of SQL.

The Big SQL component of BigInsights contains a so-
phisticated SQL optimization and re-write engine that is
responsible for taking modern, ANSI SQL, containing com-
plex constructs, such as windowed aggregates, common table
expressions, and subqueries, and optimizing the queries via
a number of re-write steps. Examples of such optimization
include:

• Decorrelation of subqueries

• Lifting of common, repeated queries or query frag-
ments into common table expressions

• Identifying queries that cannot benefit from parallel
execution

• Mapping of certain SQL constructs such as interval
arithmetic into function calls

The output of the query optimization engine is a re-written
SQL query that is then passed to JAQL for processing, at
which point JAQL performs the following steps:

1. The SQL statement is immediately re-written into an
equivalent JAQL expression. This expression is writ-
ten in the same fashion that a user of JAQL would have
written the query – that is, it contains no indication
of how the query should be executed, but is simply an
expression of the query that is to be performed.

2. The JAQL rewriter then performs a large number of
query re-writes and optimizations, which includes ba-
sic activities such as simplifying expressions (e.g. 2 +
2 will be simplified to 4) to more complex re-writes,
such as determining whether or not the query can be
parallelized and, if so, how to approach the paralleliza-
tion. Some of these optimizations are directed by the
query rewriter via hints that were passed into JAQL
via the original SQL statement.

3. The final result of all of these optimizations is a valid
JAQL script. In many cases, this script will be de-
composed into a series of explicit MapReduce jobs to
achieve the end goal of executing the query.

While JAQL has been capable of the majority of the func-
tionality described above for a number of years, in order to
utilize it as the runtime for Big SQL, it was necessary to
optimize a number of aspects of the language.

3. JAQL PERFORMANCE

3.1 Parallelism
JAQL performance, which includes the performance of

both JAQL compiler and JAQL MapReduce runtime, can
be influenced by multiple factors. As the multi-core, multi-
processor become the main trend today, the first factor we
look at is the parallelism. As we discussed above, by design,
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JAQL already explores parallelism by transparently gener-
ating MapReduce jobs that can be executed in parallel. In
this paper, we explore more parallelism by analyzing the
multi-layer software stack of JAQL.

At the top-most level, a JAQL instance, which maintains
the state information such as the declared variable and their
values, function definitions and etc, can be started either by
an interactive shell or an application that submits JAQL
statements such as Big SQL. While an interactive shell is
used by one user in general and corresponds to one JAQL
session naturally, an application may submit JAQL state-
ments on behalf of multiple users who have different ob-
jectives. For example, Big SQL supports multi-session and
each session represents a separate expression stream from
one user. In the past, each process could have at most
one JAQL instance. With the changes we have made, we
now allow one process to manage multiple JAQL instances
(possibly each instance masquerading as a different user in
MapReduce). While each JAQL session has at least one ex-
ecuting thread, we are able to improve the performance on
a multi-core system with an increased number of threads.

After we have multiple JAQL sessions in one process, we
continue with inter-session parallelism. A JAQL session con-
sists of a sequence of JAQL statements, some of which will
be rewritten as MapReduce jobs and submitted to a MapRe-
duce framework such as Apache Hadoop [1]. We look at the
input and output of the MapReduce jobs and check if there
is data dependency among them. When there is no data
dependency, we do not wait for the previous jobs to return,
but continue with submitting jobs to the MapReduce frame-
work. In this paper, we restrict ourselves to modify JAQL
only and will not discuss the scheduling of MapReduce jobs.
With ample resources and/or a capable MapReduce sched-
uler, we are able to improve the performance with submit-
ting MapReduce jobs as early as possible.

3.2 I/O
JAQL is designed for large-scale data analysis and not sur-

prisingly, I/O performance is critical for JAQL performance.
This is verified by our experiment that for the benchmark
we are running, I/O can be accounted for more than 35% of
the total execution time.

3.2.1 I/O Data Size
I/O performance is defined by both I/O speed and I/O

data size. When we are discussing the problem in the envi-
ronment of large-scale data, I/O data size is the first thing
that draws our attention. How to reduce the size of the data
that needs to be read/write to either the file system or the
network is critical for I/O performance. For a MapReduce
job executed in Hadoop, its map tasks read input from a
distributed file system such as HDFS and reduce tasks write
output to HDFS. Inside map and reduce tasks, intermediate
results are read from and written to the local file system. In
this paper, we are more focused on how to reduce the size
of the intermediate data.

3.2.2 I/O (De)Serialization Speed
I/O speed consists of I/O hardware speed, such as the

speed of hard disks, and I/O software speed. In this pa-
per, we are concerned about only I/O software speed and
especially I/O software speed decided by the JAQL code.

JAQL runtime defines the serialization and de-serialization
functions. Inside Hadoop, when data is written to and read
from HDFS and local disk or when the data is merged and
combined, data is serialized and de-serialized multiple times.
We show that we can improve (de)serialization speed by
20%.

3.3 Methodology
Our methodology to analyze and improve JAQL perfor-

mance is an iterative process as shown in Figure 3. At first,
we profile different JAQL components. Then, depending on
the profiling results, we identify and locate the performance
bottlenecks. After that, we develop solutions to address the
performance problems and implement them in the code. To
verify the correctness of the solution and to locate new bot-
tlenecks, we profile the new version of the implementation
and repeat the process.

Profile JAQL runtime

Locate performance bottlenecks

Implement the improvement

Figure 3: Methodology

4. THREAD-SAFE JAQL RUN-TIME
As we discussed above, JAQL should be able to support

multi-session and thus multi-thread to improve its perfor-
mance on multi-core, multi-processor systems. In general,
this problem is a typical textbook problem. However, the
problem gets tricky when JAQL sessions share the under-
lying Hadoop environment including file systems. We will
describe it in more details later.

Each JAQL instance supports multiple sessions and each
JAQL session has one main thread to parse, compile and
evaluate JAQL statement one by one. We save the session
resources in the thread local storage of the main thread and
call it the session context.

Originally, we make all the shared data as session re-
sources, which are shared among the threads of the same
session. That is, we keep a copy of the shared data in the
session context. For example, for system properties that de-
scribe the environment configuration, we maintain a copy in
each session such that each session can configure its envi-
ronment independently.

Then, we convert some session resources to globally shared
resources in the following cases.

• The resource is expensive to initialize. For example,
for Hadoop 1.1 we used in this paper, creating a default
JobConf 1 involves reading multiple configuration files
and is an expensive operation. We make the default
configuration a global resource, create it once at the
beginning. Each session then makes its own copy of the
default JobConf and be able to modify its copy later
and thus configure its Hadoop jobs independently.

1JobConf describes a map-reduce job and needs to be de-
fined when a user submits a job to Hadoop.
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• The resource is read-only after initialization. For ex-
ample, some JAQL specific data structure such as ex-
ception handlers falls into this category.

• The resource is not accessed frequently. We make these
resources globally shared and synchronize the access to
them. The decision is a trade-off between speed and
space. For example, we have a variable tz to represent
the current time zone. Another variable df represents
a date format; a user can call df.format to return a
string with the pre-defined date format. The imple-
mentation of both variables are from third parties and
can not be changed easily. One the one hand, we make
tz a global resource to save space since it is not changed
frequently. One the other hand, we make df a session
resource to avoid synchronizing every call to df.format.

The tricky part of making JAQL thread-safe is because of
its feature of using Hadoop. The map and reduce functions
defined by JAQL read from and write to files. The Hadoop
API’s, while largely thread safe, do maintain certain global
state information, such as the currently active file system,
as well as the working and temporary directory within this
file system. Without any modification, each JAQL session
will use Hadoop APIs to set the active file system as well
as working and temporary directories and assuming these
global values stay unchanged, use relative paths to locate
files later. Unfortunately, it is not the case when there is
another JAQL session that may change these values. Thus,
as part of the effort to make JAQL thread safe, it was nec-
essary to save each session’s settings of the file system and
call the Hadoop API carefully to locate the files correctly.

We have implemented the thread-safe JAQL and tested it
with a suite of unit tests, which consists of 48 scripts that
test different functions provided by JAQL. We have verified
the correctness of our implementation by running the suite
of tests in three JAQL optimization settings and be able to
finish the tests more than 10 times faster.

5. PERFORMANCE ANALYSIS AND OPTI-
MIZATION

5.1 Profiling JAQL
To improve JAQL performance, we first identify the la-

tency oriented bottlenecks. We accomplish this work by
profiling JAQL using JProfiler [16], Hadoop monitoring tools
and self-developed monitoring tools.

In this paper, we shall focus on the performance of SQL
queries that are issued by Big SQL, which is an important
component of BigInsights. JAQL compiler, which is exe-
cuted inside of the Big SQL process, is responsible of parsing
and interpreting SQL query, optimizing the query plan, and
forming and submitting the MapReduce jobs. After the job
is submitted to Hadoop, JAQL runtime for MapReduce will
be executed in the JVMs started by map and reduce tasks.
Thus, we shall profile both the Big SQL process and the
JVMs of Hadoop map and reduce tasks to analyze JAQL
performance.

The first observation we make is that the latency is mostly
due to MapReduce job. For a query that takes minutes to
finish, the time spent inside Big SQL before the job sub-
mission is in milliseconds level. Besides, this time will not
change much with a different input and output while the

time of MapReduce job depends greatly on the size of input
and output data. Next, we should focus on the JAQL run-
time for MapReduce since this is where most time is spent
and where we can achieve most improvement of latency.

One SQL query issued by Big SQL can generate multiple
MapReduce jobs; one MapReduce job can include multiple
map and reduce tasks where each task starts a new JVM
by default Hadoop configuration. In order to avoid resource
competition of multiple JVMs on the same host, especially
the competition over I/O and do a clean profiling, we con-
figure Hadoop such that at any time, there is only one JVM
running. Specifically, we set

mapred.tasktracker.map.tasks.maximum=1 and
mapred.tasktracker.reduce.tasks.maximum=1

such that there is only one slot for map task and one slot
for reduce task on the host. Then, we set

mapred.reduce.slowstart.completed.maps=1.0

such that Hadoop should start reduce task after all the map
tasks are completed. Thus, at any time, we will have only
one JVM, at first for map tasks, then for reduce tasks. How-
ever, this still give us many JVMs when the number of map
and reduce tasks is big. We go one step further to set

mapred.job.reuse.jvm.num.tasks=-1

such that all map tasks will share one JVM instead of start-
ing a new one for each map task and all reduce tasks will
share one JVM.

Since we restrict ourselves to JAQL runtime for MapRe-
duce, the configuration discussed above is not only simpli-
fying our profiling work, but also removing the overhead
details that are outside of our interest range.

5.2 TPCH Benchmark
We use TPCH benchmark [18] to measure our perfor-

mance. TPCH is a benchmark consisted of a set of SQL
queries, which involves operations such as join, union, filter,
sort, aggregate functions and etc, to a database that can be
populated to a specified size. For the experiment results in
this paper, we populate the database with 1G data and we
choose to profile 6 queries which involve different operations
as shown in Table 1 and they all involve querying the biggest
table, which has 6G rows, in the database.

5.3 Performance Analysis and Optimization

5.3.1 Big SQL
We profile Big SQL server and verify that JAQL perfor-

mance is critical for Big SQL performance. As shown in
Figure 4, more than 70% of the execution time is spent on
JAQL runtime, among which 31% is spent on parsing the
query, 19% on rewriting and optimizing the query plan, and
22% on evaluating the query plan. One interesting thing
to notice is that 15% of the execution time comes from the
international component for unicode (com.ibm.icu) that is
used to initiate JsonDate.

5.3.2 JAQL Runtime for MapReduce
As we mentioned earlier in the paper, the execution time

of MapReduce jobs dominants the total execution time and
deserves more attention for performance consideration. We
profile the JVMs for map and reduce tasks with the Hadoop
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query operations # M/R jobs results
q1 aggregate functions (sum, avg) 2 4 rec with 11 col
q3 join 4 10 rec with 4 col
q5 nested join 4 5 rec with 2 col
q7 join and union all 5 4 rec with 4 col
q21 join and right outer join 7 100 rec with 2 col

Table 1: TPCH queries

15

16

1922

1

27
parse icu

parse other

rewrite

evaulate

JAQL other

Big SQL other

Figure 4: Big SQL Execution Time

Hadoop JobTracker
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NodeJ

Hadoop TaskTracker

HDFS Datanode

NodeT

BigSQL/JAQL

NodeB

Machine M

Figure 5: Hadoop Cluster

configuration discussed earlier and in the following, we re-
port our observations and the improvements we made.

To focus on the profiling of JAQL runtime for MapReduce,
we set up a simple Hadoop cluster with 2 nodes: one node
J as Hadoop job tracker, HDFS Name node and secondary
Name node; the other node T as Hadoop task tracker and
HDFS Data node. The Big SQL server is on a separate
node B. Node J and T are both VMWare virtual machines
instantiated on one physical machine, which is a Dual-Core
AMD processor with 2.2G CPU. Node B is a Intel Xeco CPU
with 24 processors each of which has 1.6G CPU.

We issue the TPCH queries from Big SQL server and pro-
file the map and reduce tasks executed. For the map tasks
of the 1st job from query q1 of TPCH benchmark, we find
that 50% is spent on JAQL defined map function and 46% is
spent on combining and sorting the MapperŠs output among
which 40% is spent on JAQL defined combine function. In
total, JAQL runtime accounts to 90% of the execution time
of the map task and is obviously crtical for the performance
of MapReduce jobs.

We look at the profiling results deeper and observe that
I/O serialization is dominant. For the same scenery as above,
we observe that 16% is spent on

...binary.temp.TempBinaryFullSerializer.write

, which is responsible of writing the output of mappers, and
19% on

...binary.temp.TempBinaryFullSerializer.read

, which is responsible of the reading the input of mappers.
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Figure 6: Comparison between Q1 and Q3

The dominance of I/O is not unique for q1, though the
exact pattern may be different. As the comparison of q1
and the 1st job of q3 shown in Figure 6, we can see that
for q1, the I/O accounts for 35% combining both write and
read operations while for q3, the I/O accounts for 32% for
write operation only. Besides that, q1 spends 20% on Aggre-
gate.Accumulate which deals with the aggregate functions in
the query such as avg, sum, count and etc.; q3 spends 23%
on TempBinaryFullSerializer.compare which compares the
values. The remaining function jsonIterator.hasNext is used
to iterate the expressions and evaluate their values.
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Figure 7: Percentage of Query’s write operation

For other queries, we show the comparison result of the
I/O write operation in Figure 7. From the figure, we can see
that the percentage of

...binary.temp.TempBinaryFullSerializer.write

can be as high as 37% for the map task of the 2nd job of q3
and can be as low as 10% for q5.
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5.4 I/O data size
Since I/O performance is dominant in many queries as

shown in the above figures, we focus on I/O performance
to improve JAQL overall performance. I/O performance is
decided by both I/O data size and I/O speed.

We first summarize our effort to reduce I/O data size from
different perspectives as follows. Since we cannot reduce the
data size of initial input and final output, we check the query
plan generated by JAQL and remove unnecessary interme-
diate data.

5.4.1 Number of Jobs
The goal is to reduce the number of jobs. As fewer jobs

are generated, there is no need to pass the data to next job
and thus can reduce I/O data size. Also, all the overhead
of starting a new job will be eliminated. Both Big SQL and
JAQL have optimized the query plan to reduce the number
of jobs.

In this paper, we have JAQL dynamically adjust whether
or not a particular job should be done locally or submit-
ted to Mapreduce by examining the output of the previous
job, which is also the input of the current job. That is, if
the input of the current job is smaller than a pre-defined
threshold, the job will be done locally to save the overhead
of MapReduce framework and remote execution.

5.4.2 Number of Objects
Another goal of optimizing the query plan is to reduce the

number of objects that needs to be passed between map and
reduce tasks of the same job and the ones passed between
jobs of the same query.

The improvement of JAQL on this perspective includes
1) push down the filtering conditions as deep as possible
and thus filter out unnecessary objects as early as possible;
2) optimize the order of multiple filtering conditions with
hints to do the most effective filtering first; 3) optimize the
join order of multiple joins and join methods if they are
not explicitly defined with hints to reduce the number of
intermediate join results. The hints can be the size of the
input tables, the number of rows that may match the join
and filter condition, and other operations of the same query.

Another improvement has been reported in [19] which
proposes adapting MapReduce to achieve a higher perfor-
mance. In specific, ”situation-aware” map tasks are im-
plemented such that they can communicate through a dis-
tributed meta-data store and thus be able to have a global
picture of the job. Besides the benefit of load-balancing, an-
other benefit is to generate a smaller number of objects and
thus reduce I/O size.

5.4.3 Number of Columns
It is obvious that we should eliminate the columns if they

are not needed in the future. The trick is to examine the
query plan that was chosen and decide, at any given step,
if a particular column is no longer needed after that step,
that it is eliminated and the values for the column are not
transmitted to the next job in the chain. For example, if a
column is only referenced during a single join, but no where
else in the query, then after that join has been processed,
the column is no longer needed for subsequent steps, such
as additional joins, or sorting and grouping.

5.4.4 Number of Encoded Bytes
From both previous experience of other researchers and

our experiments, we do not see observable improvement of
enabling Hadoop data compression. Thus, we implement
our own mechanism to encode the data and reduce the num-
ber of encoded bytes.

JAQL, being a language based upon JSON, tends to carry
values around in JSON structures that are records 2. So a
given row may look like a record of:

{ c1: 10, c2: “bob”, c3: “nelson” }

However, in a language like SQL, where you always have
a strict schema, it is not necessary to carry around such
structures, because the metadata exists externally to the
data, the same value as above may be carried around as
a simple array 3 of [10, ”bob”, ”nelson”] saving significant
space, where the column names don’t need to be represented
in every row, and processing time, where values are retrieved
by position, not name.

The optimization that was performed is to make JAQL
more aware of when the data is well formed with a schema,
and that all operations performed on the data will result in
data that is well formed. In these circumstances, JAQL can
treat records as arrays. It can compile out the references
to fields of records, such as t1.c1 > 10 and replace it with
t1[0] > 10 and thus can avoid carrying around the associated
metadata for the columns in each record.

5.5 I/O (de)serialization overhead
In this paper, for I/O speed, we only consider the I/O

overhead imposed by JAQL code, especially the serializa-
tion and de-serialization. Besides the de-serialization and
serialization of input and output, the intermediate results
will need to go through multiple de-serialization and serial-
ization when they are mapped, combined, shuffled, spilled
and reduced.

By further analysis, we discovered that we can reduce the
number of times when the objects were being de-serialized,
especially in the mapper. The problem is that during group-
ing, Hadoop is de-serializing previously serialized objects in
order to compare them to determine which group to place
the new object into. To avoid this, JAQL is changed to seri-
alize all of its data in such a fashion that values are binary-
collatable. That is, given two buffers full of serialized data,
the buffers can have a byte comparison performed in order
to collate, rather than having to de-serialize either of the
buffers.

By profiling, we are also able to catch the inefficiency
points of JAQL implemented serialization and de-serialization
functions. We identify RecordSerializer.partition, which deals
with record, and ArraySerializer.write, which deals with ar-
ray, as the hot methods since they are called many times
and the total time spent on them is big.

JAQL, being initially designed for loosely structured data,
allows for arrays of heterogeneous data, and structures that
can be completely different from row to row. As a result, the
process of serializing data consists of a significant amount
of introspection of a value’s type before serialization. To

2A JAQL record is an un-ordered collection of name-value
pairs where name is a literal string and value can be an
atomic value, record or list.
3A JAQL array is an ordered collection of values.
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improve on this situation, we enhance JAQL to recognize
situations in which the schema is fully computable, such as
in SQL operations, and the general purpose serializers that
JAQL would normally use are swapped out with special-
purpose serializers that understand, for example, how to se-
rialize only an array of non-nullable long values. These opti-
mizations even include recognizing when a particular value
is invariant (for example, could never be anything but the
value ”3”) and avoiding serialization for such values alto-
gether.

5.6 Other improvement
In the following, we describe other improvements we have

made into JAQL.
By profiling, we observe that an important portion of ex-

ecution time is spent on jsonIterator.hasNext as shown in
Figure 6. Inside this function, Expr.eval is called to evaluate
an expression’s value. Once a value is recognized as math
expression, MathExpr.evalRaw is called to get the value.
However, this function will again call Expr.eval and Math-
Expr.evalRaw repeatedly, nested to many levels. We also
observe that ArrayExpr.evalRaw is expensive due to the fact
that it involves many layers of type check.

As with the scenario of serialization, described in the pre-
vious section, many operations in JAQL allow for heteroge-
neous data types. For example, in the expression

<prev expr> .. → filter $.a + $.b > 10

the + and > operators will inspect their values each and ev-
ery time they are called to determine the input types, how to
compute the result, and what type the result should be, thus
a significant amount of time is spent during this inspection
and making these decisions. This was optimized by, again,
recognizing the cases in which the types of the operands are
invariant (based upon the schema of the expression) and re-
placing the general purpose operator with a special purpose
operator that only knows how to perform the operation on
the specific data type(s) involved in the operation.

5.7 Experiment Results
Next, we demonstrate the performance improvement of

the proposed methods discussed above.
In Figure 8, we show the improvement ratio of each job

generated by the queries. For example, q7, q7-j2, q7-j3 are
the three jobs generated by query q7. The performance im-
provement of reducing the number of jobs as discussed above
is small and is not shown in the figure. The reason is that
only the jobs with small input are executed locally and the
improvement is in the seconds level while the queries tested
here will take minutes to finish. Thus, the improvement
ratio is small.

The first set of bars in the figure shows the improvement
by reducing the number of objects. The 2nd set of bars
shows the improvement by reducing I/O (de)serialization
overhead and other improvement. The 3rd set of bars shows
the improvement of reducing the number of columns and the
number of decoded bytes. We can see that reducing the I/O
data size has a bigger effect than reducing (de)serialization
overhead in our experiment. And with all the improvements,
we are able to improve the performance of queries up to more
than 2X.
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Figure 8: Performance Improvement

6. RELATED WORK
The authors of [15] provide a comparison of three high

level query languages for Map reduce, namely, Pig, Hive,
and JAQL, on the bases of their functional features and
run-time performance. The scalability tests in this study
are done using simple non-commercial benchmarks. A qual-
itative evaluation of these query languages and compilation
of their queries into MapReduce jobs is presented in [14].
It was concluded that JAQL, with its expressive power and
flexibility, is best suited for large-scale data processing in
Big Data analytics. In [13] XQuery language is extended
to support JSON data model and the XQuery processor is
extended to support MapReduce execution.

MapReduce paradigm is based on isolated execution of in-
dividual map tasks (belonging to the same job) which some-
times restrict the choice of algorithms that can be executed
in the map-phase. To overcome this limitation, an Adaptive
Map-Reduce approach based on Situation-Aware Mappers
(SAMs) was introduced in [8, 19]. SAMs which are basi-
cally mappers with an asynchronous communication chan-
nel between them for exchanging state information. This
improves performance of a class of aggregate functions by
limiting the output data from map jobs that needs to be
shuffled and copied to reduce nodes. They also proposed a
new API for developing User Defined Aggregates (UDAs) in
JAQL to exploit SAMs.

A technique for run-time performance prediction of JAQL
queries (with fixed data flows) over varying input data sets
is developed in [12]. Such techniques can be used for op-
timal resource provisioning and scheduling by MapReduce
schedulers like FLEX [20] to meet query performance related
Service Level Agreements (SLAs).

The research of [7] describes eXtreme Analytics Platform
(XAP), a powerful platform for large-scale data-intensive
analytics developed at IBM Research. The main building
blocks of XAP are JAQL, FLEX scheduler for optimized al-
location of resources to Hadoop jobs, data-warehouses con-
nectors and libraries and tools for advanced analytics. Many
of the XAP technologies are incorporated in IBM InfoSphere
BigInsights [4] product.

7. CONCLUSION
JAQL is a query language designed for large-scale data

analysis. It provides an easy-to-use, flexible and extensi-
ble interface to the BigData analytics and explores massive
parallelism using MapReduce framework. It is an important
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component of BigInsights, an IBM flagship product on Big-
Data, and its performance is critical for SQL queries submit-
ted by Big SQL and other data analytics applications built
on it.

We improve JAQL performance from multiple perspec-
tives. We make JAQL thread-safe and further explore its
parallelism; we profile JAQL intensively for performance
analysis; we identify that JAQL compiler is dominant in ex-
ecution time inside Big SQL and JAQL runtime for MapRe-
duce is dominant in execution time inside MapReduce frame-
work; we further identify I/O is critical for performance and
be able to improve I/O performance by reducing the I/O
data size and increase (de)serialization efficiency.

We profile and measure our improvements in a simple
Hadoop cluster with special configuration to reduce the num-
ber of JVMs. We show that the performance of TPCH
queries can be improved up to 2 times and the biggest im-
provement comes from the reduction of data size.

In the future, we would like to explore parallelism further
inside JAQL. For example, we can check the data depen-
dency beyond the range of one statement (one SQL query)
and continue with the statements without data dependency
as long as possible. As Hadoop YARN is available, we
would like to investigate how JAQL will benefit from the
new Hadoop infrastructure. We are also interested in the
generation of query plans and investigate if we can reduce
I/O data size by a better query plan.
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