
System Performance Analyses through Object-oriented
Fault and Coupling Prisms

 Alessandro Murgia*, Roberto Tonelli,
 Michele Marchesi, Giulio Concas Steve Counsell, Stephen Swift

 Dept. of Electrical Engineering Dept. of Information Systems
 University of Cagliari, Cagliari, Italy Brunel University,

 *Dept. of Mathematics-Inf., University of Antwerp, Belgium Uxbridge, Middlesex, UK
 alessandro.murgia@uantwerpen.be steve.counsell@brunel.ac.uk

ABSTRACT
A fundamental aspect of a system’s performance over time is the
number of faults it generates. The relationship between the
software engineering concept of ‘coupling’ (i.e., the degree of
inter-connectedness of a system’s components) and faults is still a
research question attracting attention and a relationship with
strong implications for performance; excessive coupling is
generally acknowledged to contribute to fault-proneness. In this
paper, we explore the relationship between faults and coupling.
Two releases from each of three open-source Eclipse projects (six
releases in total) were used as an empirical basis and coupling and
fault data extracted from those systems. A contrasting coupling
profile between fault-free and fault-prone classes was observed
and this result was statistically supported. Object-oriented (OO)
classes with low values of fan-in (incoming coupling) and fan-out
(outgoing coupling) appeared to support fault-free classes, while
classes with high fan-out supported relatively fault-prone classes.
We also considered size as an influence on fault-proneness. The
study thus emphasizes the importance of minimizing coupling
where possible (and particularly that of fan-out); failing to control
coupling may store up problems for later in a system’s life;
equally, controlling class size should be a concomitant goal.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features.

General Terms
Measurement, Performance, Experimentation.

Keywords
Coupling, fan-in, fan-out, faults, refactoring.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright © 2014 ACM 978-1-4503-2733-6/14/03…$15.00.
http://dx.doi.org/10.1145/2568088.2568089

1. INTRODUCTION
As an object-oriented facet, excessive coupling [5] is, anecdotally
and empirically, an acknowledged contributor to faults [1, 4] and
hence a contributor to degradation of system performance. Here,
coupling refers to the inter-connectedness of the components in a
system. While no large system can exist without some form of
coupling, wherever possible, developers should seek to minimize
this facet of a system because of the relationship it forms with
faults. In this paper, we explore the relationship between faults
and coupling where the latter is decomposed into fan-in and fan-
out [12]. We chose these two sub-forms of coupling to make the
distinction between inward (fan-in) and outward (fan-out) links
belonging to a class and we explore the relationship between fan-
in and fan-out for sets of fault-free and fault-prone classes. Two
releases from each of three Eclipse projects (six releases in total)
were used as an empirical basis of the study and coupling and
fault data extracted from those releases. Results showed a stark
contrast between the coupling levels of fault-free classes and
fault-prone classes. Low fan-in and fan-out appeared to support
fault-free classes. Statistical evidence supported that result for
four of the six releases studied. Analysis of class size between
fault-prone and fault-free classes suggests that faults arise because
of relatively high amounts of coupling (particularly fan-out),
which in turn is dependent largely on class size. Developers
should therefore aim to keep components as small as possible as a
first line of defense against faults and pursue re-engineering and
refactoring activities which decompose classes and methods.

1.1 Motivation
The motivation for the research comes firstly, from the relative
lack of replication studies exploring the relationship between fault
data and coupling on a longitudinal (i.e., release-by-release) basis
[13]. Secondly, it comes from the fact that the relative merits of
fan-in or fan-out (and combinations thereof) are still open
research areas. Study of fan-in and fan-out from a fault
perspective might lead to novel conclusions about the
relationships between faults and other software engineering
disciplines such as refactoring [2, 10, 18]. Finally, the work is also
motivated by the role that class size plays in class composition.
Lessons and conclusions based on class data are of questionable
value unless size is taken into consideration [8, 9]. The indirect
link between faults and class size (through the medium of
coupling) is often neglected by other studies, yet can offer us
insights into system behaviour otherwise lost [8]. The remainder
of the paper is organised as follows. In the next section, we

233

describe the analysis of the data on a release-by-release basis
supported with fault and coupling data. We further support that
analysis with statistical correlation. In Section 3, we discuss issues
raised by the study including threats to study validity and related
work before concluding in Section 4 pointing to further work.

2. DATA ANALYSIS
2.1 Preliminaries
Our analysis is based on two releases from each of three Eclipse
projects: jdt.core, jdt.ui and jdt.uiworkbench. We used Eclipse as
a basis of our research since it is a large, long-surviving system
with more than ten years of development. We took into account
faults between six releases. The JHawk tool [14] was used to
extract the incoming ‘fan-in’ coupling and outgoing ‘fan-out’
coupling metrics for each class. The RefFinder tool [16] was used
to extract up to sixty-three refactorings between two releases and
the data reported relates to all classes that had been the subject of
at least one refactoring between releases. We chose to study
classes which had been refactored as opposed to studying every
class in the system for two reasons. Firstly, by studying refactored
classes, we obtain a mix of those classes that are likely to have
been problematic and those that have had refactoring applied to
them in a perfective sense. Secondly, because the study presented
is part of a wider examination of refactoring, faults and the
relationship these two have with coupling [15]. Fault data was
collected manually by one of the researchers and subsequently
verified by another. In the subsequent analysis, we present tabular
data between each release, relevant correlation values, level of
significance (1% or 5%) and data for fan-in and fan-out to support
relationships between coupling and faults. We define a fault in
this paper as an ‘observed failure in the system’ and marked as
such by Eclipse developers using the Bugzilla fault-tracking
system. We use parametric correlation measures assuming a
normal distribution (Pearson’s) and non-parametric measures
which make no assumption about the data distribution (Kendall’s
and Spearman’s). Using all three gives a broad and complete set
of correlation values that using one alone might not accord.
Finally, we note that the set of faults and refactorings collected
were disjoint across releases; in other words, double counting of
either was not a threat to the collected data.

2.2 Jdt.core_3.0_3.1
Table 1 shows summary statistics for the values of fan-in and fan-
out (henceforward called ‘FIN’ and ‘FOUT’) for all 1151 classes
containing at least one fault and which had been refactored at least
once between releases 3.0 and 3.1. It also shows the FIN and
FOUT data for the 154 fault-free, refactored classes. For each set,
the minimum (Min), maximum (Max), Mean and standard
deviation (SD) values are shown. For example, for the set of fault-
prone classes, the minimum FIN was 0, maximum FIN was 228
with mean FIN 20.21 and SD 29.91. For fault-prone classes, we
see that the mean value of FOUT is greater than the mean for FIN.

Table 1. Coupling data for jdt.core 3.0_3.1

Classes Min Max Mean SD
Fault-prone
FIN 0 228 20.21 29.91
FOUT 0 195 30.59 32.69
Faults 1 71 10.44 32.12
Fault-free
FIN 0 23 6.38 5.81
FOUT 0 34 7.63 6.57

The maximum value of FIN of 228 was for a class with 54
methods and 2 faults. The FOUT value of 195 belonged to a class
with 159 methods and which exhibited 28 faults over the period
studied. The maximum number of faults (71) belonged to a class
called Scope with 81 methods. Its FIN was 66 and FOUT 48.

For the set of fault-free classes in the same table, the maximum
values of FIN and FOUT are noticeably lower than those for fault-
prone classes presented. The mean FIN value of 6.38 and mean
FOUT value of 7.63 are considerably lower than the
corresponding mean values for fault-prone classes. The question
as to whether ‘fault-free’ classes over that period (as opposed to
fault-prone classes) present a different profile in terms of their
FIN and FOUT values also arises. To determine the relationship
between FIN and FOUT in each of the categories, we correlated
the respective values for the two data sets (fault-prone and fault-
free). Correlation values between FIN and FOUT for fault-free
classes showed no statistical significance for any of the three
coefficients (0.03, 0.05 and 0.08 for Pearson’s, Kendall’s and
Spearman’s, respectively). On the other hand, for the set of fault-
prone classes, we found correlations of 0.10 for Pearson’s (not
significant), 0.14 and 0.19 for Kendall’s and Spearman’s
coefficients between FIN and FOUT, the latter both significant at
the 1% level (0.01). For this project, FIN and FOUT profiles for
fault-prone classes seem to differ significantly from that of fault-
free classes. Both the FIN and FOUT values for fault-prone
classes are higher. From Table 1, fault-prone classes tend to have
a higher mean FOUT than the corresponding FIN value. This
would make sense; a class with many incoming couplings (i.e., a
high FIN value) is depended upon by many classes for the
functionality that it offers. This means that it should be
maintained very carefully because of the ripple effect of faults that
changes to that class would cause to those dependent classes. The
same is not true of classes with a high number of outgoing
couplings (i.e., high FOUT). In that case, because the
dependencies are outgoing, the ripple effects of any faults are
likely to be less severe and careless maintenance would have less
of an effect on the system.

While the tabular data and correlation results do suggest that fault-
prone classes have a higher FIN and FOUT than fault-free classes
and this is certainly a feature of the release studied, we cannot
overlook the fact that size is also an important factor in the
determination of coupling and, indirectly, the number of faults in
a system. To this effect, we computed the median and mean
number of methods (NOM) for each of fault-prone and fault-free
classes. For fault-prone classes, the mean NOM was found to be
44.24 with a median value 23; for fault-free classes, the mean
NOM was significantly lower at 10.24 and median 7. In other
words, there was a wide variation in the size of the classes
between those exhibiting faults and those that did not exhibit
faults. Clearly, size is a factor in determining coupling and with
that comes faults; restricting class size growth (and with it

234

coupling) may be the major weapon against high fault incidence
in classes. We could go further; based on the evidence presented
we could hypothesise that the balance of coupling should be in
favour of a higher FIN rather than use of FOUT. Developers
should thus avoid building classes with high FOUT values.

2.3 Jdt.core_3.1_3.2
Table 2 shows statistics for FIN and FOUT for the 929 fault-
prone, refactored classes between releases 3.1 and 3.2. It also
shows the FIN and FOUT for the 130 fault-free refactored classes.
For fault-prone classes, the mean FOUT is again noticeably larger
than the mean of FIN. The maximum value of FOUT is for the
same class as the previous release; the FIN value of 194 belonged
to class with 52 methods and 11 faults. The maximum number of
faults (38) belonged to the same class as in the previous release
Scope, which now contained 84 methods. The FIN for this class
was 73 and the FOUT 49. As to whether fault-free classes exhibit
a different pattern to fault-prone classes, correlating FIN and
FOUT for fault-free classes gave a value of 0.05 (not significant)
for Pearson’s and yet 0.16 and 0.21 for Kendall’s and Spearman’s,
respectively. Both of these values were significant at the 5% level
only. This contrasts with 0.07 (significant at the 5% level), 0.20
and 0.29 both significant at the 1% level for Pearson’s, Kendall’s
and Spearman’s, respectively for fault-prone classes.

Table 2. Coupling data for jdt core 3.1_3.2

Classes Min Max Mean SD
Fault-prone
FIN 0 194 22.72 33.84
FOUT 0 195 28.94 32.69
Faults 1 38 7.06 7.19
Fault-free
FIN 0 121 5.97 12.71
FOUT 0 33 5.49 7.00

Again, we note a strong difference in the FIN and FOUT
relationship depending on whether a class is fault-free or fault-
prone. The mean FOUT for fault-prone classes is again higher
than that of its corresponding FIN value. When we consider the
class size between these releases (given by NOM), we see a
similar pattern as that in the previous section. For fault-prone
classes, the mean NOM was 46.66 and median 23; for fault-free
classes, the mean NOM was 9.2 and median NOM 7. Size is
clearly a major factor in the FIN and FOUT values of Table 2; in
particular, faults seem to thrive in highly-coupled classes, a
feature of large classes. It is interesting to see (from Table 2) a
similarity in the FIN and FOUT mean values for fault-free classes
(5.97 and 5.49). As noted in the previous section, a balanced
coupling profile (avoiding high FOUT values) appears to be a
feature of fault-free classes and of fault-free classes here.

2.4 Jdt.ui_3.0_3.1
Table 3 shows summary data for the 1489 fault-prone and 555
fault-free classes between releases 3.0 and 3.1 of jdt.ui. For the
former, the maximum value of FIN was 196 belonging to a class
with 51 methods and 10 faults (FOUT for this class was 42).

Table 3. Coupling data for jdt.ui 3.0_3.1

Classes Min Max Mean SD
Fault-prone
FIN 0 620 8.16 32.29
FOUT 0 51 12.57 10.61
Faults 1 23 3.60 3.37
Fault-free
FIN 0 287 3.26 13.55
FOUT 0 22 5.19 4.45

The maximum value of FOUT was 51 for a class with 23 methods
and 4 faults between releases. The maximum number of faults
(23) was for class MoveInnerToTopRefactoring; this class had a
FIN of 6 and a FOUT of 39. For FIN and FOUT, for the fault-
free set of classes (mean FIN 3.26 and mean FOUT 5.19) we
notice a distinct difference in the magnitude of these values
compared with those of fault-prone classes.

For the fault-free set of classes, correlations between FIN and
FOUT were -0.05 for Pearson’s (not significant), 0.10 and 0.14
for Kendall’s and Spearman’s, respectively (both significant at the
1% level). The correlations for FIN versus FOUT for fault-prone
classes on the other hand were 0.06 (significant at the 5% level),
0.09 and 0.11 (both significant at the 1% level). For this release,
there is thus a parallel between FIN and FOUT for fault-free and
fault-prone classes, in contrast to previous releases. When we
again consider class size (given by NOM) we found that for fault-
prone classes, the mean NOM was 31.69 and median 21; for fault-
free classes, the mean NOM was just 8.53 and median 7. Again,
size is a major factor in the FIN and FOUT values and the result
extrapolated from Table 3. While we accept that faults arise
because of high coupling, it is perhaps allowing class size to grow
which is a key contributor to high coupling.

2.5 Jdt.ui_3.1_3.2
Table 4 shows the summary data for the 1187 fault-prone and 390
fault-free classes between releases 3.1 and 3.2. The FIN value of
698 was for the same class as the previous release, with 47
methods and 6 faults between releases.

Table 4. Coupling data for jdt.ui_31_32

Classes Min Max Mean SD
Fault-prone
FIN 0 698 12.68 57.17
FOUT 0 70 13.73 12.54
Faults 1 18 3.30 2.69
Fault-free
FIN 0 84 4.51 11.85
FOUT 0 47 6.40 6.21

The FOUT of 70 belonged to a class consisting of 31 methods
with 7 faults over the releases. The class with 18 faults was called
JavaEditor and had no methods. Its FIN was 100 and it’s FOUT
43, well above the mean of 13.73. From a fault-free class
perspective, the mean FIN for the 390 classes was 4.51 and its
mean FOUT 6.40. Correlations between FIN and FOUT for those
classes were 0.06 (not significant), 0.16 and 0.23, both significant
at the 1% level (Pearson’s, Kendall’s and Spearman’s,
respectively). This compares with 0.13, 0.15 and 0.20 for fault-

235

prone classes - all significant at the 1% level. Between these two
releases, the relationship between fault-free and fault-prone
classes was comparable. Considering the class size (given by
NOM), we could see this result from a different perspective. For
fault-prone classes, the mean NOM was 23.96 and median 17; for
fault-free classes, the mean NOM was just 11.82 and the median
8. Again, size would appear to be a major factor in the FIN and
FOUT values and from the result from Table 4.

2.6 Jdt.uiworkbench_3.0_3.1
Table 5 shows the summary data for the 695 fault-prone and 154
fault-free classes between 3.0 and 3.1. For the set of fault-prone
classes and, as per other releases, the mean FOUT of 16.24
exceeds the corresponding value for FIN (9.14). The class with a
FIN of 196 was a class with 51 methods and 10 faults over the
course of the releases; its FOUT was 42. The maximum value of
FOUT was for a class with 99 methods and 24 faults; its FIN was
30. The class with the highest number of faults was a class called
WorkbenchPage with 179 methods and 30 faults.

Table 5. Coupling data for jdt.uiworkbench_30_31

Classes Min Max Mean SD
Fault-prone
FIN 0 196 9.14 16.91
FOUT 0 83 16.24 18.88
Faults 1 30 4.79 5.91
Fault-free
FIN 0 23 3.51 7.09
FOUT 0 76 5.34 4.30

The mean FIN for fault-free classes was 3.51 and that for FOUT
5.34. A difference between FIN and FOUT between fault-free and
fault-prone classes is thus evident. The correlations for this set of
classes were -0.10, -0.03 and -0.07 (Pearson’s, Kendall’s and
Spearman’s), none of which were significant. These values
contrast starkly with the correlation values for the set of fault-
prone classes between FIN and FOUT of 0.59, 0.27 and 0.36, all
significant at the 1% level. Considering the class size (given by
NOM), for the set of fault-prone classes, the mean NOM was
27.14 and median 16; for fault-free classes, the mean NOM was
just 9.56 and median NOM 6. From the data presented, size is a
major factor in the determination of FIN and FOUT and, by
implication, faults.

2.7 Jdtui.workbench_3.1_3.2

Table 6 shows data between releases 3.1 and 3.2 for the set of 419
fault-prone and 124 fault-free classes. In keeping with the other
releases, the mean FOUT for fault-prone classes (18.44) far
exceeds that of FIN. The maximum FIN value was 204 and this
belonged to same class as in the previous release. It exhibited 4
faults over the period studied. The maximum value of FOUT was
102 - the same class as the previous release with FIN value of 36;
faults for this class fell to 19 over the period. The maximum
number of faults was 24 for a class called WorkbenchWindow
with 144 methods; its FIN was 44 and it’s FOUT 89. For the set
of fault-free classes, the mean FIN for fault-free classes was 3.68
and for FOUT 5.88. The correlations between FIN and FOUT

were -0.07, 0.09 and 0.12, none of which were significant.
Correlations between FIN and FOUT for fault-prone classes, on
the other hand, were 0.56. 0.34 and 0.45 (for Pearson’s, Kendall’s
and Spearman’s, respectively), all significant at the 1% level. As
per most of the releases, there is a clear distinction between the
relationship between FIN and FOUT, depending on whether a
class is fault-free or fault-prone.

Table 6. Coupling data for jdt.uiworkbench 3.1_3.2

Classes Min Max Mean SD
Fault-prone
FIN 0 204 9.04 21.54
FOUT 0 102 18.44 23.23
Faults 1 24 4.47 4.97
Fault-free
FIN 0 67 3.68 7.99
FOUT 0 28 5.88 6.31

When we once again consider the class size (given by NOM), we
found the mean NOM to be 30.00 and median 18; for fault-free
classes, the mean NOM was 12.07 and the median 7. Size is once
again a major factor in the FIN and FOUT values and from the
result from Table 6.

3. DISCUSSION
The study has highlighted the differences between FIN and FOUT
for fault-free vis-a-vis fault-prone classes. Clearly, developers
should try to avoid FOUT becoming excessively high. However,
one guaranteed way of minimizing FOUT is to ensure that a class
does not grow in size such that it needs to be coupled to so many
other classes. We would condone the use of re-engineering and
refactoring techniques to decompose classes should it be felt that
a class is growing out of hand. Of course, we have to be
pragmatic; developers only have limited time to devote to such
activities. The alternative of faulty classes, however, maybe a
worse one. One justification for using FIN and FOUT in this
paper is that we could not have emphasized the differences
between these two types had we chosen to use CBO metric of
Chidamber and Kemerer [6], for example. Figure 1 captures the
mean FIN values for fault-prone and fault-free classes across the
six releases studied abstracted from Tables 1-6. The dashed line is
the set of FIN values for fault-prone classes in the six releases
studied; the un-dashed line is that for fault-free classes.

Figure 1. FIN values for fault-prone and fault-free classes
(six releases)

236

There is a clear difference between the set of FIN for the two sets
of classes and this applies to all releases. FOUT values for fault-
prone classes clearly exceed those of fault-free classes. Figure 2
shows the FOUT mean values for fault-prone and fault-free
classes abstracted from Tables 1-6.

Figure 2. FOUT values for fault-prone and fault-free classes
(six releases)

Again, the dashed line represents the set of fault-prone classes and
the un-dashed line the set of fault-free classes. Once again the
difference between the two sets of classes is clear. It is interesting
to note from Figures 1 and 2 that the gap between mean values is
most pronounced at earlier releases of the system. While this may
be purely chance, it might suggest that re-engineering or
refactoring activity [10] may have been put in place to narrow the
gap between the two. The extract class and extract method
refactorings are just two of the standard set of 72 refactorings
proposed by Fowler [10] which may have been applicable here.

On the other hand, the mean values (after falling dramatically in
release 3) then start to rise in both Figures 1 and 2. While the
results from this data analysis support the view that low FIN and
FOUT values contribute to fault-free classes, we need to consider
the view that it is the size of a class which may determine a) the
level of coupling in a class and b) the fault-proneness of a class.
To emphasize the difference, Figure 3 shows just the mean NOM
values for fault-prone and fault-free classes as described in
Sections 2.2–2.7. There is a clear trend for the number of methods
in fault-prone classes to be larger than those that are fault free.

Figure 3. NOM for fault-prone and fault-free classes

3.1 Threats to validity
A number of threats to the validity of the research also have to be
considered. Firstly, we only consider one system in our analysis
and this could be considered a threat to external validity (i.e., the
ability to draw conclusions based on a single system). However,
an equal criticism could be applied had we used other systems in
terms of our ability to compare results. Second, we have studied
only limited releases of that system representing a small time
frame in the overall life of the system. Third, in this paper we
considered a class to be fault-free if it had not exhibited any faults
up until that point in time. That is not to say, however, that the
class will remain of that status – in a subsequent releases it may
become faulty. For the purposes of the study however, this
represents a useful benchmark against which we can judge fault-
prone classes. Finally, we chose NOM as a mechanism for
assessing size, but accept that there are other measures that might
have been as appropriate as measures of class size. For example,
lines of code (LOC); the problem with using LOC as a measure
however is the wide variation with which it can be computed [17].
The NOM metric provides a standard measure of class size.

3.2 Related work
Faults or ‘bugs’ have been an effective measure of software
performance since its inception [9]. The link between fault
propensity and software complexity (in this case in the guise of
coupling) is also well-understood. Study of fan-in and fan-out in
this paper marks a departure from normal studies of the more
generic ‘coupling’ form. In most coupling studies, the Coupling
between Objects (CBO) metric of Chidamber and Kemerer [8] has
been the standard coupling measure employed. However, while
useful, the CBO metric does not distinguish between incoming
and outgoing class coupling. This means that conclusions about
the direction of coupling and the relationship with faults (in the
case of the paper presented) cannot be made. Fan in and fan-out
were initially presented by [12]. In this paper, we also consider
class size as a factor in consideration of the results. This is based
on the premises that as classes and methods grow in size, so too
do coupling and therefore faults. The relationship between
coupling and faults has been empirically shown to exist in OO
software by Basili et al., and specifically in the C++ language by
Briand et al., [4]; a framework for the measurement of coupling is
provided in [3]. The work of El Emam on the influence of size as
a confounding factor is also drawn upon herein; in the paper, it is
proposed that size should be taken into account as a confounding
variable when validating object-oriented metrics [1]. In this paper,
we explored fan-in and fan-out but in the context of size also. The
link between design patterns and fault-proneness was explored by
Gatrell et al. [11]. Design pattern classes (i.e., those forming the
pattern’s essential structure) were found to be more fault-prone
than classes that were not part of the pattern. Finally, much of the
research on fault-proneness has focused on fault prediction [13];
the study presented adds weight to the view that size needs to be
considered as an essential factor in any study of faults.

4. CONCLUSIONS/FUTURE WORK
The incidence of faults in a system over time is a reflection of the
quality of the system and whether its performance continues to
match its initial and ongoing requirements. In this paper, data
between six releases of Eclipse was analyzed and fault and
coupling data collected from each. Results showed that the fan-in

237

and fan-out pattern/profiles for fault-free vis-a-vis fault-prone
classes showed notable and significant differences. Low values of
fan-in/fan-out seem to promote fault-free classes. Equally, a high
fan-out value seemed to predominate in fault-prone classes. One
explanation for this feature of the data might be that, conceivably,
it is easier to make additions and changes to a class which is not
dependent on a large number of classes than one that is. The risk
of amending a class with many incoming dependencies is
significantly higher because of those dependencies. The message
it would appear to a developer is to try, whenever possible to
minimise coupling both from an incoming and outgoing
perspective as would befit good software engineering practice.
However, high values of fan-out should be especially avoided
since from the evidence presented they are the classes which tend
to evolve into fault-prone classes. It would also appear when
scrutinising the data more carefully that the main factor in the
high fan-in and fan-out classes is the size of a class. Developers
should therefore seek to minimise the size of a class (through re-
engineering or refactoring) thereby maintaining its cohesion as
well as keeping coupling low. In other words, coupling and size
co-evolve and both should be monitored.

In terms of future work, these emerging results need to be
investigated through analysis of more systems and more releases.
In this way, a body of evidence can be constructed. The
relationship between specific refactorings and faults is one of
several lines of research that this study informs as a partial
replication to recent work [15]. We encourage further replication
studies of this type as collaborative efforts as a means of
generating a body of knowledge in this area. To that end, all the
data used for the study presented can be made available upon
request of the lead of the Brunel team member listed. Future work
will explore other class characteristics for relationships with
faults. In particular, whether a Zipf (or 80:20) Law exists between
faults and other class features [19] such as cohesion [7] as well as
fan-in and fan-out.

5. ACKNOWLEDGEMENTS
The research of Alessandro Murgia is sponsored by the Institute
for the Promotion of Innovation through Science and Technology
in Flanders through a project entitled Change-centric Quality
Assurance (CHAQ) with number 120028.

6. REFERENCES
[1] Basili, V., Briand, L., Melo, W., A Validation of Object-

Oriented Design Metrics as Quality Indicators, IEEE
Transactions on Software Engineering, 22(10), 1996, 751-
761.

[2] Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M.,
Oliveto, R., Strollo, O., When does a Refactoring Induce
Bugs? An Empirical Study Proceedings Working Conference
on Source Code Analysis and Manipulation, Riva del Garda,
Italy, 2012.

[3] Briand, L., et al. (1999) A unified framework for coupling
measurement in OO systems. IEEE Trans. on Soft. Eng.,
25(1), 91-121.

[4] Briand, L., Devanbu, P., Melo, W., An investigation into
coupling measures for C++, in 19th International Conference
on Software Engineering, Boston, USA, pp. 412-421, 1997.

[5] Briand, L., Daly, J. Wust, J., A unified framework for
coupling measurement in object-oriented systems, IEEE
Transactions on Soft. Engineering, 25: 91-121, 1999.

[6] Chidamber, S.R., Kemerer, C.F., A metrics suite for object
oriented design, IEEE Trans. on Soft, Engineering, 20:476-
493, 1994.

[7] Counsell, S., Swift, S., Crampton, J., The interpretation and
utility of three cohesion metrics for object-oriented design.
ACM Transactions on Softw. Eng. Methodol. 15(2): 123-149
2006.

[8] El Emam, K., Benlarbi, S., Goel, N., S. Rai: The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics. IEEE Trans. Software Eng. 27(7): 630-650
(2001).

[9] Fenton, N., Pfleeger, S., Software Metrics: A Rigorous and
Practical Approach', International Thomson Computer Press,
1996.

[10] Fowler, M., Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

[11] Gatrell, M., Counsell, S., Design patterns and fault-
proneness: a study of commercial C# software, IEEE
International Conference on Research Challenges in
Information Science, Guadeloupe, 1-8, 2011

[12] Henry, S., Kafura, D., Software Structure Metrics Based on
Information Flow, IEEE Transactions on Soft. Engineering
5:510 – 518, 1981.

[13] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., A
Systematic Literature Review on Fault Prediction
Performance in Software Engineering IEEE Transactions on
Software Engineering, 2012.

[14] JHawk tool: www.virtualmachinery.com/jhawkprod.htm).
2013.

[15] Murgia, A. Tonelli, R., Counsell, S., Concas, G., Marchesi,
M., An Empirical Study of Refactoring in the Context of
Fan-in and Fan-out: an Empirical Study. Proceedings of
European Conference on Software Engineering, Szeged,
Hungary, March 2012.

[16] Prete, K., Rachatasumrit, N., Sudan, N., Kim, M., Template-
based Reconstruction of Complex Refactorings, International
Conference on Software Maintenance, Timisoara, Romania,
pp. 1-10, 2010.

[17] Rosenberg, J., Some Misconceptions About Lines of Code,
IEEE International Software Metrics Symposium,
(METRICS ’97), pages 137-143, Bethesda, Maryland, USA,
1997.

[18] Weißgerber, P., Diehl, S., Are refactorings less error-prone
than other changes? Proceedings of the International
Workshop on Mining software repositories, pages 112–118.
ACM, 2006.

[19] Zipf, G., Human Behavior and the Principle of Least Effort,
Addison-Wesley, 1949.

238

