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ABSTRACT 
A fundamental aspect of a system’s performance over time is the 
number of faults it generates. The relationship between the 
software engineering concept of ‘coupling’ (i.e., the degree of 
inter-connectedness of a system’s components) and faults is still a 
research question attracting attention and a relationship with 
strong implications for performance; excessive coupling is 
generally acknowledged to contribute to fault-proneness. In this 
paper, we explore the relationship between faults and coupling. 
Two releases from each of three open-source Eclipse projects (six 
releases in total) were used as an empirical basis and coupling and 
fault data extracted from those systems. A contrasting coupling 
profile between fault-free and fault-prone classes was observed 
and this result was statistically supported. Object-oriented (OO) 
classes with low values of fan-in (incoming coupling) and fan-out 
(outgoing coupling) appeared to support fault-free classes, while 
classes with high fan-out supported relatively fault-prone classes. 
We also considered size as an influence on fault-proneness. The 
study thus emphasizes the importance of minimizing coupling 
where possible (and particularly that of fan-out); failing to control 
coupling may store up problems for later in a system’s life; 
equally, controlling class size should be a concomitant goal.  

 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features.  

General Terms 
Measurement, Performance, Experimentation.  

Keywords 
Coupling, fan-in, fan-out, faults, refactoring. 
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1. INTRODUCTION 
As an object-oriented facet, excessive coupling [5] is, anecdotally 
and empirically, an acknowledged contributor to faults [1, 4] and 
hence a contributor to degradation of system performance. Here, 
coupling refers to the inter-connectedness of the components in a 
system. While no large system can exist without some form of 
coupling, wherever possible, developers should seek to minimize 
this facet of a system because of the relationship it forms with 
faults. In this paper, we explore the relationship between faults 
and coupling where the latter is decomposed into fan-in and fan-
out [12]. We chose these two sub-forms of coupling to make the 
distinction between inward (fan-in) and outward (fan-out) links 
belonging to a class and we explore the relationship between fan-
in and fan-out for sets of fault-free and fault-prone classes. Two 
releases from each of three Eclipse projects (six releases in total) 
were used as an empirical basis of the study and coupling and 
fault data extracted from those releases. Results showed a stark 
contrast between the coupling levels of fault-free classes and 
fault-prone classes. Low fan-in and fan-out appeared to support 
fault-free classes. Statistical evidence supported that result for 
four of the six releases studied. Analysis of class size between 
fault-prone and fault-free classes suggests that faults arise because 
of relatively high amounts of coupling (particularly fan-out), 
which in turn is dependent largely on class size. Developers 
should therefore aim to keep components as small as possible as a 
first line of defense against faults and pursue re-engineering and 
refactoring activities which decompose classes and methods.   

 

1.1 Motivation  
The motivation for the research comes firstly, from the relative 
lack of replication studies exploring the relationship between fault 
data and coupling on a longitudinal (i.e., release-by-release) basis 
[13]. Secondly, it comes from the fact that the relative merits of 
fan-in or fan-out (and combinations thereof) are still open 
research areas. Study of fan-in and fan-out from a fault 
perspective might lead to novel conclusions about the 
relationships between faults and other software engineering 
disciplines such as refactoring [2, 10, 18]. Finally, the work is also 
motivated by the role that class size plays in class composition. 
Lessons and conclusions based on class data are of questionable 
value unless size is taken into consideration [8, 9]. The indirect 
link between faults and class size (through the medium of 
coupling) is often neglected by other studies, yet can offer us 
insights into system behaviour otherwise lost [8]. The remainder 
of the paper is organised as follows. In the next section, we 
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describe the analysis of the data on a release-by-release basis 
supported with fault and coupling data. We further support that 
analysis with statistical correlation. In Section 3, we discuss issues 
raised by the study including threats to study validity and related 
work before concluding in Section 4 pointing to further work. 

 

2. DATA ANALYSIS 
2.1 Preliminaries 
Our analysis is based on two releases from each of three Eclipse 
projects: jdt.core, jdt.ui and jdt.uiworkbench. We used Eclipse as 
a basis of our research since it is a large, long-surviving system 
with more than ten years of development. We took into account 
faults between six releases. The JHawk tool [14] was used to 
extract the incoming ‘fan-in’ coupling and outgoing ‘fan-out’ 
coupling metrics for each class. The RefFinder tool [16] was used 
to extract up to sixty-three refactorings between two releases and 
the data reported relates to all classes that had been the subject of 
at least one refactoring between releases. We chose to study 
classes which had been refactored as opposed to studying every 
class in the system for two reasons. Firstly, by studying refactored 
classes, we obtain a mix of those classes that are likely to have 
been problematic and those that have had refactoring applied to 
them in a perfective sense. Secondly, because the study presented 
is part of a wider examination of refactoring, faults and the 
relationship these two have with coupling [15]. Fault data was 
collected manually by one of the researchers and subsequently 
verified by another. In the subsequent analysis, we present tabular 
data between each release, relevant correlation values, level of 
significance (1% or 5%) and data for fan-in and fan-out to support 
relationships between coupling and faults. We define a fault in 
this paper as an ‘observed failure in the system’ and marked as 
such by Eclipse developers using the Bugzilla fault-tracking 
system. We use parametric correlation measures assuming a 
normal distribution (Pearson’s) and non-parametric measures 
which make no assumption about the data distribution (Kendall’s 
and Spearman’s). Using all three gives a broad and complete set 
of correlation values that using one alone might not accord. 
Finally, we note that the set of faults and refactorings collected 
were disjoint across releases; in other words, double counting of 
either was not a threat to the collected data. 

 
2.2 Jdt.core_3.0_3.1 
Table 1 shows summary statistics for the values of fan-in and fan-
out (henceforward called ‘FIN’ and ‘FOUT’) for all 1151 classes 
containing at least one fault and which had been refactored at least 
once between releases 3.0 and 3.1. It also shows the FIN and 
FOUT data for the 154 fault-free, refactored classes. For each set, 
the minimum (Min), maximum (Max), Mean and standard 
deviation (SD) values are shown. For example, for the set of fault-
prone classes, the minimum FIN was 0, maximum FIN was 228 
with mean FIN 20.21 and SD 29.91. For fault-prone classes, we 
see that the mean value of FOUT is greater than the mean for FIN.  

 

 

 

Table 1. Coupling data for jdt.core 3.0_3.1 

Classes Min Max Mean SD 
Fault-prone 
FIN 0 228 20.21 29.91 
FOUT 0 195 30.59 32.69 
Faults 1 71 10.44 32.12 
Fault-free
FIN 0 23 6.38 5.81 
FOUT 0 34 7.63 6.57 

 

The maximum value of FIN of 228 was for a class with 54 
methods and 2 faults. The FOUT value of 195 belonged to a class 
with 159 methods and which exhibited 28 faults over the period 
studied. The maximum number of faults (71) belonged to a class 
called Scope with 81 methods. Its FIN was 66 and FOUT 48.   

For the set of fault-free classes in the same table, the maximum 
values of FIN and FOUT are noticeably lower than those for fault-
prone classes presented. The mean FIN value of 6.38 and mean 
FOUT value of 7.63 are considerably lower than the 
corresponding mean values for fault-prone classes. The question 
as to whether ‘fault-free’ classes over that period (as opposed to 
fault-prone classes) present a different profile in terms of their 
FIN and FOUT values also arises. To determine the relationship 
between FIN and FOUT in each of the categories, we correlated 
the respective values for the two data sets (fault-prone and fault-
free). Correlation values between FIN and FOUT for fault-free 
classes showed no statistical significance for any of the three 
coefficients (0.03, 0.05 and 0.08 for Pearson’s, Kendall’s and 
Spearman’s, respectively). On the other hand, for the set of fault-
prone classes, we found correlations of 0.10 for Pearson’s (not 
significant), 0.14 and 0.19 for Kendall’s and Spearman’s 
coefficients between FIN and FOUT, the latter both significant at 
the 1% level (0.01). For this project, FIN and FOUT profiles for 
fault-prone classes seem to differ significantly from that of fault-
free classes. Both the FIN and FOUT values for fault-prone 
classes are higher. From Table 1, fault-prone classes tend to have 
a higher mean FOUT than the corresponding FIN value. This 
would make sense; a class with many incoming couplings (i.e., a 
high FIN value) is depended upon by many classes for the 
functionality that it offers. This means that it should be 
maintained very carefully because of the ripple effect of faults that 
changes to that class would cause to those dependent classes. The 
same is not true of classes with a high number of outgoing 
couplings (i.e., high FOUT). In that case, because the 
dependencies are outgoing, the ripple effects of any faults are 
likely to be less severe and careless maintenance would have less 
of an effect on the system.   

While the tabular data and correlation results do suggest that fault-
prone classes have a higher FIN and FOUT than fault-free classes 
and this is certainly a feature of the release studied, we cannot 
overlook the fact that size is also an important factor in the 
determination of coupling and, indirectly, the number of faults in 
a system. To this effect, we computed the median and mean 
number of methods (NOM) for each of fault-prone and fault-free 
classes. For fault-prone classes, the mean NOM was found to be 
44.24 with a median value 23; for fault-free classes, the mean 
NOM was significantly lower at 10.24 and median 7. In other 
words, there was a wide variation in the size of the classes 
between those exhibiting faults and those that did not exhibit 
faults. Clearly, size is a factor in determining coupling and with 
that comes faults; restricting class size growth (and with it 
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coupling) may be the major weapon against high fault incidence 
in classes. We could go further; based on the evidence presented 
we could hypothesise that the balance of coupling should be in 
favour of a higher FIN rather than use of FOUT. Developers 
should thus avoid building classes with high FOUT values.   

  

2.3 Jdt.core_3.1_3.2 
Table 2 shows statistics for FIN and FOUT for the 929 fault-
prone, refactored classes between releases 3.1 and 3.2.  It also 
shows the FIN and FOUT for the 130 fault-free refactored classes. 
For fault-prone classes, the mean FOUT is again noticeably larger 
than the mean of FIN. The maximum value of FOUT is for the 
same class as the previous release; the FIN value of 194 belonged 
to class with 52 methods and 11 faults. The maximum number of 
faults (38) belonged to the same class as in the previous release 
Scope, which now contained 84 methods. The FIN for this class 
was 73 and the FOUT 49. As to whether fault-free classes exhibit 
a different pattern to fault-prone classes, correlating FIN and 
FOUT for fault-free classes gave a value of 0.05 (not significant) 
for Pearson’s and yet 0.16 and 0.21 for Kendall’s and Spearman’s, 
respectively. Both of these values were significant at the 5% level 
only. This contrasts with 0.07 (significant at the 5% level), 0.20 
and 0.29 both significant at the 1% level for Pearson’s, Kendall’s 
and Spearman’s, respectively for fault-prone classes.  

 

Table 2. Coupling data for jdt core 3.1_3.2 

Classes Min Max Mean SD 
Fault-prone 
FIN 0 194 22.72 33.84 
FOUT 0 195 28.94 32.69 
Faults 1 38 7.06 7.19 
Fault-free 
FIN 0 121 5.97 12.71 
FOUT 0 33 5.49 7.00 

 

Again, we note a strong difference in the FIN and FOUT 
relationship depending on whether a class is fault-free or fault-
prone. The mean FOUT for fault-prone classes is again higher 
than that of its corresponding FIN value. When we consider the 
class size between these releases (given by NOM), we see a 
similar pattern as that in the previous section. For fault-prone 
classes, the mean NOM was 46.66 and median 23; for fault-free 
classes, the mean NOM was 9.2 and median NOM 7. Size is 
clearly a major factor in the FIN and FOUT values of Table 2; in 
particular, faults seem to thrive in highly-coupled classes, a 
feature of large classes.  It is interesting to see (from Table 2) a 
similarity in the FIN and FOUT mean values for fault-free classes 
(5.97 and 5.49). As noted in the previous section, a balanced 
coupling profile (avoiding high FOUT values) appears to be a 
feature of fault-free classes and of fault-free classes here.  

 

2.4 Jdt.ui_3.0_3.1 
Table 3 shows summary data for the 1489 fault-prone and 555 
fault-free classes between releases 3.0 and 3.1 of jdt.ui. For the 
former, the maximum value of FIN was 196 belonging to a class 
with 51 methods and 10 faults (FOUT for this class was 42). 

 

 

Table 3. Coupling data for jdt.ui 3.0_3.1 

Classes Min Max Mean SD 
Fault-prone 
FIN 0 620 8.16 32.29 
FOUT 0 51 12.57 10.61 
Faults 1 23 3.60 3.37 
Fault-free
FIN 0 287 3.26 13.55 
FOUT 0 22 5.19 4.45 

 

The maximum value of FOUT was 51 for a class with 23 methods 
and 4 faults between releases. The maximum number of faults 
(23) was for class MoveInnerToTopRefactoring; this class had a 
FIN of 6 and a FOUT of 39.  For FIN and FOUT, for the fault-
free set of classes (mean FIN 3.26 and mean FOUT 5.19) we 
notice a distinct difference in the magnitude of these values 
compared with those of fault-prone classes.  

For the fault-free set of classes, correlations between FIN and 
FOUT were -0.05 for Pearson’s (not significant), 0.10 and 0.14 
for Kendall’s and Spearman’s, respectively (both significant at the 
1% level). The correlations for FIN versus FOUT for fault-prone 
classes on the other hand were 0.06 (significant at the 5% level), 
0.09 and 0.11 (both significant at the 1% level). For this release, 
there is thus a parallel between FIN and FOUT for fault-free and 
fault-prone classes, in contrast to previous releases. When we 
again consider class size (given by NOM) we found that for fault-
prone classes, the mean NOM was 31.69 and median 21; for fault-
free classes, the mean NOM was just 8.53 and median   7. Again, 
size is a major factor in the FIN and FOUT values and the result 
extrapolated from Table 3. While we accept that faults arise 
because of high coupling, it is perhaps allowing class size to grow 
which is a key contributor to high coupling.    

 

2.5 Jdt.ui_3.1_3.2 
Table 4 shows the summary data for the 1187 fault-prone and 390 
fault-free classes between releases 3.1 and 3.2. The FIN value of 
698 was for the same class as the previous release, with 47 
methods and 6 faults between releases. 
 

Table 4. Coupling data for jdt.ui_31_32 

Classes Min Max Mean SD 
Fault-prone 
FIN 0 698 12.68 57.17 
FOUT 0 70 13.73 12.54 
Faults 1 18 3.30 2.69 
Fault-free
FIN 0 84 4.51 11.85 
FOUT 0 47 6.40 6.21 

 

The FOUT of 70 belonged to a class consisting of 31 methods 
with 7 faults over the releases. The class with 18 faults was called 
JavaEditor and had no methods. Its FIN was 100 and it’s FOUT 
43, well above the mean of 13.73. From a fault-free class 
perspective, the mean FIN for the 390 classes was 4.51 and its 
mean FOUT 6.40. Correlations between FIN and FOUT for those 
classes were 0.06 (not significant), 0.16 and 0.23, both significant 
at the 1% level (Pearson’s, Kendall’s and Spearman’s, 
respectively). This compares with 0.13, 0.15 and 0.20 for fault-
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prone classes - all significant at the 1% level. Between these two 
releases, the relationship between fault-free and fault-prone 
classes was comparable. Considering the class size (given by 
NOM), we could see this result from a different perspective. For 
fault-prone classes, the mean NOM was 23.96 and median 17; for 
fault-free classes, the mean NOM was just 11.82 and the median 
8. Again, size would appear to be a major factor in the FIN and 
FOUT values and from the result from Table 4.   

 

2.6 Jdt.uiworkbench_3.0_3.1 
Table 5 shows the summary data for the 695 fault-prone and 154 
fault-free classes between 3.0 and 3.1. For the set of fault-prone 
classes and, as per other releases, the mean FOUT of 16.24 
exceeds the corresponding value for FIN (9.14). The class with a 
FIN of 196 was a class with 51 methods and 10 faults over the 
course of the releases; its FOUT was 42. The maximum value of 
FOUT was for a class with 99 methods and 24 faults; its FIN was 
30. The class with the highest number of faults was a class called 
WorkbenchPage with 179 methods and 30 faults. 
 

Table 5. Coupling data for jdt.uiworkbench_30_31 

Classes Min Max Mean SD 
Fault-prone 
FIN 0 196 9.14 16.91 
FOUT 0 83 16.24 18.88 
Faults 1 30 4.79 5.91 
Fault-free 
FIN 0 23 3.51 7.09 
FOUT 0 76 5.34 4.30 

 

The mean FIN for fault-free classes was 3.51 and that for FOUT 
5.34. A difference between FIN and FOUT between fault-free and 
fault-prone classes is thus evident. The correlations for this set of 
classes were -0.10, -0.03 and -0.07 (Pearson’s, Kendall’s and 
Spearman’s), none of which were significant. These values 
contrast starkly with the correlation values for the set of fault-
prone classes between FIN and FOUT of 0.59, 0.27 and 0.36, all 
significant at the 1% level. Considering the class size (given by 
NOM), for the set of fault-prone classes, the mean NOM was 
27.14 and median 16; for fault-free classes, the mean NOM was 
just 9.56 and median NOM 6. From the data presented, size is a 
major factor in the determination of FIN and FOUT and, by 
implication, faults.  
 
 
2.7 Jdtui.workbench_3.1_3.2 
 
Table 6 shows data between releases 3.1 and 3.2 for the set of 419 
fault-prone and 124 fault-free classes. In keeping with the other 
releases, the mean FOUT for fault-prone classes (18.44) far 
exceeds that of FIN. The maximum FIN value was 204 and this 
belonged to same class as in the previous release. It exhibited 4 
faults over the period studied. The maximum value of FOUT was 
102 - the same class as the previous release with FIN value of 36; 
faults for this class fell to 19 over the period. The maximum 
number of faults was 24 for a class called WorkbenchWindow 
with 144 methods; its FIN was 44 and it’s FOUT 89. For the set 
of fault-free classes, the mean FIN for fault-free classes was 3.68 
and for FOUT 5.88. The correlations between FIN and FOUT 

were -0.07, 0.09 and 0.12, none of which were significant. 
Correlations between FIN and FOUT for fault-prone classes, on 
the other hand, were 0.56. 0.34 and 0.45 (for Pearson’s, Kendall’s 
and Spearman’s, respectively), all significant at the 1% level. As 
per most of the releases, there is a clear distinction between the 
relationship between FIN and FOUT, depending on whether a 
class is fault-free or fault-prone. 
 

Table 6. Coupling data for jdt.uiworkbench 3.1_3.2 
 

Classes Min Max Mean SD 
Fault-prone 
FIN 0 204 9.04 21.54 
FOUT 0 102 18.44 23.23 
Faults 1 24 4.47 4.97 
Fault-free
FIN 0 67 3.68 7.99 
FOUT 0 28 5.88 6.31 

 

When we once again consider the class size (given by NOM), we 
found the mean NOM to be 30.00 and median 18; for fault-free 
classes, the mean NOM was 12.07 and the median 7. Size is once 
again a major factor in the FIN and FOUT values and from the 
result from Table 6.   

 

3. DISCUSSION 
The study has highlighted the differences between FIN and FOUT 
for fault-free vis-a-vis fault-prone classes. Clearly, developers 
should try to avoid FOUT becoming excessively high. However, 
one guaranteed way of minimizing FOUT is to ensure that a class 
does not grow in size such that it needs to be coupled to so many 
other classes. We would condone the use of re-engineering and 
refactoring techniques to decompose classes should it be felt that 
a class is growing out of hand. Of course, we have to be 
pragmatic; developers only have limited time to devote to such 
activities. The alternative of faulty classes, however, maybe a 
worse one. One justification for using FIN and FOUT in this 
paper is that we could not have emphasized the differences 
between these two types had we chosen to use CBO metric of 
Chidamber and Kemerer [6], for example. Figure 1 captures the 
mean FIN values for fault-prone and fault-free classes across the 
six releases studied abstracted from Tables 1-6. The dashed line is 
the set of FIN values for fault-prone classes in the six releases 
studied; the un-dashed line is that for  fault-free classes.  

 

 

Figure 1. FIN values for fault-prone and fault-free classes 
(six releases) 

236



 

There is a clear difference between the set of FIN for the two sets 
of classes and this applies to all releases. FOUT values for fault-
prone classes clearly exceed those of fault-free classes. Figure 2 
shows the FOUT mean values for fault-prone and fault-free 
classes abstracted from Tables 1-6.  

 

 

Figure 2. FOUT values for fault-prone and fault-free classes 
(six releases) 

 

Again, the dashed line represents the set of fault-prone classes and 
the un-dashed line the set of fault-free classes. Once again the 
difference between the two sets of classes is clear. It is interesting 
to note from Figures 1 and 2 that the gap between mean values is 
most pronounced at earlier releases of the system. While this may 
be purely chance, it might suggest that re-engineering or 
refactoring activity [10] may have been put in place to narrow the 
gap between the two. The extract class and extract method 
refactorings are just two of the standard set of 72 refactorings 
proposed by Fowler [10] which may have been applicable here.  

On the other hand, the mean values (after falling dramatically in 
release 3) then start to rise in both Figures 1 and 2. While the 
results from this data analysis support the view that low FIN and 
FOUT values contribute to fault-free classes, we need to consider 
the view that it is the size of a class which may determine a) the 
level of coupling in a class and b) the fault-proneness of a class. 
To emphasize the difference, Figure 3 shows just the mean NOM 
values for fault-prone and fault-free classes as described in 
Sections 2.2–2.7. There is a clear trend for the number of methods 
in fault-prone classes to be larger than those that are fault free.  

 

 

Figure 3. NOM for fault-prone and fault-free classes 

 

3.1 Threats to validity  
A number of threats to the validity of the research also have to be 
considered. Firstly, we only consider one system in our analysis 
and this could be considered a threat to external validity (i.e., the 
ability to draw conclusions based on a single system). However, 
an equal criticism could be applied had we used other systems in 
terms of our ability to compare results. Second, we have studied 
only limited releases of that system representing a small time 
frame in the overall life of the system. Third, in this paper we 
considered a class to be fault-free if it had not exhibited any faults 
up until that point in time. That is not to say, however, that the 
class will remain of that status – in a subsequent releases it may 
become faulty. For the purposes of the study however, this 
represents a useful benchmark against which we can judge fault-
prone classes. Finally, we chose NOM as a mechanism for 
assessing size, but accept that there are other measures that might 
have been as appropriate as measures of class size. For example, 
lines of code (LOC); the problem with using LOC as a measure 
however is the wide variation with which it can be computed [17]. 
The NOM metric provides a standard measure of class size.           

 

3.2 Related work  
Faults or ‘bugs’ have been an effective measure of software 
performance since its inception [9]. The link between fault 
propensity and software complexity (in this case in the guise of 
coupling) is also well-understood. Study of fan-in and fan-out in 
this paper marks a departure from normal studies of the more 
generic ‘coupling’ form. In most coupling studies, the Coupling 
between Objects (CBO) metric of Chidamber and Kemerer [8] has 
been the standard coupling measure employed. However, while 
useful, the CBO metric does not distinguish between incoming 
and outgoing class coupling. This means that conclusions about 
the direction of coupling and the relationship with faults (in the 
case of the paper presented) cannot be made. Fan in and fan-out   
were initially presented by [12]. In this paper, we also consider 
class size as a factor in consideration of the results. This is based 
on the premises that as classes and methods grow in size, so too 
do coupling and therefore faults. The relationship between 
coupling and faults has been empirically shown to exist in OO 
software by Basili et al., and specifically in the C++ language by 
Briand et al., [4]; a framework for the measurement of coupling is 
provided in [3]. The work of El Emam on the influence of size as 
a confounding factor is also drawn upon herein; in the paper, it is 
proposed that size should be taken into account as a confounding 
variable when validating object-oriented metrics [1]. In this paper, 
we explored fan-in and fan-out but in the context of size also. The 
link between design patterns and fault-proneness was explored by 
Gatrell et al. [11]. Design pattern classes (i.e., those forming the 
pattern’s essential structure) were found to be more fault-prone 
than classes that were not part of the pattern. Finally, much of the 
research on fault-proneness has focused on fault prediction [13]; 
the study presented adds weight to the view that size needs to be 
considered as an essential factor in any study of faults.    

 

4. CONCLUSIONS/FUTURE WORK 
The incidence of faults in a system over time is a reflection of the 
quality of the system and whether its performance continues to 
match its initial and ongoing requirements. In this paper, data 
between six releases of Eclipse was analyzed and fault and 
coupling data collected from each. Results showed that the fan-in 
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and fan-out pattern/profiles for fault-free vis-a-vis fault-prone 
classes showed notable and significant differences. Low values of 
fan-in/fan-out seem to promote fault-free classes. Equally, a high 
fan-out value seemed to predominate in fault-prone classes. One 
explanation for this feature of the data might be that, conceivably, 
it is easier to make additions and changes to a class which is not 
dependent on a large number of classes than one that is. The risk 
of amending a class with many incoming dependencies is 
significantly higher because of those dependencies. The message 
it would appear to a developer is to try, whenever possible to 
minimise coupling both from an incoming and outgoing 
perspective as would befit good software engineering practice.  
However, high values of fan-out should be especially avoided 
since from the evidence presented they are the classes which tend 
to evolve into fault-prone classes. It would also appear when 
scrutinising the data more carefully that the main factor in the 
high fan-in and fan-out classes is the size of a class. Developers 
should therefore seek to minimise the size of a class (through re-
engineering or refactoring) thereby maintaining its cohesion as 
well as keeping coupling low. In other words, coupling and size 
co-evolve and both should be monitored.  

In terms of future work, these emerging results need to be 
investigated through analysis of more systems and more releases. 
In this way, a body of evidence can be constructed. The 
relationship between specific refactorings and faults is one of 
several lines of research that this study informs as a partial 
replication to recent work [15]. We encourage further replication 
studies of this type as collaborative efforts as a means of 
generating a body of knowledge in this area. To that end, all the 
data used for the study presented can be made available upon 
request of the lead of the Brunel team member listed. Future work 
will explore other class characteristics for relationships with 
faults. In particular, whether a Zipf (or 80:20) Law exists between 
faults and other class features [19] such as cohesion [7] as well as 
fan-in and fan-out.  
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