
Scalable Hybrid Stream and Hadoop Network Analysis
System

Vernon K. C. Bumgardner
Department of Computer Science

University of Kentucky
Lexington, Kentucky, USA

cody@uky.edu

Victor W. Marek
Department of Computer Science

University of Kentucky
Lexington, Kentucky, USA
marek@cs.uky.edu

ABSTRACT
Collections of network traces have long been used in net-
work traffic analysis. Flow analysis can be used in network
anomaly discovery, intrusion detection and more generally,
discovery of actionable events on the network. The data col-
lected during processing may be also used for prediction and
avoidance of traffic congestion, network capacity planning,
and the development of software-defined networking rules.
As network flow rates increase and new network technolo-
gies are introduced on existing hardware platforms, many or-
ganizations find themselves either technically or financially
unable to generate, collect, and/or analyze network flow
data. The continued rapid growth of network trace data,
requires new methods of scalable data collection and anal-
ysis. We report on our deployment of a system designed
and implemented at the University of Kentucky that sup-
ports analysis of network traffic across the enterprise. Our
system addresses problems of scale in existing systems, by
using distributed computing methodologies, and is based on
a combination of stream and batch processing techniques.
In addition to collection, stream processing using Storm is
utilized to enrich the data stream with ephemeral environ-
ment data. Enriched stream-data is then used for event
detection and near real-time flow analysis by an in-line com-
plex event processor. Batch processing is performed by the
Hadoop MapReduce framework, from data stored in HBase
BigTable storage. In benchmarks on our 10 node cluster,
using actual network data, we were able to stream process
over 315k flows/sec. In batch analysis were we able to pro-
cess over 2.6M flows/sec with a storage compression ratio of
6.7:1.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management, Net-
work Monitoring; C.2.4 [Distributed Systems]: Distributed
applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2733-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2568088.2568103.

Keywords
NetFlow, SDN, Stream Processing, Hadoop, Complex Event
Processing

1. INTRODUCTION
The University of Kentucky, a large public university in
Lexington, KY has extensive IT operations, serving to over
30,000 students (both undergraduate and graduate students),
and over 16,000 faculty and staff. Both the instruction of
students, research of the faculty and significant administra-
tive functions of the university must be supported. Signifi-
cant network operations have to be supported, administered
and supervised to provide 24/7 smooth operation of the uni-
versity. An additional burden on the IT is created by the
Medical Campus, a number of research hospitals and clinics
that provide one of the main facilities for the Eastern part
of the Commonwealth of Kentucky.

Since a significant number of students resides in the uni-
versity housing, the university must provide uninterrupted
service 24/7, with the only periods of decreasing demand
during parts of vacation period (although additional sessions
are still meeting), and inter-session breaks. On any weekday
one expects of up to 17,000 separate networks (most of them
small) within the large Campus community. The number of
wireless access points on Campus exceeds 5000.

With the rapid growth of student personal computing
equipment (laptops, tablets, and intelligent phones), net-
working operations are under constant demand (varying over
time with significant peaks and valleys). The equipment is
used often during the instruction, creating an additional de-
mand. Faculty support is also time-of-the-day dependent,
concentrating primarily over the working hours.

For that reason the IT operations have to maintain an
adequate and up-to-date picture of the demand and, in a
bigger detail, the information about the traffic patterns on
the campus network. The amount of traffic is significant; We
estimate it at 282GB/sec (of the order 1PB/hour) and the
storage capabilities and processing power required for off-
line processing do not allow to store the entire traffic even
for limited period of time. In particular only limited forms
of an audit of the traffic are possible. Moreover, the data
collected (flows) does not provide the information ex post to
react to the events occurring within the network.

Instead, we report on the distributed processing and anal-
ysis of the network traffic. Such analysis is done in real-time,
using the distributed computation within MapReduce/Hadoop
paradigm. The flows collected during a specific period of
time are analyzed and the results used for assignment of re-

219

sources to the networks that need them. Additionally, some
auditing capabilities that are, for all practical reasons, also
real-time become available to react to events that may in-
terfere with normal IT operations.

By collecting and analyzing the data the university is able
to abstract from specific short-time events and create a more
complete picture of the data processing on campus and the
associated network traffic. Having such data allows to pre-
dict the future trends and thus needs of the network needs
that are required by the university community.
The main part of this paper, Section 2.1, describes the pro-
cedure and technical means applied in our research. The
problem of collecting the data and the obstacles that ap-
pear in the process are described in Section 2.1.1. The main
software tool used in this phase of the generation collection,
and processing is Fprobe [8]. The collection of flows is de-
scribed in Section 2.1.2. Custom code has been written to
receive flows generated by Fprobe and submit flow bundles
to an AMQP-compatible queue. These operations are exe-
cuted on the host, with the flow generation, collection and
message serving on the same physical machine.

The stream processing included in our experiments is de-
scribed in Section 2.2. A variation on MapReduce suit-
able for stream processing, Storm [24] is used to process
flows. The workflow of the stream processing is described
as a spout/bolt process with the specific steps used in the
process described in some detail. Specifically, the AMPQ
Spout translates the AMPQ queue data into a format that
is used by Storm Bolts. This stream is then processed by
the Combiner Bolt, which merges multiple queues into a sin-
gle stream. The Resolver Bolt consumes the merged stream
and injects state information into the records. A Complex
Event Processing Bolt using ESPER [5], provides discovery
of security incidents and the traffic information. Additional
bolts allow for reporting and storing the data in HBase.

Time-related data, in particular time series is stored in
HBase and due to the nature of the flow information (ip-
addresses, ports and router information) is stored in com-
pressed form. Availability of MapReduce framework (Hadoop)
allows for parallel processing of information. We report the
experimental results found in the process and indicate how
experimental data found during the processing allows us to
get the useful and practically usable information about the
flow.

Section 3 describes our perspective on the results of the
paper and possibilities of further research.

2. TRAFFIC COLLECTION AND ANALY-
SIS

There will be a projected [19] 18-fold growth in mobile
network traffic from 2011-2016, and by 2017 there will be
a predicted [12] five network devices per person. Hardware
devices equipped with ASICs will be capable of generating
line-rate flow exports, even on very high throughput links.
At the time of this writing, no single appliance exist that can
collect hundreds of thousands of flows per second. Commer-
cial distributed collectors, claim to collect millions of flows
per second. These claims are based on the aggregate pro-
cessing of the distributed collectors, which does not elevate
the limitations of a single flow exporter to a single collection
device. Methods of collection and analysis are needed that
allow for both distributed processing and central visibility.

Table 1: Network Devices
Device Count
Core 6

Distribution 44
Access 1176

Wireless Controllers 47
Wireless Access Points (AP) 5442

Virtual Switchs 42

2.1 Flow Generation and Collection
Simply generating NetFlows from high traffic links, is in it-

self, a highly computational task [6]. With the introduction
of advance network technologies, such as Multi-protocol La-
bel Switching (MPLS) [17], often embedded hardware does
not have the ability to generate discrete flows and sampling
methods are used. In our environment, the network topol-
ogy is based on a hierarchical network design model [15]. In
this model, the Access layer operates on the OSI [29] Layer
2 (Data Link) and so NetFlow generation is not possible on
these devices. Both Core and Distribution layer devices typ-
ically have the ability to generate NetFlows, however in our
environment due to the presence and computational over-
head of MPLS, NetFlow generation on these routers is not
vendor-supported.

While we were not able to generate NetFlows from our
network hardware, we were able to generate flows in our
virtual environments. NetFlows for all network traffic on
our VMware vSphere [27] virtual machine farm, including
intra-node communication, is exported by the vSphere vir-
tual distributed switch.

2.1.1 NetFlow Generation from Monitor Ports
NetFlow generation was not possible on our network hard-

ware, so we distributed software-based probes at the Core
layer. The probes ingest aggregates of distribution links
from the Core routers, effectively monitoring all traffic pass-
ing from distribution to distribution. This probe point also
allows for the observation of all traffic between cores and
on the network Edge. Due to link aggregation the overall
potential monitor capacity exceeds the monitoring link, so
dropped packets will occur if this limit is exceeded. Addi-
tional probes can be added to prevent packet loss due to link
aggregation.

The probe boxes run an instance of Fprobe [8] for each
monitored network interface. In Fprobe we are able to spec-
ify the Link layer header size, so MPLS header information
is ignored and a NetFlow is generated from the correct IP
diagram. The monitored data is used to generate NetFlows
which are directed toward a collector.

2.1.2 NetFlow Collection
NetFlow collection is largely dependent on the host net-

working stack and how quickly flows can be removed from
the UDP buffer. In Linux, the UDP maximum receive buffer
size is set as a kernel option. The default buffer size is far
too small for high rate flow collection, so on our collectors
we increased the receive buffer to 16MB. There are many
NetFlow collectors and libraries available in the common
domain, unfortunately most collectors have been developed
to record flows to either a relational database or a flat file.
The available libraries proved to be complete and accurate,

220

but were either too slow, or the program language made
in-application augmentation difficult. To solve those prob-
lems we wrote our own NetFlow version 5 and 9 collectors.
These collectors run on the probe nodes and stream a perti-
nent subset of NetFlow information to a Advanced Message
Queuing Protocol (AMPQ) [26] queues. Every Fprobe in-
stance has a related collector and every collector has a set
of AMPQ queues. There is an AMPQ queue for the data
stream and a queue for log information. NetFlows are se-
quenced by the flow generator, so if a missed flow is detected,
a warning message is placed in the log queue specific to that
stream. The AMPQ server is hosted on the same node as the
collector. We run the flow generator, collector, and AMPQ
server all on the same host, however all of these functions can
be distributed. This model keeps the data collection fully
distributed and allows for horizontal and vertical scaling of
probes based on load.

2.2 Complex Event (Stream) Processing
In Section 2.1.1 we described a distributed method of col-

lecting NetFlows, but there is an even larger computational
problem in analyzing that distributed aggregation of data.
In our campus environment, we average from 5k to 25k flows
per second. At that rate we process and record over a bil-
lion flows per day. Traditionally, single threaded applica-
tions analyzed collections of flow logs. Using traditional
methods flow analysis could not possibly keep up with flow
generation. Recently, researchers [14, 22] have started us-
ing Hadoop [10] to process these massive logs, however this
method is still batch in nature. In addition to simply pro-
cessing flow logs, there are additional benefits to processing
streams of flows as they are generated. The obvious benefit
of stream processing is the ability to react in near real-time
to observed network events. Perhaps not so obvious, is the
benefit of injecting state (machine name, network, subnet,
etc) information in the flow logs, even if report generation
will ultimately be a batch process.

Analysis of NetFlow data can be involved, among other
things, for security applications [18, 31, 4, 20], including
anomaly and intrusion detection. In addition, performance
[25, 13] and planning information can be obtained from this
analysis. With the introduction of Software Defined Net-
working (SDN) [16], we are now able control the network
in near real-time. As we analyze streams of flows we can
now preempt and react to actionable events as they occur.
If a security anomaly is detected, a copy of the anomalous
flow can be directed to a payload analyzer for deep packet
inspection. Similarly, congestion can be predicted and de-
tected through flow stream analysis. SDN controllers can be
reconfigured to avoid and correct performance problems.

To process our aggregate of flows generated from our dis-
tributed probes, we use Storm, an complex event processor
and distributed computation framework. Storm applications
create topologies of interfaces to ingest and transform tu-
ple streams. Similar to MapReduce [3], Storm distributes
and processes tuples of information on multiple nodes and
processes. However, unlike MapReduce, Storm will pro-
cess tuples until the job is manually terminated. The pri-
mary topology components of Storm are Spouts and Bolts.
Spouts, as the name suggest, are used to ingest data streams
and emit tuples consumable by the application topology. On
the other hand, Bolts read tuples from either Spouts or other
Bolts, and also typically emit a tuple stream. Normally, tu-

Table 2: AMPQ Spout Tuple
Element Name Description

timestamp Time of flow creation
srcIp Source IP address

srcPort Source Port
dstIp Destination IP

dstPort Destination Port
byteCount Sum of bytes in flow

proto IP protocol
first t Router uptime at flow start
last t Router update at flow end

collector Probe Queue Name

ple transformations, operations, and external data drains
occur in Bolts.

2.2.1 AMPQ Spout
We have developed spouts that subscribe to AMPQ queues

on the probe nodes. The AMPQ service, which is pro-
vided by RabbitMQ [21], ensures an interoperable, flow-
controlled, message passing service with guaranteed deliv-
ery. The spout, unpackages bundles of NetFlows generated
by the probes and creates a discrete tuple for each flow.
Along with building the Storm tuple, the spout also injects
a element identifying the originating probe and related cov-
erage area. In effect, AMPQ Spout produces a stream of
database records; the attribute names are in the Column 1
of Table 2, AMPQ Spout Tuple, the meaning of these at-
tributes is provided by Column 2.

2.2.2 Combiner Bolt
The combiner bolts accept tuples emitted by the AMPQ

Spouts. The first three elements of the tuple defined in Ta-
ble 2 are combined in the new element srcIp-dstIp-TS and
the source elements are removed. The srcIp-dstIp-TS ele-
ment will be used later as a tuple key. The modified tuple
stream with the new flow key is then emitted by the com-
biner bolt. The purpose of this bolt is to take the output of
the probe-specific spouts, combine them in a common out-
put, and assign a key value to the emitted tuple. Output
from this bolt is typically consumed by the Resolver Bolt.

2.2.3 Resolver Bolt
The resolve bolt is one of the most important components

in the flow processing system. This bolt reads tuples from
the Combiner Bolt and injects known state (internal net-
works) information into the tuple. At the time of this writ-
ing flow state information includes: internal or external net-
work, host subnet router, router interface, and host subnet
VLAN for both the source and destination addresses in the
flow. These elements are concatenated and injected in the
tuple stream under the element names srcInfo and dstInfo.

In order to trace source and destination network informa-
tion we must first have a list of subnets with related state
information. The next step is to calculate for each subnet on
you list to check if source or destination address exist in that
subnet. Subnet matching can be calculated in O

(
n
)

time.
One needs to realize, however, we have over 17k subnets
on our campus, so near real-time processing was challeng-
ing. As stated earlier, our flow rate averages from 5k to 25k
flows per second, so at that rate we must process a flow on

221

Figure 1: Live CEP Report

average every 0.04ms. Initial tests show that the resolver
bolts execution latency is 2ms per bolt process. In an at-
tempt to improve performance we increased the number of
processes to 20 (across 10 computers) and sorted the subnet
list on update, which placed most used subnets in the front
of the list. While these changes improved performance, we
still could not keep up with the flow rate. In our test we
found that the majority of the execution overhead involved
in the creation of subnet objects used to compare flow ad-
dresses with known subnets. The bolt was rewritten using
the Google Guava [9] object caching libraries. The Guava-
cached Resolver Bolt had an execution latency of 0.08ms,
so over 20 processes that gave us a theoretical limit of 250k
resolutions per second. The Resolver Bolt consumes all tu-
ples and elements emitted by the Combiner Bolt and injects
state elements. Output from this bolt is typically consumed
by all other downstream bolts.

2.2.4 Reducer and CEP Bolts
While distributed remote call procedures (RPC) are pos-

sible in Storm, often it is easier to simply reduce a subset of
tuples to a single process. Reducer bolts can either receive
all tuples emitted by a large number of bolts or they can re-
ceive a reduced tuple stream based on a field-grouping filter.
Most often these bolts are used in near real-time reporting
or Complex Event Processing (CEP) where a specific subset
of system wide elements is needed.

Complex Event Processing (CEP) [2] is the term used to
describe a collection of methods used in the analysis of un-
bounded streams of information. A CEP engine will continu-
ously process information streams in an attempt to identify,
and react to, meaningful events. In the CEP Bolt we have
implemented the ESPER [5] event stream processing (ESP)
and event correlation engine (CEP). With this bolt we can
detect any event that can be defined using the ESPER event
processing language (EPL). We have implemented several
CEP Bolts including bot detection, network scan detection,
top talkers, top connections, highest transfer rates, lowest
transfer rates, total flows per second, and total bandwidth
per second. CEP Bolts are specific to a single EPL query,
so they most often take input from a Reducer Bolt and emit
a value specified by the query, on a user specified interval.

2.2.5 Report Bolt
Due to the distributed nature of the Storm framework

there is no method to ”query” the application topology for
information. Luckily, we can get information out of the sys-
tem the same way we put it in, by making use of AMPQ
queues. RabbitMQ, our AMQP server, provides a Simple
Text-Orientated Messaging Protocol (STOMP) [28] plugin,

Table 3: Stream Process Rates
Source → Destination Processed Flows/sec

AMPQ → Spout 318672
AMPQ → ResolverBolt 315208
AMPQ → DrainBolt 233864

Spout CPE Reduce Combine Resolve Drain
0

0.05

0.1

0.15

0.2

E
x
e
c
u
te

 L
a
te

n
c
y
 (

m
s
)

Figure 2: Topology Component Latency

which is directly consumable by web browsers using Web-
Sockets [7]. The near real-time bi-directional capabilities of
WebSockets, allows us to observe CEP events as they occur
in our application topology. An example of this type of re-
porting is found in the CEP ”Top Talkers” bolt, shown in
Figure 1.

2.2.6 Drain Bolt
Once all state elements have been injected into the tu-

ple stream and all CEP events have been calculated for a
given tuple, we are ready to record the tuple. We have im-
plemented an HBase [11] client into the Drain Bolt, which
allows us to keep a running log of all flows processed by the
system. All flows are recorded in a single HBase table for
post-processing. In Section 2.3.1 we describe the benefits of
using Hbase tables for this process. The Drain Bolt records
all output emitted from the Resolver Bolt and does not emit
a tuple stream.

2.2.7 Stream Load Testing
Due to the queue-based architecture of our flow collection

system we have a good way to load-test the overall system
using real data. If we disable or kill the Storm application
topology there will be nothing to clear the AMPQ queues on
the probe boxes and they will continue to grow. In our test
we disabled our topology for several hours allowing millions
of flows to be queued on the probe servers. We then enabled
our topology, processed the awaiting queues, and calculated
the transfer rates across the topology as shown in Table
3. Under load the topology actually performed 20% better
than we had predicted, based on calculations in Section 2.2.3
Resolver Bolt.

2.3 Hadoop Processing
Not all information about networks can be extracted from

streaming CEP. The application topologies we develop to
analyze flows of network data are continuous by nature,
however a large number of CEP detection rules are time-
dependent. Due to resource constraints, even in a distributed
system, the window of time available for in-memory process-
ing is often insufficient for event modeling.

We have developed a method of storing and analyzing
network flow data using Hadoop and HBase. Hadoop is an

222

ideal system for log processing. We take advantage of HBase
for flow storage and Hadoop MapReduce for data processing.

2.3.1 HBase
HBase is particularly suited for sparse, time-dependent,

structured, and highly compressible data. For data collec-
tion, a single database is used. HBase is capable of storing
multiple records with the same key, as long as the timestamp
is different, however our database it limited to a single row
per key. Our database is configured with no block level
caching, since random repeated reads are unlikely. Unlike
file-based batch processing methods, we can retrieve HBase
data based on a specific time range. This greatly improves
job startup time since all data does not have to be scanned to
process a specific range. To do this efficiently, we must take
steps to avoid monotonically increasing row keys [30] due to
the time series nature of our data. This is caused by using
a increasing value, like a timestamp, for the first part of the
key. When this occurs data piles up on certain nodes, which
prevents the efficient distribution and processing of data.
When storing time series information in an HBase key, one
should stick with the form [metric type][event timestamp] to
prevent performance problems related to data distribution.
As described in Section 2.2.2, our key (srcIp-dstIp-TS) is
constructed as a concatenation of address information and
timestamp, which balances well across nodes.

The data we are storing is highly structured and we know
that there is a relatively small amount of fixed information
(ip addresses, tcp/udp ports, and router information) that
we will be recording many times. This type of data com-
presses very well, so we have configured our database to use
Google’s Snappy [23] compression. Our sample HBase table
contains over a billion records which relates to a database
size of 118GB. If we dump our database to sequence files
on the HDFS file system, the resulting sequence file size is
789GB. Under a compressed HBase table a flow generates
125 bytes of data as opposed to 836 bytes for the sequence
file, which is a 6.7X reduction in size. The HDFS file system
and batch flow processors outside of Hadoop also provide
several compression options [1]. HBase has the advantage
of automatic table compression updates, which will period-
ically evaluate and compact the entire table.

2.3.2 MapReduce
The MapReduce framework, provided by Hadoop, is well

suited to process large datasets in parallel on distributed
clusters of commodity servers. We have developed several
MapReduce jobs as shown in Table 4, to analyze flows based
on count, size, and rate. Since our flow data has been en-
riched with environmental state data, we have a rolling his-
torical record of network utilization. Not only can we ana-
lyze traditional source and destination ip traffic, but we can
analyze information about network routers, interfaces, sub-
nets, and VLANs. With this additional information, analy-
sis can be extended from our campus network topology to its
building geography. Information such as, under provisioned
wireless areas, can be determined by relating the interface
flow rate with the service access point, at the time the flow
was generated. As shown in Table 5, our MapReduce jobs
were able to process between 1.5 - 2.6M flows/sec at a rate
of 1.2 - 2.1GB/sec, depending on job type. For highly paral-
lel tasks, such as flow processing, the aggregate throughput
is largely a sum of the through of the individual parts. It

Table 4: MapReduce Jobs
Job Type Description

1 Flow count per router subnet
3 Flow count between router subnets
4 Observed unknown subnet count
5 IP Src → Dst count
6 IP Src → Dst Bytes
7 Router subnet Src → Dst Bytes
8 Bytes per router subnet
9 Bytes per router
14 IP Src → Dst Bytes/sec
15 Router subnet Src → Dst Bytes/sec

6 4 5 14 7 15 9 2 1 8
1

1.5

2

2.5

3

Job Type

Million Flows/Sec

Gb Flows/Sec

Figure 3: Performance information for MapReduce
Jobs

is worth note that we achieved a per node throughout of
211MB/sec compared to 72MB/sec in a similar [14] Hadoop
based flow processing system.

3. CONCLUSIONS
In this paper we reported the results of our work on pro-

cessing the flow information at a medium-size educational
institution. We showed how the paradigm of Storm can be
used to process the flow data through the sequence of spouts
and bolts. One benefit of this approach is that the data can
be processed further with MapReduce on HBase. Our re-
sults have a practical aspect; the data thus obtained can be
used in a variety of applications that trace both security of
the system and also provide the data that can be used for
predictions of the future IT needs of the university.

1FPS: Flows Per Second FPN: Flows Per Node,MBS: Total
Throughput/Sec in MB, MBS: Node Throughput/Sec in MB

Table 5: Hadoop Process Rates
Job FPS FPN MBS MBN
1 1708906 170891 1363 136
3 1726783 172678 1377 138
4 2533070 253307 2020 202
5 2045258 204526 1631 163
6 2641174 264117 2106 211
7 1915686 191569 1528 153
8 1596946 159695 1273 127
9 1759167 175917 1403 140
14 1972324 197232 1573 157
15 1822925 182293 1454 145

1

223

We are in the process of developing CEP Bolts that in-
terface with SDN controllers for security and performance
functions. In the future, we plan on adding server perfor-
mance metric information to our stream, when values are
known. We will further develop analytical methods to make
informed decision around the choice of movements of work-
loads or movements of data, based on network, system, and
job profile data.

4. ACKNOWLEDGMENTS
The system described in this document, was initially de-

veloped to analyze network traffic in support of NSF Grant
OCI-1246332, U. of Kentucky, ”CC-NIE Integration: Ad-
vancing Science through Next Generation SDN Networks”,
PI: V. Kellen, co-PI J. Griffioen.

5. REFERENCES
[1] Y. Chen, A. Ganapathi, and R. H. Katz. To compress

or not to compress-compute vs. io tradeoffs for
mapreduce energy efficiency. In Workshop on Green
networking, pages 23–28. ACM, 2010.

[2] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Computing Surveys (CSUR),
44(3):15, 2012.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Comm. of the ACM,
51(1):107–113, 2008.

[4] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan,
V. Kumar, J. Srivastava, and P. Dokas.
Minds-minnesota intrusion detection system. Next
Generation Data Mining, pages 199–218, 2004.

[5] Esper. http://esper.codehaus.org/, 9 2013.

[6] C. Estan, K. Keys, D. Moore, and G. Varghese.
Building a better netflow. SIGCOMM Comput.
Commun. Rev., 34(4):245–256, Aug. 2004.

[7] I. Fette and A. Melnikov. The websocket protocol.
IETF, 2011.

[8] Fprobe. http://sourceforge.net/projects/fprobe,
9 2013.

[9] Guava,
http://code.google.com/p/guava-libraries/, 9
2013.

[10] Hadoop. http://hadoop.apache.org/, 8 2013.

[11] Hbase. http://hbase.apache.org, 9 2013.

[12] C. V. N. Index. Forecast and methodology, 2012–2017.
White Paper, 2013.

[13] M. A. Kolosovskiy and E. N. Kryuchkova. Network
congestion control using netflow. arXiv preprint
arXiv:0911.4202, 2009.

[14] Y. Lee and Y. Lee. Toward scalable internet traffic
measurement and analysis with hadoop. ACM Comp.
Comm.Rev., 43(1):5–13, 2012.

[15] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the
internet’s router-level topology. SIGCOMM Comput.
Commun. Rev., 34(4):3–14, Aug. 2004.

[16] N. McKeown. Software-defined networking.
INFOCOM keynote talk, Apr, 2009.

[17] MPLS. http://www.cisco.com/en/US/products/
ps6557/products_ios_technology_home.html, 9
2013.

[18] J.-P. Navarro, B. Nickless, and L. Winkler. Combining
cisco netflow exports with relational database
technology for usage statistics, intrusion detection, and
network forensics. In LISA 2000, pages 285–290, 2000.

[19] Cisco. Global mobile data traffic forecast update,
2012–2017. http://www.cisco.com/en/US/
solutions/.../white_paper_c11-520862.html, 2013.

[20] T.-L. Pao and P.-W. Wang. Netflow based intrusion
detection system. In Networking, Sensing and Control,
2004 IEEE International Conference on, volume 2,
pages 731–736. IEEE, 2004.

[21] RabbitMQ. http://www.rabbitmq.com, 9 2013.

[22] RIPE. https://labs.ripe.net/Members/wnagele/
large-scalepcap-data-analysis-using-apache-hadoop,
10 2011.

[23] Snappy http://code.google.com/p/snappy/, 9 2013.

[24] Storm. http://storm-project.net/, 9 2013.

[25] T. Telkamp. Traffic characteristics and network
planning. In Proc. Internet Statistics and Metrics
Analysis Workshop, 2002.

[26] S. Vinoski. Advanced message queuing protocol.
Internet Computing, IEEE, 10(6):87–89, 2006.

[27] Vmware vsphere.
https://www.vmware.com/products/vsphere/, 9
2013.

[28] V. Wang, F. Salim, and P. Moskovits. The Definitive
Guide to HTML5 WebSocket. Apress, 2012.

[29] D. Wetteroth. OSI Reference Model for
Telecommunications. McGraw-Hill Professional, 2001.

[30] T. White. Hadoop: the definitive guide. O’Reilly, 2012.

[31] X. Yin, W. Yurcik, M. Treaster, Y. Li, and
K. Lakkaraju. Visflowconnect: netflow visualizations
of link relationships for security situational awareness.
In ACM workshop on Visualization and data mining
for computer security, pages 26–34. ACM, 2004.

224

