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ABSTRACT

This paper builds on SASSY, a system for automatically
generating SOA software architectures that optimize a given
utility function of multiple QoS metrics. In SASSY, SOA
software systems are automatically re-architected when ser-
vices fail or degrade. Optimizing both architecture and ser-
vice provider selection presents a pair of nested NP-hard
problems. Here we adapt hill-climbing, beam search, simu-
lated annealing, and evolutionary programming to both ar-
chitecture optimization and service provider selection. Each
of these techniques has several parameters that influence
their efficiency. We introduce in this paper a meta-controller
that automates the run-time selection of heuristic search
techniques and their parameters. We examine two differ-
ent meta-controller implementations that each use online
learning. The first implementation identifies the best heuris-
tic search combination from various prepared combinations.
The second implementation analyzes the current self-archi-
tecting problem (e.g. changes in performance metrics, ser-
vice degradations/failures) and looks for similar, previously
encountered re-architecting problems to find an effective heu-
ristic search combination for the current problem. A large
set of experiments demonstrates the effectiveness of the first
meta-controller implementation and indicates opportunities
for improving the second meta-controller implementation.

Categories and Subject Descriptors

G.1.6 [Optimization]: Global optimization, Simulated an-
nealing; I.2.8 [Artificial Intelligence]: Problem solving,
Control methods, and Search; D.2.11 [Software Architec-
tures]: Patterns; D.4.8 [Performance]: Stochastic analy-
sis; C.4 [Modeling Techniques]: Experimentation
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1. INTRODUCTION
Service Oriented Architectures (SOA) present many inter-

esting potential benefits and challenges [10]. SOA software
systems can be composed on the fly through service discov-
ery. We assume an environment in which there are many
functionally equivalent service providers (SPs) that may ex-
hibit different quality of service (QoS) attributes at different
cost. In recent work, the authors of this paper and colleagues
at George Mason University developed a framework called
Self-Architecting Software Systems (SASSY) [26, 27] that al-
lows domain experts to specify the requirements of an SOA
software system using a visual activity-based language [11].
SASSY automatically finds a software architecture and a
selection of SPs that maximizes a given utility function of
various QoS attributes subject to cost constraints. SASSY
monitors the operation of the system at run-time and per-
forms adaptation by re-architecting and selecting new SPs
as needed. The general adaptation performed by SASSY
follows the MAPE-K autonomic model [17] as well as the
Kramer and McGee three-layer adaptation model [20].

Many autonomic controllers are based on search methods
supported by performance models [15]. The models enable
prediction of the performance of any potential system con-
figuration [1, 12, 25, 26]. Then, a search algorithm is em-
ployed to explore the system configuration space in a quest
for the most suitable system configuration. Typically, the
most suitable configuration is the one that maximizes utility.
The search algorithms employed range from simple exhaus-
tive search to complex heuristics. Heuristic search supported
by modeling has proven robust even in certain cases where
the assumptions of the performance model do not hold [1].

Parameter tuning was an early application of adaptive
systems employing heuristic search [25], which has proven to
be a popular choice for resource allocation [12, 16, 29, 31].
Recent work with these methods has focused on selecting
optimal software architectures [26] and service selections [4,
7, 23, 24] at run-time.

An excellent roadmap that summarized the state-of-the-
art and identified critical challenges for the systematic soft-
ware engineering of self-adaptive systems was presented by
Cheng et. al. [5]. The approach to self-adapting software
systems presented here is based on software architectures,
i.e., it is a white box approach. A different approach, which
falls in the category of black box approaches, is based on
adaptation by selectively enabling and disabling software
features. An example of this approach is the FeatUre-orientedICPE’14, March 22–26, 2014, Dublin, Ireland.
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Self-adaptatION (FUSION) framework, which learns the im-
pact of adaptation decisions on the system’s goals [8, 9].
This paper builds on SASSY, which automatically re-

architects an SOA software system when services fail or
degrade. Optimizing both architecture and SP selection
presents a pair of nested NP-hard problems. Here we sig-
nificantly extend SASSY in two ways: (1) we adapt hill-
climbing, beam search, simulated annealing, and evolution-
ary programming to both architecture optimization and SP
selection; and (2) we introduce a meta-controller to auto-
mate the run-time selection of heuristic search techniques
and their parameters.
We examine two different meta-controller implementations

that each use online learning. The first implementation iden-
tifies the best heuristic search combination from various pre-
pared combinations. The second implementation analyzes
the current self-architecting problem (e.g. changes in perfor-
mance metrics, service degradations/failures) and looks for
similar, previously encountered re-architecting problems to
find an effective heuristic search combination for the current
problem. A large set of experiments demonstrates the effec-
tiveness of the first meta-controller implementation and indi-
cates opportunities for improving the second meta-controller
implementation.
The rest of this paper is organized as follows. Section two

presents definitions used in the paper. Section three defines
the optimization problem to be solved by the self-adapting
self-architecting framework. The next section discusses the
framework and all its modules. Section five presents four
heuristic algorithms and the challenges of heuristic search.
Section six presents two different approaches to the meta-
controller. The next section presents and discusses the ex-
perimental results. Section eight considers the related work.
Finally, section nine presents concluding remarks.

2. DEFINITIONS
This section defines the terms used in this paper. These

definitions are not meant to define a new software architec-
tural description language [15] but to establish the concepts
required in the paper at a sufficient level of abstraction.
Definition 1 (basic software component): a piece of

software that has a well-defined interface that specifies the
functions performed by the component. A software com-
ponent can be composed with other components, can be
reused, and independently implements its functions.
Definition 2 (composite software component): an

atomic composition of components (basic or composite) that
has an interface equivalent to a basic software component.
The interface of a composite component is called a connec-
tor.
Definition 3 (link): a tuple (v, w) where v and w are

either basic or composite software components and v invokes
a function provided by w.
Definition 4 (software architecture, A): the tuple

(C,L,S) where C is a set of basic or composite software
components, L = {(v, w) | v, w ∈ C} is a set of links, and S
is a set of service sequence scenarios defined below.
Definition 5 (service sequence scenario, SSS): an

SSS of the software architecture, A, is the tuple (Θ, q, U(q))
where (1) Θ = (Cs,Ls) is such that Cs ⊆ C,Ls ⊆ L, and
∀(v, w) ∈ Ls, v, w ∈ Cs; (2) q is a QoS metric, and (3) U(q)
is an attribute utility function, discussed below, of metric q.

Figure 1 provides a pictorial example of a software archi-
tecture, A, where C = {C1, C2, C3, C4, C5}, L = {L1, L2,

L3, L4, L5}, and S = ((Cs,Ls), r, U(r)) where Cs = {C1, C2,

C3}, Ls = {L1, L3}, r is the response time metric, and U(r)
is a utility function of r.
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Figure 1: Depiction of an architecture.

Definition 6 (SOA software system): the result of
instantiating a software architecture A = (C,L,S) in which
the basic software components, including those that are part
of composite software components, in C are instantiated by
SPs available in an SOA environment. The selection of SPs
to instantiate the basic software components of an architec-
ture is denoted by Z.

Definition 7 (attribute utility function, U(q)): a
function that maps a value of q to a number u ∈ [0, 1] in a
way that larger values of u correspond to better values of q.
A performance model for q can be used to predict q from a
given A and Z.

Definition 8 (global utility function,
Ug(U1(q1), · · · , Um(qm))): a function of the attribute utility
functions of all the SSSes. The value of the function Ug must
∈ [0, 1].

Definition 9 (SSS performance model, E(q)): a per-
formance model for the SSS (Θ, q, U(q)) that is a function
(or algorithm) used to compute the value of the performance
metric q for the SSS.

3. THE OPTIMIZATION PROBLEM
In SASSY, a domain expert describes data flows between

activities for a new SOA application in a visual language [26].
The domain expert can specify multiple QoS requirements
which are then expressed as SSSes and attribute utility func-
tions defined in the previous section. SSSes and attribute
utility functions can also be used to specify different secu-
rity options and the utility payoff for achieving specific levels
of security on each component in the SSS. The domain ex-
pert then specifies a global utility function that combines
the attribute utility functions.

When these requirements are finalized, SASSY generates
a base software architecture that consists of a coordinator
and a basic software component for each activity described
in the data flow. Each basic software component is linked
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to the coordinator, and SSS performance models are auto-
matically generated using an expression tree and the set of
rules described in [26].
More sophisticated architectures can be derived from the

base architecture by substituting composite components for
basic components. Specific architectural patterns can be
used as templates for composite components. SASSY em-
ploys load-balancing and fault-tolerant architectural patterns
to improve the QoS in the specified SSSes [28]. SASSY seeks
to find an architecture that can provide the greatest Ug.
To make the architecture executable, the coordinator must

bind a set of SPs to the basic components in the architec-
ture. Different SPs may offer the same service with varying
levels of performance and cost. For a given architecture,
SASSY searches for a combination of SPs that maximizes
Ug.
The coordinator is able to substitute patterns and com-

ponents to the architecture at run-time [14]. This enables
the system to re-architect at run-time when new services
become available or a service currently bound to the archi-
tecture fails.
The self-architecting optimization problem is to find the

software architecture A∗ and the SP selection Z∗ such that
Ug is optimized. More formally, the optimization problem
can be expressed as:

Find an architecture A∗ and a corresponding SP allocation
Z∗ such that

(A∗
, Z

∗) = argmax(A,Z) Ug(A, Z). (1)

Ug(A, Z) is the global utility function of architecture A
and service selection Z.
This optimization problem may be modified by adding a

cost constraint. In the cost-constrained case, one assumes
that there is a cost associated with each SP for providing a
certain QoS level [26].
The number of different architectures is O(pn) where p

is the average number of architectural patterns that can be
used to replace any component and n is the number of com-
ponents in the architecture. The number of possible SP
selections for an architecture with n components is O(sn)
where s is the average number of SPs that can be used to
implement each component. Thus, the size of the solution
space for this optimization problem is O((p× s)n). The so-
lution space is huge even for small values of p, s, and n; in
fact, the problem is NP-hard. For example, for p = 5, s = 2,
and n = 10, the size of the solution space is on the order of
1010, i.e., 10 billion possible solutions [26].
Without an accompanying service selection, Z, perfor-

mance models cannot predict the performance of an archi-
tecture, A. Thus, each evaluation of an architecture A re-
quires a new NP-hard search of the service selection space
for the service allocation Z that maximizes the Ug of A.
A search for a near-optimal architecture A requires a se-

quence of transformations from one architecture to another.
We restrict these transformations to those that replace the
initial basic components with functionally equivalent archi-
tectural patterns, i.e., composite components. More pre-
cisely, the only allowed transformations from an architec-
ture Ai = (Ci,Li,Si) into a different architecture Aj =
(Cj ,Lj ,Sj) are those that replace a basic component c ∈ Ci
with a composite component c′ or replace a composite com-
ponent c′ ∈ Ci with a basic component c. The replacement of

components is driven by the goal to optimize Ug of the archi-
tecture. We select composite components from a library of
QoS architectural patterns [28]. We also consider changes to
the security level to be architecture transformations rather
than changes to the selection of SPs.

The presence of nested NP-hard optimization problems
in the software architecture optimization problem suggests
the need for effective heuristic search. The optimal selection
of SPs for a given architecture is similar to the problem of
optimal service allocation for business processes in SOAs
described in [7].

Most research on NP-hard optimization problems has fo-
cused on local search algorithms and evolutionary algorithms
[30]. It should be noted that local search algorithms and evo-
lutionary algorithms are not guaranteed to find the global
optimum; however in most cases they find near-optimal so-
lutions. Sacrificing an optimal solution for a near-optimal
solution is usually an acceptable tradeoff to avoid a costly
exhaustive search of the exponentially-sized solution spaces
found in NP-hard problems.

For autonomic computing systems, the time and resources
available for heuristic search may be substantially limited.
Often, an optimization search will be spurred by changes in
the autonomic controller’s environment, and the controller
will need to respond to these changes within a matter of
seconds. Therefore, good heuristic search performance is
essential for the autonomic controller.

Two particular characteristics are of concern in heuristic
search performance: 1) the ability to avoid entrapment in
local optima and 2) the convergence rate. The convergence
rate measures improvement in the best predicted Ug with
respect to either the number of evaluations or processing
time consumed by the search.

For the autonomic controller presented here, the utility
landscapes of the configuration spaces may vary widely due
to differences in utility functions, application designs, and
environments. The behaviors of heuristic search algorithms
vary considerably and often interact with the ruggedness of
the utility landscape. All search heuristics seek to balance
exploration of previously unvisited portions of the search
space with exploitation of promising areas of the search
space. On smoother utility landscapes, exploitative heuris-
tic search algorithms are likely to experience higher con-
vergence rates than exploration-oriented algorithms. On
rougher utility landscapes, exploration-oriented algorithms
are more likely to avoid entrapment in local optima than
exploitative algorithms.

4. ARCHITECTURAL SELF-ADAPTATION

FRAMEWORK
This section describes our framework for self-adaptation

and architecture/component selection optimization. Fig-
ure 2 shows the modules and data flows in the proposed
monitoring and optimization framework. An architecture
optimization search is started when either:

• the performance monitor (box 1) detects that a decline
in Ug has crossed some threshold or

• the service registry (box 7) notifies the meta-controller
that a new SP has become available.

The performance monitor sends a message to the meta-
controller (box 2). The meta-controller selects an appropri-
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Figure 2: Data flows in the meta-controller monitoring and optimization framework.

ate heuristic search procedure, HArch for the architecture
search module (box 3) and a potentially different heuristic
search procedure, HSrvSlct, for the service selection search
module (box 4).
The architecture search module (box 3) commences the

execution of the heuristic search procedure, HArch. When-
ever HArch requests an evaluation (i.e., prediction of Ug) for
a specified architecture, Ai, the architecture search module
(box 3) passes Ai to the service selection search module (box
4).
At this point, the service selection search module (box 4)

initiates a new search that takes Ai as input and executes
the heuristic search procedure HSrvSlct. Whenever HSrvSlct

requests an evaluation of service selection, Zj , the service
selection search module (box 4) passes a copy of Ai and Zj

to each of the SSS performance modeler (box 5) and the
evaluation function (box 6).
The SSS performance modeler (box 5) predicts the QoS

metrics for each SSS and passes the results to the evalua-
tion function (box 6). The evaluation function applies the
attribute utility functions of each SSS to the QoS metrics.
The resulting SSS utility values are fed into the Ug function.
The evaluation function (box 6) returns Ug(Ai, Zj) to the

service selection search module (box 4), and HSrvSlct uses
this as the fitness score for Zj and continues the search. The
heuristicHSrvSlct persists searching until some exit criterion
is met (e.g. threshold utility is achieved or evaluation budget
consumed). When HSrvSlct completes, the service selection
search module (box 4) returns Ubest

g (Ai, Zbest) and Zbest to
the architecture search module (box 3).
With the completion of a service selection search instance,
HArch uses Ubest

g (Ai, Zbest) as the fitness score for Ai and
continues the search. The heuristic HArch persists search-
ing until some exit criterion is met (e.g. threshold utility
is achieved or evaluation budget consumed). When HArch

completes, the architecture search module (box 3) sends
Abest and Zbest to the change planner/manager (not shown
in Fig. 2). The change planner/manager then executes a
plan for online evolution or adapation of the running sys-
tem.
This framework assumes the existence of a service registry

(box 7) that includes QoS levels of the service instances
listed in the registry [6]. This information is required by
three modules: the meta-controller (box 2) that uses this
information when selecting HArch and HSrvSlct, the service
selection search module (box 4) that needs to know which

SPs are available for the search, and the SSS performance
modeler (box 5) that uses the advertised performance of the
SPs.

The performance monitor (box 1) continuously collects
QoS metrics and tracks Ug in real-time. As mentioned at
the start of this section, the performance monitor (box 1)
can initiate a new architecture search if Ug (most likely rep-
resented as a moving average) declines below a threshold
utility level that was set upon completion of the last archi-
tecture search. The performance monitor (box 1) contin-
uously sends performance data updates to the SSS perfor-
mance modeler (box 5), which stores near term performance
data so that it is prepared to support optimization searches.

5. HEURISTICALGORITHMSEMPLOYED
This section describes one of the main contributions of

this paper, i.e., the adaptation of well-known heuristic algo-
rithms to architecture search and service selection. In par-
ticular, we have adapted the following heuristic algorithms:
hill-climbing, beam search, simulated annealing, and evolu-
tionary programming. Hill-climbing, beam search, and sim-
ulated annealing belong to the local search family of heuris-
tic algorithms. Local heuristic search algorithms (known
as direct search in the operations research community [18])
start with one or more solutions (referred to as the visited
solutions) and then evaluate similar solutions called neigh-
bors. In an effort to find better solutions, a local search
algorithm will then visit one or more promising neighbor
solutions and generate new neighborhoods to evaluate from
those visited solutions. The search proceeds until either the
search budget has been exhausted or a local optimum has
been found. Most local search algorithms, after identifying
a local optimum, will restart the search from a randomly se-
lected solution(s) in an attempt to locate a better optimum.

5.1 Hill-Climbing
Hill-climbing is a relatively simple local search method

that visits only one solution at a time. Hill-climbing can
operate in either a greedy mode or an opportunistic mode.
A greedy hill-climber evaluates an entire neighborhood be-
fore visiting one of the neighboring solutions. The greedy
hill-climber will visit the highest utility solution in the neigh-
borhood so long as that solution offers a utility improvement
over the currently visited solution. The greedy hill-climber
then generates a new neighborhood when it visits this new
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neighbor. An opportunistic hill-climber evaluates members
of the neighborhood one at a time in a randomly selected
order. If any neighbor offers an improvement in score over
the currently visited solution, the opportunistic hill-climber
will move to visit that solution and generate a new neigh-
borhood, neglecting the evaluation of the rest of the former
neighborhood. In either mode, when the hill-climber be-
comes stuck in local optima, it may select a random solution
and recommence the search.

5.2 Beam Search
Beam search is similar to hill-climbing but visits multiple

solutions at the same time. The currently visited solutions
in beam search are referred to as the level-list. The max-
imum size of the level-list is called the beam width. The
beam search algorithm generates neighbors for each mem-
ber of the level-list. The best solutions from the combined
neighborhood are then selected for the next level-list. Op-
tional selection requirements may also be applied to the new
level-list. Our implementation of beam search stores previ-
ously used level-list solutions in a hash table, so that no
solution makes more than one appearance on the level-list.
This allows beam search to move down the utility landscape
and potentially out of a local optimum.

5.3 Neighborhood Filtering (Hill-Climbing and
Beam Search)

The definition of the neighboring solutions is a key to
the success of local search heuristic algorithms. For con-
figuration optimization problems, local search typically will
define the neighborhood as any configuration that has a sin-
gle change from the currently visited solution. For many
medium to large configuration optimization problems, such a
neighborhood definition could lead to large, unwieldy neigh-
borhoods that reduce the effectiveness of the search.
In our previous work [26], we applied heuristic filtering

to reduce the size of the neighborhood. A neighborhood
heuristic filter examines the shortcomings of the currently
visited solution and identifies and visits only those neigh-
boring solutions that are most likely to have an improved
Ug score.
Filtered neighborhood construction in architecture search

attempts to improve Ug by addressing the k SSSs with the
largest negative impact on Ug. In some of the neighborhood
generation rules, only candidate components are considered
for modification. The j worst performing components for
the given SSS metric are designated as the candidate com-
ponents.
For non-security SSSs, neighbors are produced in the fol-

lowing ways:

• For each of the j candidate components: 1) neigh-
bors are produced by substituting architectural pat-
terns [28] that are expected to improve the metric of
the SSS and 2) neighbors are produced by increment-
ing/decrementing the number of service instances in
that component.

• If the non-security SSS has a common component with
a security SSS, a neighbor is produced by decrementing
the security option level along the entire path of the
security SSS.

If the SSS is a security SSS (i.e., the SSS metric is a se-
curity option), then a neighbor is produced by incrementing
the level of that option along the entire SSS path.

Neighborhood construction in service selection search also
considers the k non-security SSSs with the largest negative
impact on Ug. For each of the k SSSs and for each of their
j candidate components, the lowest performing service in-
stance is identified according to the SSS metric. If an un-
used service instance offers a performance improvement in
the SSS metric, a neighbor is produced by substituting in
the superior service instance.

5.4 Simulated Annealing
Simulated annealing is a stochastic local search heuristic

that operates like opportunistic hill-climbing with one key
difference: simulated annealing may stochastically decide to
visit inferior (i.e., lower predicted Ug) neighbors [30]. The
probability of visiting an inferior neighbor i is determined
as follows [30]:

p
(

V
inf
i

)

= e

(

−∆Ui
g

T

)

(2)

where ∆U i
g is the difference in global utilities between the

currently visited solution and neighbor i, and T is the tem-
perature variable. When T is large, the probability that
simulated annealing will decide to visit a significantly infe-
rior neighbor is high. When T is small, simulated annealing
is less likely to visit inferior neighbors and its behavior will
start to resemble a deterministic hill-climber. To simulate
the cooling process, T is gradually reduced as the search
proceeds. The process by which T is reduced is referred to
as the cooling schedule. In this work, we employ an expo-
nential cooling schedule:

Ti+1 ← αTi (3)

where α is a constant between 0 and 1, and i is the number
of completed evaluations. An accepted rule of thumb for
determining the initial temperature, T0, is to ensure at the
start of the search a roughly 40% to 60% chance that a
significantly inferior neighbor will be visited. When using
an exponential cooling schedule, T0 can be calculated by:

T0 ←
−∆U∗

g

lnx0
(4)

where ∆U∗
g is a significant difference in global utility, and x0

is the desired probability of visiting a significantly inferior
neighbor at the start of the search. The exponential cooling
parameter, α, can be computed by:

α←

(

−∆U∗
g

T0 lnxb−1

) 1

b−1

(5)

where b is the number of evaluations in the search budget
and xb−1 is the desired final probability of visiting a signifi-
cantly inferior neighbor.

5.5 Evolutionary Programming
Evolutionary programming employs the paradigm of evo-

lution to evolve improved solutions. The algorithm uses a
parent population (size M) to generate an offspring popula-
tion. The first step in this algorithm is to generate an initial
population. In the architecture search, the initial population
is comprised of mutated copies of the starting architecture.
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In the service selection search, the initial population is ran-
domly generated. Then evolutionary programming enters a
loop of the following steps:

1. Select the M solutions with the highest fitness (pre-
dicted Ug).

2. Move surviving solutions to parent population.

3. Parent solutions reproduce to generate offspring pop-
ulation of size K.

4. Mutate offspring solutions.

5. Determine fitness (predicted Ug) of offspring solutions.

This loop continues until the search budget is consumed.
If the populations are overlapping, offspring and parent so-
lutions compete for survival in step 1. If the populations
are non-overlapping, only offspring are eligible for being se-
lected in step 1. Reproduction in evolutionary programming
is asexual and an offspring is initially an identical copy of
the parent.
Evolutionary programming uses a phenotypic representa-

tion, so the features of the solution are mutated directly.
The size of the mutation is influenced by a parameter called
the step size. When a solution mutates, the number of
changes made to the architecture is randomly generated
from a normal distribution N(µ, σ) with µ set to the step
size and σ set to 0.5µ (a minimum of one change per mu-
tation is enforced). The type of change made to a software
architecture A is randomly selected from the following list:

• A change in the level of a security option.

• A change to the architectural pattern of one compo-
nent.

• Increasing by one the number of service instances in a
composite component.

• Decreasing by one the number of service instances in
a composite component.

The changes made in service selection mutation are sub-
stitutions of SPs. We use an adaptive step size in service
selection search. This means that the step size itself is mod-
ified by adding a randomly selected value from a normal dis-
tribution with µ set to zero and σ set to a parameter called
the adaptive step factor. Employing adaptive step size al-
lows the search to make large jumps through the space at
the start of the search. When a near-optima is located, in-
dividuals with more modest mutations will tend to have the
highest fitness, and consequently individuals with smaller
step sizes are likely to be favored. As the step sizes shrink,
the search converges on the near-optima and moves from
exploration to exploitation.

5.6 Challenges of Heuristic Search
Each heuristic search algorithm has its own strengths and

weaknesses. The global utility landscape of the architecture
and service selection solution spaces can vary in ruggedness
(i.e., the number of local optima and the shapes of these
optima). This ruggedness is difficult to quantify and may
change with each re-architecting event. Each heuristic algo-
rithm will strongly interact with the ruggedness of the utility
landscape in a different way. The parameter selection (e.g.,
filter settings, population settings, step sizes) will have its
own interactions with the landscape.

In a SASSY system with no meta-controller, a system
administrator would need to select a heuristic algorithm for
both the architecture search and the service selection search.
The system administrator would have three options:

1. use an educated guess to select heuristic algorithms,

2. tinker with heuristic settings until adequate perfor-
mance is achieved, or

3. run detailed time-consuming tests to find optimal heuris-
tic settings.

Guessing runs the risk of making a poor choice in heuris-
tic algorithms that would consequently lead to poor perfor-
mance in re-architecting. The second and third options are
labor intensive and require a skilled system administrator,
which is antithetical to the goals of autonomic computing.
Therefore, we propose automating the selection of heuristic
algorithms and their parameters with a meta-controller.

6. META-CONTROLLER
The primary function of the meta-controller, the second

major contribution of this paper, is to decide the heuris-
tic algorithms and their parameters at the start of a re-
architecting event. The meta-controller has two auxillary
functions to support its decision-making process: 1) train-
ing on previously encountered problems and 2) analyzing
the collected performance data from the training process.
The meta-controller contains a candidate list of pre-existing
heuristic search combinations (one for architecture selection
and the other for service selection) that were found to be
successful in other SASSY applications. Ideally, the candi-
date list should contain a variety of search algorithms.

When the meta-controller makes a heuristic selection de-
cision in a re-architecting event, the meta-controller stores
an optimization problem, P, consisting of the starting archi-
tecture and a list of all the SPs with their current QoS met-
rics. After the re-architecting search completes, the meta-
controller stores a result tuple of P: (Harch, HSrvSel, U

best
g ).

After the re-architecting process completes, the meta-controller
begins a preemptive training process testing other heuristic
search combinations from the candidate list against P and
storing the outcome in the result tuple.

Below we present two different designs for the meta-con-
troller, each with its own analytic method and decision-
making process.

6.1 Overall Best Heuristic Pair
The Overall Best meta-controller attempts to determine

the overall best candidate heuristic combination over the en-
tire range of re-architecting optimization problems encoun-
tered by a SASSY application. Each time a result tuple is
stored, the Overall Best meta-controller updates the aver-
age Ubest

g for the given heuristic combination. When it is
time for the Overall Best meta-controller to make a deci-
sion, it chooses the heuristic combination that has produced
the highest average Ubest

g .

6.2 Context Best Heuristic Pair
It is unlikely that there is a single heuristic search com-

bination that outperforms all other heuristic search com-
binations over the potential optimization problem space. A
certain heuristic combination may dominate a portion of the
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optimization problem space, while other heuristic combina-
tions dominate other portions of the space. The Context

Best meta-controller attempts to determine the overall best
candidate heuristic combination given specific features of P.
In many architecture search problems, a near-optimal ar-

chitecture may be nearby the starting architecture. When
facing such problems, the autonomic controller is best served
by using heuristic search algorithms that intensely scan the
architecture space surrounding the starting point. In other
architecture search problems, the closest near-optima are
relatively far away from the starting architecture. With
these problems, the autonomic controller is better served
using heuristic search algorithms that can travel some dis-
tance from the starting architecture.
Changes in the service environment that have occurred

since the previous re-architecting can impact the expected
distance of near-optimal architectures from the starting ar-
chitecture. Thus, measurements of service environment chan-
ges may offer insight into the likelihood of proximate near-
optimal architectures. These metrics can be used as fea-
tures in a machine learning problem. If the meta-controller
can successfully train on these features via a machine learn-
ing approach, the meta-controller may be able to predict
whether an exploitative (e.g., beam search) or exploratory
heuristic search algorithm (e.g., simulated annealing) is more
likely to be successful.
Changes in QoS metrics and utility scores may be useful

features in predicting whether the architecture search and
service selection searches should employ neighborhood fil-
tering for the local search algorithms. It is possible that
machine learning approaches may make other connections
between optimization problem features and heuristic combi-
nations.

6.2.1 Characterizing the Optimization Problem

An accurate and relevant representation of the optimiza-
tion problem is required for a machine learning approach
to successfully train. The representation used for the Con-

text Best meta-controller presented in this paper is shown
in Table 1. The features in the Component group and Se-
curity Option group reflect the starting architecture of the
system and some statistics on the service environment. The
BSC architectural pattern stands for a basic component in
the architecture, while the LB architectural pattern repre-
sents a load-balancing composite component in the archi-
tecture, and the fFT architectural pattern indicates a fast
fault-tolerant composite component [26]; one and only one
of these three fields must be set to true for each compo-
nent. The current level field in the Security Option group is
set to the level of security enabled on a component for that
particular security option (multiple security options may be
specified by the domain expert). The Overall, SSS utility,
and QoS Metric groups reflect the performance of the archi-
tecture and service selection in the current service environ-
ment.

6.2.2 Processing the Training Set

Whenever a result tuple is stored, the Context Bestmeta-
controller extracts the features of the problem, F(P), in
Table 1. A training set record, keyed to F(P), is created that
contains an empty linked-list of result tuples. The training
set record is then added to the training set’s specialized data
structure (this data structure has both hash table and array

properties). If the training set already contains a matching
training record, the new results are appended to the pre-
existing record in the training set.

6.2.3 Decision Making

When the Context Best meta-controller needs to select
a candidate heuristic combination, it extracts F(Pcurrent)
for the current re-architecting problem. If a training record
with a matching F(P) is found in the training set, the
Context Best meta-controller determines which candidate
heuristic combination has the best recorded performance in
that training record.

If no such training record exists, the Context Best meta-
controller employs the k-nearest neighbor (KNN) algorithm [13]
as follows:

1. Calculate the Euclidean distance between F(Pcurrent)
and the key of each training record.

2. Select top k closest training records.

3. Each of the k training records votes for the candidate
heuristic that performed best on its problems.

4. If one heuristic combination received more votes than
any other, select that heuristic combination. If there
is a tie in the voting, select the heuristic combination
from the training record closest to F(Pcurrent).

7. EXPERIMENTAL EVALUATION
This section describes experiments used to assess the two

different meta-controllers: Overall Best and Context Best.
A third meta-controller that randomly selects a heuristic
pair was used as a control.

7.1 Problem Application and Environment
Each meta-controller was assigned to manage an SOA ap-

plication of 25 components. Each component is considered
to have its own service type. For each component, we ran-
domly generated about six possible SPs. No component had
fewer than three possible SPs. Fig. 3 shows the data-flow
diagram of the managed application. Each meta-controller
was given a cost constraint that afforded roughly 2.25 SPs
per component. Each SP has the following attributes:

• capacity (i.e., the maximum transaction rate for the
provider),

• execution time,

• availability, and

• cost.

No SP was dominated in all four attributes by another
provider.

7.2 SSSes and Utility Functions
The SSSes and utility functions were randomly generated

for the application depicted in Fig. 3. The random genera-
tion process ensures that no two SSSes share both the same
QoS metric and the same pathway through the application.
Table 2 shows the SSSes used in the experimental evalua-
tion.

Each security option has three levels. The lowest level has
no impact on an SP’s capacity or execution time. Increases
in security levels reduce an SP’s capacity and lengthen the
execution time.
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Group Value Type Number of Features

Overall Ug floating point 1
Overall ∆(Ug) floating point 1
SSS Utility U(q) floating point nSSS

SSS Utility ∆(U(q)) floating point nSSS

Component BSC Arch. Pattern boolean ncmp

Component LB Arch. Pattern boolean ncmp

Component fFT Arch. Pattern boolean ncmp

Component number of SPs used integer ncmp

Component number of SPs available integer ncmp

Component number of SPs changed integer ncmp

QoS Metric current q for component floating point ncmp × nQoS

QoS Metric ∆(q) for component floating point ncmp × nQoS

Security Option current level integer ncmp × nsec

Table 1: Features of the machine learning problem.
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Figure 3: SOA application for experimental evaluation.

QoS Metric Weight Number of Components

Security Option 1 0.13 14
Security Option 2 0.06 13
Security Option 2 0.06 13
Security Option 2 0.07 14
Security Option 2 0.10 17
Throughput 0.11 16
Throughput 0.17 13
Throughput 0.05 13
Availability 0.17 16
Execution Time 0.08 14

Table 2: SSSes used in experimental evaluation.

Each security option SSS considers its current security
level to be the lowest level found on any member compo-
nent. To determine their utility, security option SSSes use a
discrete utility payoff table.
The throughput, availability, and execution time SSSes

use sigmoidal utility functions similar in form to those found
in [26].

7.3 Candidate Heuristic Combinations andOther
Meta-Controller Settings

During the development process, the heuristic search al-
gorithms and meta-controller procedures were tested and
debugged with a 30-component SOA application not pre-

sented here. Using the development SOA application, a
metaheuristic genetic algorithm was employed to find the
following four near-optimal heuristic search algorithms for
the architecture search:

1. an opportunistic hill-climber (HC) with SSS filter, k =
5, and component filter, j = 2,

2. beam search (BS) with beam width of two, SSS filter,
k = 5, and component filter, j = 2,

3. evolutionary programming (EP) with non-overlapping
populations, parent population size M = 6, offspring
population size K = 30, and a step size of 2.0, and

4. simulated annealing (SA) with p(V inf
init ) set to 66% and

p(V inf
last ) to 0.0023% (V inf is defined here as a move

with a -0.1 change in Ug.)

A similar metaheuristic genetic algorithm, also not pre-
sented here, was employed to find two near-optimal heuristic
search parameters for the service selection search:

1. an opportunistic hill-climber (HC) with no neighbor-
hood filtering and

2. evolutionary programming (EP) with overlapping pop-
ulations, parent population size M = 3, offspring pop-
ulation size K = 19, initial step size of 3.5, and an
adaptive step factor of 4.5.
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The four architecture heuristic search algorithms were com-
bined with the two service selection heuristic algorithms to
make eight heuristic search combinations: 1) HC-HC, 2) HC-
EP, 3) BS-HC, 4) BS-EP, 5) EP-HC, 6) EP-EP, 7) SA-HC, and 8)
SA-EP.
Each of the architecture searches was configured to run

with 5 threads, and each of the service selection searches was
configured to run with 25 threads. Composite components
were limited to a maximum size of five basic components.
The architecture search budget was set to 100 architecture
evaluations. The service selection search budget was set to
1,200 service selection evaluations. With these budget set-
tings, a re-architecting search should take less than 1 minute
on most modern computers.
In both Overall Best and Context Best, the number of

training replications for each problem encountered was set
to one. The Context Best KNN algorithm was run with
k = 5. The re-architecting threshold was set to 80% of Ug

predicted during the last re-architecting.
To provide a baseline for comparison, we built a third

meta-controller, Random, that randomly selects one of the
eight heuristic search combinations described above to em-
ploy whenever a re-architecting event occurs. We also tested
simple autonomic controllers (i.e., no meta-controller used)
that always use the same heuristic search combination.

7.4 Simulation
Each simulation commenced with the SOA application in

a near-optimal architecture determined a priori by an offline
heuristic search. The simulation time is divided into discrete
intervals called controller intervals of duration ǫ time units.
The following actions take place at the end of each con-

troller interval:

• SPs that are active and up will be scheduled to go down
tfail time units after they become operational. The
time tfail is drawn from an exponential distribution
with an average equal to the SP’s MTTF (Mean Time
To Failure). This exponentially distributed number is
rounded up to the closest multiple of ǫ. Thus, at the
end of each controller interval, if any SP is scheduled
to go down at that time, the SP is flagged as down, and
the software system’s Ug is computed and recorded.

• For each SP that failed at the end of a controller inter-
val, an exponentially distributed number trecover with
average equal to the SP’s MTTR (Mean Time To Re-
pair) is selected. The value of trecover is rounded up to
the closest multiple of ǫ. Thus, at the end of a con-
troller interval, if any SP is scheduled to recover, the
SP is flagged as operational again. The meta-controller
conducts a re-architecting search to see if the new SP
can be used to attain a higher Ug.

• Compute the Ug. If it falls below a certain set thresh-
old, initiate rearchitecting.

Separate Mersenne Twister random number streams were
used for the generation of simulation events and for heuristic
search calculations. The duration of each simulation was 500
ǫ. We conducted 100 simulations for each meta-controller.

7.5 Experimental Results
The meta-controllers encountered about 230 re-architecting

events on average over the course of a single simulation run.

We calculated the average Ug over the course of each simu-
lation experiment. Figure 4 shows the distribution of aver-
age global utilities in each set of 100 experiments produced
by the eight simple controllers and three meta-controllers.
The boxes in this figure show the three population quar-
tiles, while the whiskers show the maximum and minimum.
Next we assess the statistical significance of the results.
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Figure 4: Box plot showing the quartiles of the sim-
ulation runs.

Table 3 shows the mean of the average global utility for
each of the meta-controllers along with 95% confidence inter-
vals. The meta-controller Overall Best clearly outperforms
the other two meta-controllers; its lower confidence bound
is greater than the upper bounds of the others.

The small range of average Ug is due to the meta-controllers
keeping the systems at near-optimal Ug most of the time.
Occasionally, a critical SP will fail, and it is either not pos-
sible or very difficult to achieve near-optimal Ug. The overall
duration of failure events causing more than a 10% reduc-
tion in Ug was observed to be less than 15 ǫ in the average
simulation run. Though uncommon, the differences in meta-
controller response to these failures result in some statistical
differences in the average Ug.

Controller Lower Bound Mean Upper Bound

HC-HC 0.63858 0.63910 0.63962
HC-EP 0.63994 0.64035 0.64076
BS-HC 0.64194 0.64234 0.64273
BS-EP 0.64225 0.64268 0.64311
EP-HC 0.63960 0.64001 0.64043
EP-EP 0.63987 0.64028 0.64069
SA-HC 0.64014 0.64054 0.64095
SA-EP 0.64062 0.64098 0.64134
Ovrll Bst 0.64228 0.64263 0.64297
Cntxt Bst 0.64129 0.64164 0.64200
Random 0.64081 0.64119 0.64157

Table 3: 95% confidence intervals for net overall av-
erage Ug.

We applied the Tukey-Kramer procedure to perform a si-
multaneous pair-wise comparison of the eleven controllers
(eight simple controllers and three meta-controllers) in Ta-
ble 3. We determined that Overall Best was significantly
better than Random and six of the eight simple controllers
(those employing HC-HC, HC-EP, EP-HC, EP-EP, SA-HC, and
SA-EP) at the 95% confidence level. This procedure also
demonstrated that Context Best was better than five of the
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simple controllers (HC-HC, HC-EP, EP-HC, EP-EP, and SA-HC).
We further applied the Tukey-Kramer procedure on just the
results of the three meta-controllers, and we were able to
conclude that Overall Best was significantly better than
Context Best and that Context Best was significantly bet-
ter than Random at the 95% confidence level.
Figure 5 shows the Ug over time. All three meta-controllers

do well in maintaining Ug over the course of the simulation
runs. As can be seen by the size of the error bars, the exper-
imental variance makes it difficult to compare the different
meta-controllers; this variance cancels out to some degree
when computing the overall average for each simulation ex-
periment.
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Figure 5: The average global utility over time with
95% error bars.

Table 4 shows the heuristic combination performance data
collected by the Overall Best meta-controller. Heuristic
combinations employing hill-climbing for service selection
search perform poorly in comparison to heuristic combina-
tions employing evolutionary programming for service selec-
tion search. The best heuristic combination is BS-EP, using
beam search in the architecture search and evolutionary pro-
gramming in the service selection search.

Heuristic Search Lower Bound Mean Upper Bound
Combination

HC-HC 0.6305 0.6310 0.6314
HC-EP 0.6412 0.6415 0.6419
BS-HC 0.6367 0.6370 0.6374
BS-EP 0.6429 0.6432 0.6435
EP-HC 0.6402 0.6405 0.6408
EP-EP 0.6414 0.6417 0.6420
SA-HC 0.6377 0.6381 0.6385
SA-EP 0.6414 0.6417 0.6420

Table 4: Average heuristic combination peformance
tables collected by Overall Best with 95% confidence
intervals.

The evolving behavior of the meta-controllers can be seen
in Fig. 6. The data series labeled early in Fig. 6 were col-
lected from just the first half of the simulation, while the
data series labeled late were collected from only the second
half of the simulation. We can see that by the second half
of the simulation, Overall Best has clearly converged on to
the most overall effective heuristic combination, BS-EP.
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Figure 6: Percentage of time a heuristic combination
was selected by the meta-controllers.

To better understand the differences in heuristic combina-
tion selection between Context Best and Overall Best, we
collected 2,000 re-architecting problems encountered in our
simulations. Each heuristic combination was tested against
each problem 30 times. For each problem, the average Ug

found by all the heuristic combinations was calculated. Then,
the relative performance of each heuristic combination on
each problem was determined.

Figure 7 shows a scatter plot of the relative performance
of BS-EP vs EP-EP on each re-architecting problem. The thin
black line shown in Fig. 7 indicates where the performance of
BS-EP and EP-EP are equal; a large concentration of problems
are close to this line. EP-EP outperformed BS-EP on 78.2%
of the problems. However, as can be seen in Fig. 7, when
BS-EP outperforms EP-EP, it is typically by a larger margin.
The average difference in Ug between EP-EP and BS-EP when
EP-EP is better equals 0.00048 whereas when BS-EP is better
the difference is 0.01268, approximately 25 times greater.
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Figure 7: Scatter plot of relative heuristic combina-
tion performance on 1,935 re-architecting problems.

The KNN algorithm used in the Context Best meta-con-
troller does not account for the risk that picking incorrectly
EP-EP over BS-EP could lead to a relatively large drop in per-
formance. The Context Best meta-controller would need to
correctly identify the best heuristic combination about 85%
of the time to equal the performance of Overall Best. It
is unlikely that simple KNN can achieve such accuracy in
the face of the following challenges presented by the use of
online training sets:
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• a relatively small number of training problems,

• one training replication per heuristic combination for
each problem, and

• a relatively large number of fields in the problem char-
acterization.

The experiments were performed on systems with two
2.4 GHz quad-core hyper-threading Intel Xeon processors.
Re-architecting searches using hill-climbing for service se-
lection took an average of 15.0 seconds to complete, while
re-architecting searches using evolutionary programming for
service selection took an average of 6.9 seconds to complete.
The choice of architecture heuristic algorithm had less im-
pact on re-architecting search times.

8. RELATEDWORK
In [2], Calinescu et al. present QoSMOS, a system for on-

line performance management of SOA systems. Like SASSY,
this system employs utility functions to combine multiple
QoS objectives and optimizes the selection of SPs. Unlike
SASSY, QoSMOS considers some SPs to be white boxes,
and it can modify the configuration parameters and resource
allocations for those white box SPs. QosMOS does not con-
sider architectural patterns for improving QoS. Optimiza-
tion in QoSMOS is conducted through exhaustive search, a
technique that would not scale well to the problems consid-
ered by SASSY.
Cardellini et al. devise a framework, MOSES, for optimiz-

ing SOA systems in [3]. Similar to SASSY, MOSES uses SP
selection and architectural patterns for improving the QoS
of a SOA service or application. MOSES adapts the opti-
mization problem such that it can be solved through linear
programming (LP) techniques. The use of LP limits the
form of the objective function in MOSES. SASSY does not
face similar restrictions on the form of the utility function.
On larger problems, MOSES must restrict the space of sub-
stitutions considered to keep the problem solvable in near
real-time.
Mani et al. in [21] develop a system using Role Based

Modeling Language to model the performance impact of de-
sign pattern changes in SOA systems. As the SOA appli-
cation implements a new design pattern, the changes in the
systems are passed to the system’s performance model.
Other researchers have investigated using multi-objective

optimization techniques to reduce effort and increase the
quality of software architecture designs. When the opti-
mization search completes, these systems present human de-
cision makers with a set of Pareto optimal architecture can-
didates. PerOpteryx, introduced by Koziolek et al. in [19],
employs architectural tactics in a multi-objective evolution-
ary algorithm to expedite the multi-objective search process.
Martens et al. present a similar system in [22] that starts
quickly by using LP on a simplified version of the problem
to prepare a starting population for a multi-objective evolu-
tionary algorithm.

9. CONCLUSION
The Overall Best meta-controller showed a statistically

significant benefit over the other two meta-controllers. Al-
though Overall Best did not outperform simple controllers
using BS-HC and BS-EP, it was not known a priori which

heuristic search combinations would provide the best per-
formance. The Overall Best meta-controller was able to
identify BS-EP as the best heuristic search combination with-
out having to run its own large batch of simulation exper-
iments. The cost of training the Overall Best meta-con-
troller is very small. Therefore, using this meta-controller
for non-trivial SOA software systems would provide a net
measurable benefit, improving the performance of the sys-
tem and reducing the burden on human administrators.

The relatively poor performance of the Context Bestmeta-
controller was initially surprising. Further analysis revealed
that the Context Best meta-controller was unable to ad-
just for the risk presented by disparities in relative heuristic
combination performance.

If the Context Best meta-controller could identify appro-
priate heuristic search combination with a high level of ac-
curacy while accounting for risk, Context Best would likely
provide superior performance. The Context Best meta-
controller may be improved by upgrading the machine-learning
technique employed from simple KNN to a more advanced
method. Machete and similar methods provide advanced
versions of the KNN algorithm [13]. Another possibility
would be to substitute either a neural network or an SVM.
These have the disadvantage of requiring time to train, but
SVM allows the use of penalty weights to control the risk of
selecting the wrong heuristic search combination.

In future work, we plan to test our approaches on a wider
variety of SOA applications. We also plan to model the life-
time utility Ul, which would reflect the utility produced by
an architecture over its expected lifetime. Modeling Ul and
incorporating adaptation costs would provide a more holistic
approach to assessing architectures and service selections.
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J. Torres. Self-adaptive utility-based web session
management. The International Journal of Computer
and Telecommunications Networking,
53(10):1712–1721, July 2009.

[30] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and
G. D. Smith, editors. Modern Heuristic Search
Methods. Wiley, Hoboken, NJ, 1996.

[31] L. Zhang and D. Ardagna. SLA based profit
optimization in autonomic computing systems. In
Proc. 2nd International Conference on Service
Oriented Computing (ICSOCŠ04), pages 173–182,
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