
Engineering Resource Management Middleware for
Optimizing the Performance of Clouds Processing

MapReduce Jobs with Deadlines
Norman Lim

Dept. of Systems and Computer
Engineering

Carleton University
Ottawa, ON, Canada

nlim@sce.carleton.ca

Shikharesh Majumdar
Dept. of Systems and Computer

Engineering
Carleton University

Ottawa, ON, Canada
majumdar@sce.carleton.ca

[Industrial and Experience Paper]

Peter Ashwood-Smith
Huawei Technologies Canada

Kanata, ON, Canada
Peter.AshwoodSmith@

huawei.com

ABSTRACT
This paper focuses on devising efficient resource management
techniques used by the resource management middleware in
clouds that handle MapReduce jobs with end-to-end service level
agreements (SLAs) comprising an earliest start time, execution
time, and a deadline. This research and development work,
performed in collaboration with our industrial partner, presents
the formulation of the matchmaking and scheduling problem for
MapReduce jobs as an optimization problem using: Mixed Integer
Linear Programming (MILP) and Constraint Programming (CP)
techniques. In addition to the formulations devised, our
experience in implementing the MILP and CP models using
various open source as well as commercial software packages is
described. Furthermore, a performance evaluation of the different
approaches used to implement the formulations is conducted using
a variety of different workloads.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems. C.4 [Performance of Systems]: performance attributes,
modeling techniques.

Keywords
Resource management on clouds, MapReduce with deadlines,
Optimization, Mixed integer linear programming (MILP),
Constraint programming (CP).

1. INTRODUCTION
Cloud computing, which concerns improving the way

Information Technology (IT) is managed and consumed is
receiving a great deal of interest from researchers and practioners
from academia and industry. Cloud computing makes
computational (hardware and software) resources accessible as
scalable and on-demand services over a network such as the
Internet [1]. To accomplish this goal, the cloud computing
paradigm employs a wide-range of concepts and technologies
such as virtualization, service-orientation, elasticity, scalability,
and pay-as-you-go. Using the virtualization technology, cloud
computing is able to deliver an on-demand, service-oriented
model that offers: Infrastructure-as-a-Service (IaaS), Platform-as-

a-Service (PaaS), and Software-as-a-Service (SaaS). IaaS delivers
basic computational resources (virtual machines) as an on-demand
service whereas PaaS offers a higher-level service (e.g.
application framework with development tools) where consumers
can create and deploy their own scalable Web applications
without having to invest in and maintain their own physical
infrastructure. Lastly, SaaS provides consumers with complete
end-user Web applications. Communication and social
applications such as Customer Relationship Management (CRM)
systems, email, and Facebook are examples of SaaS. Along with
an on-demand service-oriented model, cloud computing also
offers scalability, elasticity, and pay-as-you-go features. The
scalability and elasticity characteristics of the cloud provide the
ability to grow or shrink the number of resources allocated to a
consumer’s request dynamically with time. With the pay-as-you-
go model, consumers can lease resources on-demand from the
service provider and pay only for the time the resources are used.

In addition to researchers and service consumers, cloud
computing that is based on resources acquired on demand is
generating a great deal of interest among service providers and
system builders as well. Cloud service providers typically own a
large pool of resources that include computing, storage, and
communication resources. Effective resource management
strategies and performance optimization techniques need to be
developed for harnessing the power of the underlying resource
pool. The important operations performed by a resource manager
deployed in the resource management middleware for a cloud
include: matchmaking and scheduling. When a request arrives, the
resource manager invokes a matchmaking algorithm that selects
the resource or resources (from a given a pool of resources) to be
allocated to the request. Once a number of requests get allocated
to a specific resource, a scheduling algorithm is used to determine
the order in which these requests are to be executed. Both
matchmaking and scheduling are well known as computationally
hard problems because they need to satisfy a user’s requirements
for a quality of service that is often captured in a service level
agreement (SLA); while also achieving the desired system
objectives for the service providers, such as generating a high
resource utilization and adequate revenue. Matchmaking and
scheduling decisions can be made in one joint step (see [2] and [3]
for example). The resource management technique presented in
this paper makes such a joint decision on matchmaking and
scheduling. Note that in this paper the term output schedule is
used to define the task to resource mapping, and when each task
runs on their assigned resource.

Both performance optimization and performance modeling
are important components of performance engineering. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE'14, March 22–26 2014, Dublin, Ireland
Copyright 2014 ACM 978-1-4503-2733-6/14/03…$15.00.
http://dx.doi.org/10.1145/2568088.2576796

161

research concerns engineering resource management middleware
that has two primary objectives: reducing the overhead of making
resource management decisions and making decisions that
achieve high system performance. This paper focuses on the
investigation of techniques for management of resources on
clouds in which the workload includes requests characterized by
an end-to-end SLA [1] that comprises an earliest start time,
execution time, and (soft) deadline [4] specified by the user. On
systems with soft deadlines, jobs are permitted to miss their
deadlines; however, the desired system objective is to minimize
the number of jobs that do miss their deadlines. In addition, these
requests also require multiple stages of execution with potentially
different resources used in each stage. Considering these types of
requests poses a new challenge to the resource management
problem. Most of the works on resource management on clouds
for workloads characterized by SLAs have only considered
requests that require a single resource (i.e. single stage of
execution). A scenario that involves reserving multiple resources
simultaneously is important in the context of applications that
require multiple system components, and can also arise from
workflows that require the interaction of multiple applications that
run on different resources. In this context, the workloads that are
considered in this paper consist of MapReduce jobs.

MapReduce is a programming model that is characterized by
multiple stages of execution and requires that the user define two
functions [5]: a map function and a reduce function. Google
proposed the use of MapReduce for processing large amounts
(e.g. terabytes) of raw data in a distributed (parallel) manner to
generate or derive more meaningful data [5]. The map function
generates a set of intermediate key/value pairs from a set of input
key/value pairs. These intermediate key/value pairs are grouped
together and then passed to the reduce function where the values
with identical keys are merged. A typical MapReduce job consists
of a set of map tasks and a set of reduce tasks. The reduce tasks
generally do not start executing until all map tasks are completed.
Many computations can be expressed using MapReduce. For
example, a MapReduce application can be deployed to count the
number of URL accesses on a web server [5]. In this application,
the map function processes the web server logs and produces a
data set with an intermediate key/value pair of the form: {URL,
1}. This new data set is then processed by the reduce function,
which sums all the values with identical keys to emit a new data
set with the following key/value pair: {URL, total count}.

A popular implementation of MapReduce is Apache Hadoop
[6], which is used by many companies and institutions for a
variety of applications such as data processing (e.g., sorting,
indexing, and grouping), data analysis, data mining (e.g. web
crawling), machine learning, and scientific research (e.g.
bioinformatics) [7]. In all these cases, there may be situations
where a batch of MapReduce jobs needs to be executed either on a
private cluster, or a cloud (such as Amazon EC2). On both
systems, matchmaking and scheduling a batch of MapReduce jobs
needs to be performed by the resource management middleware.
Completing each job in the batch within a specific period of time
(characterized by a deadline) is often a user requirement [4][8].
Resource management on such an environment is the focus of
attention in this paper. Similar systems that map and schedule a
batch of MapReduce jobs are investigated in [8], [9], and [10].

The goal of our research, performed in collaboration with
Huawei Technologies, Canada, is to devise a cloud resource
manager that can effectively perform matchmaking and
scheduling of MapReduce jobs each of which is characterized by
an end-to-end SLA comprising an earliest start time, execution

time, and a deadline specified by the user. In this paper, we focus
on describing our investigation and experiences with using
various techniques and technologies to formulate and solve the
matchmaking and scheduling problem. Figure 1 displays the three
different approaches that are used for solving the matchmaking
and scheduling problem. As shown in Figure 1, we formulate the
matchmaking and scheduling problem as an optimization
problem, and solve the matchmaking and scheduling problem
jointly. More specifically, we describe our investigation/
experience in formulating the problem using: (1) Mixed Integer
Linear Programming [11][12] (MILP), and (2) Constraint
Programming [13] (CP) techniques. Both MILP and CP are well-
known theoretical techniques that can solve optimization
problems and find optimal solutions. See Section 2 for a further
discussion on MILP and CP. Various implementations of our
solutions based on MILP and CP using different software
packages are considered: Approach 1: MILP model implemented
and solved using LINGO [14] (commercial software); Approach
2: CP model implemented using MiniZinc/FlatZinc [15] and
solved using Gecode [16] (both open source software); and
Approach 3: CP model implemented and solved using IBM ILOG
CPLEX Optimization Studio (CPLEX) [17] (commercial
software).This paper is motivated by issues such as:
 How to employ the existing theory on MILP and CP for

devising efficient resource management algorithms that
minimize the number of jobs missing their deadlines on a
closed system subjected to a batch workload comprising
MapReduce jobs with deadlines.

 Development of efficient implementations of the algorithms
using Commercial-Off-The-Shelf (COTS) packages that
produce an acceptable system overhead accrued during the
execution of the resource management algorithms.

 Getting an understanding of the relationship between the size
of the workload and system performance.

A separate set of experiments is performed for evaluating the
performance of each approach. The inputs used for a given set of
experiments include a set of Jobs, J, and a set of resources, R, on
which to execute J (see Figure 1). The MILP/CP solver program
corresponding to the embodiment of an approach is executed on a
desktop PC (described in Section 5). As captured in Figure 1 the
output schedule (the mapping of tasks on resources and their
assigned start times), along with the time required to complete the
execution of the batch of MapReduce jobs, and the number of jobs
missing their deadlines are obtained as an output at the end of a
given experiment. The processing time required by the solver to
produce the output is also measured by using the solver’s built-in
timing utilities. A performance evaluation was conducted to
compare the three approaches using various system and workload
parameters. Our goal is to determine which of these approaches is
able to solve the matchmaking and scheduling problem for
MapReduce jobs efficiently, and understand the trade-off between
processing time and the quality of the output schedule in terms of
the number of jobs missing their deadlines, and the completion
time of the workload. The main contributions of this paper
include:
 Devising a technique for generating an optimal solution that

minimizes the number of jobs missing their deadlines. The
formulation of two models, one using MILP and one using
CP, for achieving the optimal solution for matchmaking and
scheduling MapReduce jobs with SLAs are presented.
o A comparison of MILP and CP, focusing on the

differences in using these two techniques for achieving the
resource management technique.

162

 A discussion of the three approaches used to implement the
MILP and CP models is presented.

 A performance evaluation of the three approaches using a
variety of different system and workload parameters is
presented. Insights gained into system behavior from the
results of the performance evaluation are described.

The results of this research will be useful to researchers,
designers, and users of the resource management middleware,
including system developers and cloud service providers.
 The rest of the paper is organized as follows. Section 2
provides a brief introduction to MILP and CP, and presents
related work. Section 3 presents the problem description, and the
formulations of the MILP and CP models. The design and
implementation of the MILP and CP models using the three
software packages are discussed in Section 4. In Section 5, the
results of the performance evaluation, and a comparison of the
performance of the three approaches are presented. Lastly, Section
6 concludes the paper and provides directions for future work.

2. BACKGROUND AND RELATED WORK
 MILP [11] and CP [13] are well-known techniques that are
used to solve optimization problems, and are capable of finding
optimal solutions with regards to maximizing or minimizing an
objective function. Both techniques have the same general
modeling structure. There are a set of decision variables that need
to be assigned values that ensure an objective function is
optimized (maximized or minimized) subject to constraints—
conditions that cannot be violated. In addition, both MILP and CP
have been shown to be effective in solving planning and
scheduling problems, such as the traditional job shop scheduling
problem [3]. MILP is a subfield of mathematical programming
(MP) (also called mathematical optimization) where the model
has the following characteristics: (1) some of the decision
variables must be integers, and (2) the objective function and
constraints are mathematically linear [12]. The theoretical basis
for MILP and mathematical optimization in general is numerical
algebra [18]. To solve MILP models, techniques such as cutting-
planes (constraint relaxations) and Branch and Bound are used.
 CP was developed by computer science researchers in the
mid-1980s by combining knowledge and techniques from
artificial intelligence, logic and graph theory, and computer
programming languages [13]. This theoretical foundation for CP
is different than the theoretical foundation for MP techniques,
such as MILP [18]. Unlike MILP models, CP models natively
support a variety of arithmetic operators and logical constraints
such as integer division, and the ‘implies’ constraint [19]. To

formulate logical constraints in a MILP model, the ‘big-M’
formulation technique [11] is typically used [19]. CP also defines
a general set of specialized constraints, called global constraints
that model frequently used patterns seen in optimization problems
[20]. For example, one such constraint is the cumulative constraint
which is used in scheduling problems to ensure that the capacity
of each resource is not violated at any point in time.

 The main limitation of CP models is that, natively, the
decision variables can only be discrete (i.e. integer or Boolean)
[13], whereas MP models support both discrete and continuous
decision variables. The theoretical basis for solving MP models is
numerical algebra; in contrast, for CP models the theoretical basis
is logical inference including logic and graph theory. Search
algorithms, including back-tracking and local search [13], are
commonly used to solve CP models. The general idea in these
search algorithms is to use logical inferences to assign values to
the decision variables, and then to evaluate if the new values of
the decision variables produce a better output (higher value if
maximizing or lower value if minimizing) for the objective
function.

 A significant body of knowledge exists in the area of
resource management on grids and clouds. More recently,
researchers have also started investigating the problem of
scheduling and matchmaking MapReduce jobs with deadlines.
Due to space limitations, a representative set of work is presented.
Development of a resource management middleware for clouds
that is able to make smart and global decisions for achieving high
system performance is being considered in OpenStack [21], which
is collaborative open-source cloud software project. The authors
of [8], propose a Deadline Constraint Scheduler for Hadoop [6] to
handle jobs with deadlines. A job execution cost model that
considers parameters including the execution time of map and
reduce tasks, and input data sizes is developed. Dong et al. [9]
focus on the scheduling of workloads comprising of MapReduce
jobs with deadlines (real-time jobs) and jobs with no deadlines
(non-real-time jobs). They integrate techniques such as Tasks
Forward Scheduling (TFS) and Approximately Uniform
Minimum Degree of Parallelism (AUMD) into the existing
Hadoop scheduler to form a two-level scheduler that is capable of
scheduling both real-time and non-real-time jobs. In [4], Verma et
al. propose two resource allocation policies based on the earliest
deadline first (EDF) strategy for Hadoop. The first policy is
MinEDF, which allocates the minimum number of task slots
required for completing a job before its deadline. The second
policy, called MinEDF-WC, enhances MinEDF by adding the

Figure 1. Overview of our approach.

APPROACH 1

MILP Model LINGO

Implements
 and Solves

Resources
Set, R

Workload:
Jobs Set, J

INPUT

APPROACHES

Executes on

Executes on

Output Schedule
for Workload

OUTPUT

No. of Late
Jobs

Completion
Time

Processing
Time of
Solver

MEASUREMENTS

APPROACH 3

CP Model IBM CPLEX
Executes on

APPROACH 2

CP Model
Minizinc and

Gecode

Implements
 and Solves

Implements
 and Solves

163

ability to dynamically allocate and de-allocate resources (task
slots) from active jobs according to demand.
 Similar to our research, the works discussed in [4], [8], and
[9] investigate matchmaking and scheduling MapReduce jobs
with deadlines. However, these works propose heuristic-based
schedulers whereas our work describes using optimization
techniques that can generate optimal solutions. These works also
do not consider jobs characterized with earliest start times, which
can be important in the context of advance reservation requests. In
addition, the focus of [4], [8], and [9], is on improving the Hadoop
[6] scheduler, which is an open source framework that implements
the MapReduce programming model. The research described in
this paper describes solutions for the general matchmaking and
scheduling problem for MapReduce jobs with deadlines.

3. PROBLEM DESCRIPTION AND
MODEL FORMULATIONS

This section describes the modeling of matchmaking and
scheduling MapReduce jobs with end-to-end SLAs comprising an
earliest start time, execution time, and a deadline. First, a model
of the MapReduce matchmaking and scheduling problem is
presented (Input box of Figure 1). The formulations of the MILP
and CP models are then described in Sections 3.1 and 3.2,
respectively. A general matchmaking and scheduling problem
requires two components for input data: a workload component,
and a system component [2]. The workload data component
outlines the characteristics of the jobs, whereas the system data
component defines the attributes of the resources that the jobs will
be executed on.

In our model, each MapReduce job j in the set of jobs, J,
needs to mapped and scheduled on a cloud environment with m
resources (or computing nodes), which is represented by a set
ܴ ൌ ሼݎଵ, ,ଶݎ … , ሽ. Each resource r in the set R has: (1) a mapݎ
task capacity (or number of map slots),ܿ

, and (2) a reduce task
capacity (or number of reduce slots),ܿ

ௗ. The map and reduce task
capacities specify the number of map and reduce tasks,
respectively, that each of the resources can execute in parallel at a
point in time. In addition, the map task slots are independent from
the reduce tasks slots, which means that a map task can be run at
the same time that a reduce task is executing.

The workload comprises a set (batch) of MapReduce jobs to
schedule, ܬ ൌ ሼ݆ଵ, ݆ଶ, … , ݆ሽ where n is the number of jobs in the
set. Each job j in the set J has the following:
 A set of map tasks ܶ

 ൌ ሼݐ,ଵ
, ,ଶݐ

, … ݐ
,ೕ

 ሽ where

݇
denotes the number of map tasks that are in job j.

 A set of reduce tasks ܶ
ௗ ൌ ሼݐ,ଵ

ௗ, ,ଶݐ
ௗ, … ,ೕݐ

ೝ
ௗ ሽ where ݇

ௗ

denotes the number of reduce tasks in job j.
 A set ܶ ൌ ሼ ܶ

, ܶ
ௗሽ contains all tasks for job j.

 Earliest start time for the job, ݏ
 Deadline for the job, ݀, by which the job should be completed

(i.e. soft deadline).
Each task t in Tj has the following attributes: (1) a required
execution time,݁௧, and (2) a resource capacity requirement, ݍ௧.
Note that typical map and reduce tasks only require executing on
one resource slot [4]. As such, ݍ௧ is typically set to one. All the
tasks of all jobs are placed in a master set T.
 The requirements for mapping and scheduling the set of jobs J
on to the set of resources R are summarized. Each task t in Tj can
only be scheduled to start at, or after job j’s earliest start time, sj.
Secondly, each task t in T can only be mapped to a single resource
r where t executes on r for et time units. Map tasks and reduce
tasks can be executed in parallel, however, all the map tasks have

to be completed before the reduce tasks can start executing.
Furthermore, at each point in time, the capacity limits of the
resources cannot be violated (i.e. a resource cannot be assigned to
run more tasks in parallel than it can handle). The system
objective for the resource manager (objective function) is to
minimize the number of jobs that miss their deadlines (i.e.
minimize the number of late jobs).

3.1 Formulation of the MILP Model
 The MILP model uses a time-indexed formulation [22], which
is a commonly used model for formulating scheduling problems
that considers discrete time (i.e. integer values for time). The
discrete time values are contained in a set I called the time range.

Although, time is a continuous variable, discrete time values can
be considered by changing the unit of time. For example, if the
execution of a task takes 5.1 seconds, the time can be converted
into a discrete time value by changing it to 5100 milliseconds. In
some cases, if the length of times are very different (e.g., 0.1s
versus 103s), it may not best to change the unit of time because the
converted values can be quite large (e.g. 0.1s becomes 100ms and
103s becomes 106ms). In these cases, it may be more appropriate
to round the non-discrete time values to the nearest higher integer.
For instance, the 0.1s can be rounded up to 1s.
 Table 1 presents the formulation of the MILP model. Recall
that the input of the MILP model comprises a set of resources R
on which to execute a set of jobs J, and that a set T contains all
tasks of all jobs in J. The following decision variables are defined
in the MILP model:
 A binary variable, ݔ௧ where ݔ௧= 1 if task t is assigned to

start executing on resource r at time i; otherwise, ݔ௧= 0.
There is an xtri variable for each combination of tasks in T,
resources in R, and times in I.

 A binary variable, Nj, that denotes if a job misses its
deadline, dj. The variable Nj=1 if job j misses its deadline;
otherwise Nj=0. There is an Nj variable for each job in J. Nj is
initially set to zero for all jobs.

Table 1: Formulation of the MILP Model

݁ݖ݅݉݅݊݅ܯ ܰ

א

 such that

 ௧ݔ ൌ 1
אோאூ

 ݐ א ܶ (1a)

ቀሺ݅| ௧ݔ ൌ 1ሻ ݏ ݐ א ܶ
, ݎ א ܴ, ݅ א ቁܫ ݆ א (2a) ܬ

ቌ
݅| ௧ݔ ൌ 1 max

௧ᇲא ೕ்
, ᇲאோ,ᇲאூ

ሺሺ݅ᇱ|ݔ௧ᇲᇲᇲ ൌ 1ሻ ݁௧ᇲሻ

ݐ א ܶ
ௗ, ݎ א ܴ, ݅ א ܫ

ቍ ݆ א (3a) ܬ

ቆ ܰ ݀ max
௧א ೕ்

ೝ, אோ,אூ
൫ሺ݅| ௧ݔ ൌ 1ሻ ݁௧൯ െ ݀ቇ ݆ א (4a) ܬ

 ௧ݍ௧ᇲݔ ܿ

ᇲאூೝ
்א௧כ

ݎ א ܴ, ݅ א ܫ

where כܫ
௧ ൌ ሼ݅ᇱ|݅ െ ݁௧ ൏ ݅ᇱ ݅ሽ

(5a)

Same as (5) but for reduce tasks. (6a)

௧ݔ א ൛0, 1ൟ ݐ א ܶ, ݎ א ܴ, ݅ א (7a) ܫ

ܰ א ሼ0, 1ሽ ݆ א (8a) ܬ

݅ א Ժ (9a)

 Constraint (1a) specifies that each task t in T is executed only
on a single resource. This is accomplished by summing all the xtri

variables for each task t, and ensuring that the sum is equal to one.
Guaranteeing that the assigned start time of all the map tasks is
after the job’s earliest start time (sj) is captured by constraint (2a).
Constraint (2a) requires iterating through all the xtri variables,
specifically focusing on the variables that represent map tasks of
the jobs (ܶ

). Furthermore, only the variables where xtri=1 are of

164

interest because these are the variables that define the assigned
start time i of task t on resource r. Recall that constraint (1a)
ensures that each task t has only one xtri variable equal to one.
Thus, the term ൫݅| ݔ௧ ൌ 1൯ identifies the scheduled start time of
task t, which is at time i.
 Constraint (3a) ensures that the reduce tasks are scheduled to
start only after all map tasks are completed. This is accomplished
by iterating through all reduce tasks of a job j (ܶ

ௗ), and ensuring
that the start time of the reduce task is after the completion time of
the latest finishing map task (LFMT) of job j. To calculate the
completion time of the LFMT, the equation
max௧ᇲא ೕ்

, ᇲאோ,ᇲאூ ሺሺ݅ᇱ|ݔ௧ᇲᇲᇲ ൌ 1ሻ ݁௧ᇲሻ is used. This equation

iterates through all map tasks and calculates the completion time
of the task: sum of start time ሺ݅ᇱ|ݔ௧ᇲᇲᇲ ൌ 1ሻ and the execution
time (݁௧ᇲሻ. The max function returns the maximum value from a
given set of values. Constraint (4a) states that Nj, which is initially
set to zero, should be changed to one if job j misses its deadline. A
job j misses its deadline if the completion time of the latest
finishing reduce task (LFRT) in job j is after the job’s deadline
(dj). To ensure that Nj is set to one if j misses its deadline, the left-
hand side (LHS) is the product of Nj and dj , and this value must
not be less than the right-hand side (RHS), which is equal to the
completion time of the LFRT minus dj. For example, if job 1 has
d1=30s, and the LFRT is 35s, which means job 1 missed its
deadline, the RHS is equal to 5s, and the LHS evaluates to 0 since
Nj is initially set to zero. To ensure that the LHS is greater than or
equal to the RHS, Nj will have to be changed to one, such that the
LHS=30, which is greater than the RHS=5.
 Making sure that the map and reduce task capacities of each
resource are not violated at any point in time is captured by
constraints (5a) and (6a), respectively. Constraints (5a) and (6a)
use an integer set כܫ

௧ that is defined to contain the assigned start
time of task t, if and only if, at time point i, t is still executing on
resource r. This set כܫ

௧ is used to ensure that only tasks still
executing at a point in time i are included in the calculations to
determine the number of tasks that are executing on a resource at
time i. The total number of tasks executing on a resource r, at any
point in time, must not exceed the capacity of the resource (cr). As
shown in Table 1, כܫ

௧ is a set of integers defined as follows:
ሼ݅ᇱ|݅ െ ݁௧ ൏ ݅ᇱ ݅ሽ where ݅ᇱ represent the values in the set כܫ

௧.
The following example task is used to explain the use of כܫ

௧ set.
A task, denoted t1, has an execution time et1=5s, and the decision
variable xtri=1 (task t is assigned to start executing on resource r at
time i) has the following values for its indices: t=t1, r=r1, i=23,
and thus, ݔ௧ଵ,ଵ,ଶଷ ൌ 1. Given the values for t1 described, and the
current time of interest is i=25s, the set כܫ

௧ ൌ כܫ
௧ଵ,ଵ,ଶହ will have

the following values {21, 22, 23, 24, 25}. As shown, this set does
contains the assigned start time of t1, i=23s. Lastly, constraints
(7a) to (9a) specify the valid domain of the decision variables,
which restrict the values that the respective variables can have.

3.2 Formulation of the CP Model
 The formulation of the CP model is presented in Table 2.
Similar to the MILP model, the input of the CP model comprises a
set of resources R on which to execute a set of jobs J. Recall, also
that a set T contains all tasks of all the jobs in J. The CP model has
the following decision variables:
 A binary variable, ݔ௧, which is set to one if task t is assigned

to resource r; otherwise, ݔ௧ ൌ 0 (used for matchmaking).
There is an xtr variable for each combination of tasks in T, and
resources in R.

 An integer variable, ܽ௧, specifies the assigned (or scheduled)
start time of a task t (used for scheduling). There is an at
variable for each task in T.

 A binary variable, ܰ , which is set to one if job j misses its
deadline; otherwise, ܰ is set to zero. An Nj variable is defined
for each job in J.

The CP constrains are expressed differently than the MILP
constraints, but perform the same role as the constraints for the
MILP model. The reason for the differences is because the CP
model defines a separate decision variable for the assigned start
time of the tasks (at), as well as makes use of CP’s global
constraints, and native support for mathematical operators.
Constraint (1b) iterates through all tasks in T and ensures that
each task is mapped to only one resource. Similar to constraint
(1a), this is done by summing all the xtr variables of a given task t,
and ensuring the sum is equal to one. Constraint (2b) specifies that
the scheduled start time of each map task in a job j (at) is at or
after job j’s start time (sj). Constraint (3b) states that the scheduled
start time of each reduce task of a job j (denoted ܽ௧ᇲ) is at or after
the completion time of the LFMT, which is calculated using the
max function in a similar manner as explained for constraint (3a).

Table 2: Formulation of the CP Model

݁ݖ݅݉݅݊݅ܯ ܰ

א

 such that

 ௧ݔ

אோ

ൌ 1 ݐ א ܶ (1b)

൫ܽ௧ ݏ ݐ א ܶ
൯ ݆ א (2b) ܬ

൭ܽ௧ᇲ max
ݐ א ܶ

ሺܽ௧ ݁௧ሻ ᇱݐ א ܶ

ௗ൱ ݆ א (3b) ܬ

൭ max
ݐ א ܶ

ௗ
ሺܽ௧ ݁௧ሻ ݀ ฺ ܰ ൌ 1 ൱ ݆ א (4b) ܬ

൫ܿ݁ݒ݅ݐ݈ܽݑ݉ݑሺሺܽ௧|ݔ௧ ൌ 1ሻ, ሺ݁௧|ݔ௧ ൌ 1ሻ, ሺݍ௧|ݔ௧ ൌ 1ሻ,
ܿ

ሻ ݐ א ܶ
൯ݎ א ܴ

(5b)

൫ ௧ݔ|ሺሺܽ௧݁ݒ݅ݐ݈ܽݑ݉ݑܿ ൌ 1ሻ, ሺ݁௧|ݔ௧ ൌ 1ሻ, ሺݍ௧|ݔ௧ ൌ 1ሻ,
ܿ

ௗሻ ݐ א ܶ
ௗ൯ ݎ א ܴ

(6b)

ሺݔ௧ א ሼ0, 1ሽ ݐ א ܶሻ ݎ א ܴ (7b)

ܰ א ሼ0, 1ሽ ݆ א (8b) ܬ
ܽ௧ א Ժ ݐ א ܶ (9b)

The CP model simplifies the expression of constraint (4a),
which ensures that Nj should be changed to one (from zero) if job
j misses its deadline, by using the ‘implies’ operator (see
constraint (4b)). A job j misses its deadline if the completion time
of the LFRT exceeds the deadline of the job (dj). The completion
time of the LFRT is calculated in a similar manner as in the case
of constraint (4a). In addition, constraints (5b) and (6b), which
enforce that the map and reduce task capacities of the resources
are not violated, are simplified by formulating the constraints
using the CP global constraint, cumulative [20]. For each point in
time, the cumulative function sums up the number of executing
tasks at the given time point, and ensures that this number does
not exceed the resource capacity limit. Four parameters are
required by the cumulative constraint: the assigned start time,
execution time, and resource requirement of the tasks, as well as
the capacity of the resource. There is one cumulative constraint
for each resource, and only the tasks that are assigned to that
resource (i.e. xtr=1) are of interest for that particular constraint.
The remaining constraints, (7b) to (9b), define the domain of the
decision variables used in the formulation.

Overall, it can be seen that the constraints in the CP model
are expressed in a more intuitive and simple manner. For example,
in the formulation of the CP model, constraint (4b) simply uses
the logical operator, implies (ฺ) to set Nj to 1 if job j misses its
deadline. Furthermore, to formulate constraint (5b) and (6b), the
CP model uses CP’s global constraint, cumulative. Conversely, as

165

shown in Table 1, the formulation of constraints (4a), (5a), and
(6a) for the MILP model requires using more complex
mathematical formulas that are not as straightforward.

4. DESIGN AND IMPLEMENTATION
EXPERIENCE

 Three approaches are used to implement the MILP and CP
models presented in Section 3. For all three approaches, after
solving the respective MILP or CP model, an output schedule that
shows the mapping of tasks to resources, and the scheduled start
time of the tasks, is generated. In other words, values are assigned
to all the decision variables such that the constraints are satisfied,
and the objective function is optimized. The use of MILP [11]
and CP [13] in our resource management techniques led to an
optimal solution. Thus, the output schedule that is produced is
optimal with regards to the number of jobs that miss their
deadlines. This means that there is no other output schedule that
can produce a lower number of jobs missing their deadlines.

4.1 Approach 1: MILP Model with LINGO
LINGO is a tool used to build, model, and solve optimization

problems (through mathematical programs) developed by LINDO
Systems Inc. [23]. LINGO provides a built-in algebraic modeling
language for expressing optimization models, and a powerful and
efficient solving engine capable of solving a range of
mathematical optimization problems including linear, non-linear,
and integer problems.
 This section briefly discusses how the MILP model was
implemented in LINGO v13.0. More detail on how to use LINGO
can be found in [23]. The LINGO modeling language provides a
data type called Sets that can be used to model a group of related
objects. By using Sets, constraints on the decision variables can be
efficiently and compactly expressed using a single statement.
Each set can have a number of attributes associated with each
member of the set. In the implementation of the MILP model, sets
were used to represent the jobs set J, tasks set T, resources set R,
and time range set I. For example, the task set T is implemented as
follows:
SETS: TASKS: parentJob, type, execTime, resReq;
The parent job attribute identifies which job the task belongs to.
For example, if the parent job attribute of a task is 2, it means that
this task belongs to the job with an id equal to 2. The type
attribute indicates whether the task is a map task (type=0) or a
reduce task (type=1). The execution time and resource
requirement attributes represent et and qt, respectively.
 A representative set of examples of how the constraints of the
MILP model (defined in Table 1) are implemented using LINGO
are presented. Constraint (1a) is implemented as follows:
@FOR(TASKS(t):
 @SUM(TIME(i):
 @SUM(RESOURCES(r): x(t,r,i))) = 1);
The @FOR construct is used to iterate the members of a given set,
and can be used to generate constraints for each member of the
set. As the name suggests, the @SUM construct is a looping
function that calculates the sum of all members in the given set.
The variable x used in the LINGO model has the same role as the
x decision variable discussed in Section 3.1.
 The implementation of Constraint (5a) using LINGO is
presented:
@FOR(RESOURCES(r):
 @FOR(TIME(i):
 @SUM(TASKS(t)| type(t) #EQ# 0:
 @SUM(TIME(i2|(i-execTime(t)) #LT# i2 #AND#
 i2 #LE# i:
 x(t,r,i2)*resReq(t))) <= mapCapacity(r))
);

The @SUM construct uses LINGO’s conditional qualifier
operator (‘|’), which limits the scope of the looping function and
restricts the members of the set that are processed. More
specifically, only the members of the set that evaluate the
conditional qualifier equation to true will be processed. For
example, the first @SUM construct specifies that only tasks with
a type attribute equal to zero (i.e. map tasks) are processed.

An important feature in this implementation is captured in
how constraint (4a) is implemented. LINGO provides an If-Then-
Else flow of control construct, which performs a similar role to
the if-else statements used in general programming languages.
The If-Then-Else construct could have been used to simplify the
implementation of constraint (4a) whose purpose is to set the
decision variable Nj to 1 if the job j misses its deadline. However,
it was determined that using the If-Then-Else construct to
implement constraint (4a) changed the program from a MILP into
a Mixed Integer Non-linear Program (MINLP). MINLPs are
generally more difficult and require more processing time to solve
compared to MILPs [23], and this leads to a longer time before a
solution can be found. Thus, the use of the If-Then-Else construct
was avoided.

4.2 Approach 2: CP Model with MiniZinc
and Gecode

In Approach 2, the CP model is implemented with MiniZinc
1.6 [15], which is an open-source CP-based modeling language
that is designed to efficiently model and express constraint
programming problems. To solve the MiniZinc model, it is first
converted to a FlatZinc [15] model. FlatZinc is a low-level
language that is designed to be easily translated to a form which
CP solving engines can use. One such solving engine that
supports solving FlatZinc models is Gecode 3.7.3 (short for
Generic Constraint Development Environment) [16]. Gecode is an
open-source tool implemented in C++ for solving CP problems.
 This section briefly discusses how the CP model was
implemented using MiniZinc. More detail on how to use the
MiniZinc modeling language can be found in [24]. Similar to
LINGO, MiniZinc also provides a mechanism to group together
closely related data called Sets and Arrays. In MiniZinc, the data
set for tasks is implemented as follows:
set of int: Jobs = 1..NUM_JOBS;
set of int: Tasks = 1..NUM_TASKS;
array [Tasks] of Jobs: parentJob;
array [Tasks] of 0..1: type;
array [Tasks] of int: execTime;
array [Tasks] of int: resourceReq;

First a set of integers, called Tasks, is defined to represent the
indices of the arrays. Next, the attributes of the tasks, which are
the same as those discussed in Section 4.1, are declared using
arrays. The domain of each of the attributes, which is the range of
acceptable values that an attribute can have, is also declared here.
For example, the domain of the parent job attribute is equal to the
set of integers called Jobs, which has a range from 1 to
NUM_JOBS where NUM_JOBS is the number of jobs in the batch
that needs to be executed. As shown, the implementation of data
sets in MiniZinc requires using two data types (sets and arrays),
and is not as compact as the one used in LINGO, but performs the
same function.
 A representative set of examples of how the CP constraints
(defined in Table 2) are implemented using MiniZinc is presented.
In MiniZinc, constraint (2b) is expressed as follows:
constraint forall(j in Jobs) (
 forall(t in Tasks where parentJob[t] == j /\
 type[t]==0) (
 startTime[t] >= releaseTime[j])
);

166

All constraints in MiniZinc, start with the keyword constraint.
The forall construct performs an identical function to LINGO’s
@FOR construct. Similarly, the where keyword in the forall
statement is MiniZinc’s conditional qualifier operator. The /\
operator performs a logical conjunction (logical and) operation.
 A novelty of this implementation is the devising of a modified
cumulative constraint for implementing constraints (5b) and (6b).
The original cumulative constraint provided by MiniZinc [15]
could not be used because it was not able to handle the two
different task types present in MapReduce jobs: map tasks and
reduce tasks. Thus, a modified cumulative constraint, called
mycumulative, is developed that ensures that map tasks and reduce
tasks are only scheduled on the map slots and reduce slots of the
resources, respectively, and also the capacities of the resources are
not violated. The function prototype for the mycumulative
constraint is presented:
predicate mycumulative(array[int] of var int:
 startTime, array[int] of int: execTime,
 array[int] of int: resourceReq, array[int] of
 int: resourceCapacity, array[int,int] of var
 int: x, array[int] of int: type, int: taskType)
The first four parameters: start time of the tasks, execution time of
the tasks, resource requirement of the tasks, and the capacity of
the resources, are the parameters in the original cumulative
function provided by MiniZinc. The new parameters added
include: the matchmaking variable x (discussed in Section 3.2),
the type attribute of the tasks, and a variable taskType which
indicates if the constraint should be computed for map tasks
(taskType=0), or for reduce tasks (taskType=1). Another change
made in mycumulative is that it ensures that the resource
capacities are not violated for all the resources in R, within the
function, which means that the mycumulative constraint needs to
be invoked only once. The cumulative constraint provided by
MiniZinc checks only a single resource within the function, and
thus needs to be invoked separately for each resource.
 A code snippet of the mycumulative constraint is shown:
forall (r in Resources) (
 forall(i in Times) (
 resourceCapacity[r] >=
 sum(t in Tasks where type[t]==taskType) (
 x[t,r]*resourceReq[t]*bool2int(
 startTime[t] <= i /\ i < startTime[t] +
 execTime[t]))
));
The range of times in the Times set is calculated from the lower
bound of the task start times to the upper bound of the task
completion times. The matchmaking variable, x, is used to ensure
that only tasks mapped to the resource of interest are included in
the sum. The bool2int library function converts a Boolean value to
an integer, where true is equal to one, and false is equal to zero.
The bool2int component of the equation is used to ensure that
only tasks that are still executing at the time of interest, i, are
included in the resource capacity calculations.

4.3 Approach 3: CP Model with CPLEX
In Approach 3, the CP model is implemented and solved

using IBM CPLEX 12.5 [17]. More specifically, CPLEX’s
Optimization Programming Language (OPL) [25] is used to
implement the CP model. OPL is an algebraic language
specifically designed for expressing optimization problems, and
therefore is able to provide a natural representation of
optimization models that is more compact and less complex than
using general-purpose programming languages. The OPL model is
then solved using CPLEX’s CP Optimizer constraint
programming solving engine, which provides specialized
variables, constraints, and other mechanisms for modelling and
solving scheduling problems efficiently [26][27]. For example,

the CP Optimizer provides a built-in decision variable data type
called interval that can be used to represent tasks (or activities)
that need to be executed. The interval data type has five attributes:
start time, duration, end time, optionality, and intensity. The
optionality attribute is used to indicate whether or not the interval
is required to be present in the solution. For example, the
optionality attribute can be used to represent optional tasks that
are not required to be executed for the solution to be valid, but can
be executed if the constraints are not violated. The intensity
attribute defines the resource usage or utility of a task over its
interval.

The implementation of the CP model using CPLEX is briefly
discussed. Additional information for expressing CP models in
OPL can be found in [25] and [26]. Similar to the other
approaches, OPL supports using sets and a data type called tuple
which allows related data to be grouped together. For example,
the Tasks set is expressed in OPL as follows:
tuple Task {
 key string id; int parentJob; int type;
 int execTime; int resReq; };
{ Task } Tasks = ...;
First a task tuple is defined, and then this tuple is used to define a
set of Tasks. The task tuple has the same attributes as those
discussed for Approaches 1 and 2, except for an additional field
called id which is required in OPL to uniquely identify the task.
 A key feature of this implementation is that it makes use of
CPLEX’s tuple sets and interval decision variable data type,
which allows the system to use the optimized library functions
and constraints that CPLEX provides, such as the alternative
constraint and pulse function [26]. This in turn allows the system
to efficiently solve the matchmaking and scheduling problem by
reducing processing time and memory requirements [27]. More
specifically, the CP model’s decision variables: at and xtr are
implemented using CPLEX’s interval data type, and are named
taskInterval and xtr, respectively:
dvar interval taskInterval [t in Tasks] size
 t.execTime
dvar interval xtr [o in Options] optional
There is a taskInterval variable for each task that needs to be
mapped and scheduled, and this interval defines the task’s start
time, end time, and execution time. There is also an xtr variable
for each tuple in the Options set, which is a derived set that
contains all the possible combinations of tuples of the form
<Task, Resource>. Note that this interval is optional, which
allows only a subset of the intervals to be present in the final
schedule. By using the interval data type, the implementation can
make use of the optimized library functions that CPLEX provides.
 A representative set of examples of the implementation of the
constraints of the CP model (defined in Table 2) is presented. For
instance, in the OPL model, constraint (1b) is expressed using the
alternative constraint as follows:
forall (t in Tasks)

alternative(taskInterval[t], all(o in Options:
 o.task.id==t.id) xtr[o]);

The alternative constraint is a synchronization constraint that
requires two parameters: an interval i, and a set of intervals S. The
alternative constraint states that the interval i will only be present
in the solution if and only if there is exactly one interval in S
(denoted j) that is also present in the solution. Both intervals i and
j are synchronized meaning they both start and end at the same
time. Thus, it is appropriate to use the alternative constraint to
express constraint (1b), which ensures that each task is assigned to
only one resource. In the example, the set S is produced by using
the all construct invoked with a conditional qualifier (‘:’
operator). More specifically, S is a subset of xtr variables that have
the same id as the task of interest, t.

167

 In the OPL model, constraint (5b) is expressed as follows:
forall (r in Resources) {
 sum (o in Options: o.resource.id ==r.id &&
 o.task.type == 0)
 pulse(xtr[o],o.task.resReq)<=r.mapCapacity; }
The pulse function is used to generate the resource usage of a
task, and requires two parameters: an interval i to represent the
task, and a height value h to indicate the resource usage (i.e.
capacity requirement) required by the task. The pulse function
produces a value as a function of time. When the task is active
(i.e. during the interval between the start and end times), the pulse
function generates a value equal to the supplied value h to indicate
the amount of resource usage of the task, and at all other points in
time, the pulse function generates a value of zero. The expression
for constraint (5b) states that for each resource r, the sum of all
the values produced by the pulse function at each point in time,
must be less than or equal to the map capacity of resource r.

5. PERFORMANCE EVALUATION
To evaluate the system performance achieved with the three

approaches discussed in Section 4, experiments were performed
on a closed system using various batch workloads where each
batch comprised of multiple jobs to execute. Each experiment
concluded after successfully mapping and scheduling all the jobs
in the batch, and an output schedule and completion time of the
batch is determined. Such an experimental environment, based on
a closed system is similar to what is used by [8], [9], and [10], and
is apt for evaluating and comparing the performance (e.g.
processing time) of the modeling techniques and solvers. In future
work, we will investigate techniques to handle an open system
with a stream of job arrivals.

To compare the performance of the three approaches the
following metrics are used:
 Completion time (C): time at which all jobs in the batch

finish executing.
 Processing time (P): time it takes for the solver to read the

input data (job, task, and resource sets), generate the model,
and produce the output schedule that minimizes the number
of late jobs.

 Number of jobs that miss their deadlines (N).
 Size of workload (number of tasks) the approach could

successfully handle.
Note that the system focuses on meeting deadlines of the jobs in
the workload and its primary objective is to minimize N. Ensuring
that C is small is a secondary objective that can be considered
given that the primary objective is achieved.
 The experiments were conducted on a PC with a 3.2GHz Intel
Core 2 Duo CPU and 6.00GB of RAM running under Windows 7
Professional. Lower processing times for obtaining the solutions
can be expected to be achieved by running the solvers on a system
with a faster CPU and more memory. Each experiment was
repeated ten times and the confidence intervals, which were all
less than 8% at a confidence level of 95%, are shown on the
figures as bars originating from the mean value.

5.1 Description of Workloads
 Table 3 presents the system and workload parameters for the
experiments used to compare the three approaches. The workloads
are synthetic workloads, each of which is characterized by a
number of parameters. Similar workloads have been used by other
researchers. For example, the Large 2 workload is adopted from
[10], whereas the other workloads are derived by using the same
distributions as those used in [10].
 A walkthrough of Table 3 is provided. In the ‘Jobs’ column,
the first row defines the number of jobs in the batch (n). The

second and third rows define the earliest start time (sj) and
deadline (dj) of each job j, respectively. The last row(s) of the
Job’s column denotes the number of map tasks (݇

ሻ and reduce
tasks (݇

ௗሻ, respectively, for job j. The next column, ‘Task
Execution Times’, specifies the execution times of map tasks
(݁௧

) and reduce tasks (݁௧
ௗሻ, respectively. The last column,

‘Resources’, defines the number of resources (m) in the resource
set, R. In addition, for each resource r in R, the number of map
slots (ܿ

ሻ and reduces slots (ܿ
ௗሻ are defined. Since the workload

and system parameters are integers, discrete uniform distributions
(DU) are used to generate the values for all parameters except dj.
The calculation of dj uses a uniform distribution (U), which
produces real values, for generating a multiplier for ݁

௫—the
execution time (in seconds) of job j when all tasks are executed
sequentially (i.e. max execution time of job j). To ensure that dj is
an integer, the ceiling function is used at the end of the
calculation. Note that in the ‘Large 2’ row, ݁

௧௧_ (in seconds)
denotes the total execution time of all map tasks of job j.

Table 3: System and Workload Parameters
Workload Jobs, J

(sj and dj in
seconds, s)

Task Execution
Times (in
seconds, s)

Resources,
R

Small 1

n =5:
sj ~ DU(1,50)
dj ~ sj + (݁

௫)*
 U(1,5)

݇
=10, ݇

ௗ=3

݁௧
~ DU(1,15)

݁௧
ௗ~ DU(1,50)

m =10:
ܿ

=2
 ܿ

ௗ=2

Small 2

n =5:
sj ~ DU(1,50)
dj ~ඃݏ ݁

௫ כ
Uሺ1,2ሻඇ

݇
~ DU(1,15)

݇
ௗ~DU(1, ݇

)

݁௧
~ DU(1,15)

݁௧
ௗ~ DU(1,75)

m =25:
ܿ

=2
 ܿ

ௗ=2

Medium

n =10:
sj ~ DU(1,50)
dj ~ ඃݏ ݁

௫ כ
Uሺ1,2ሻඇ

݇
=10

݇
ௗ=5

݁௧
~ DU(1,25)

݁௧
ௗ~ DU(1,75)

m =15:
ܿ

=2
 ܿ

ௗ=2

Large 1

n =2:
s1= 0, s2= 500
dj ~ ඃݏ ݁

௫ כ
Uሺ1,2ሻඇ

݇
=100

݇
ௗ=30

݁௧
~ DU(1,15)

݁௧
ௗ~ DU(1,50)

m =25:
ܿ

=4
 ܿ

ௗ=4

Large 2
(adopted

from [10])

n =50:
sj ~ DU(1,1500)
dj ~ ඃݏ ݁

௫ כ
Uሺ1,2ሻඇ

݇
~DU(1,100)

݇
ௗ~DU(1, ݇

)

݁௧
~ DU(1,10)

݁௧
ௗ ൌ

ೕ
_

ೕ
ೝ

m =50:
ܿ

=2
ܿ

ௗ=2

 The goal of the experiments is to use various workloads with
different characteristics such as the size of the batch, the number
of tasks in a job, and the execution times of tasks, for analyzing
the impact of workload characteristics on performance. For
example, in the Small 1 workload there are five jobs, each job
with 10 map tasks with execution times varying from 1s to 15s,
and three reduce tasks with execution times varying from 1s to
50s. The Large 2 workload comprises 50 jobs with each job
having a varying number of map tasks from 1 to 100, and a
varying number of reduce tasks from 1 to ݆݇

 Thus, on average .݉
the Large 2 workload has about 3750 tasks compared to the Small
1 workload, which has 65 tasks.

168

5.2 Results of Experiments
5.2.1 Small and Medium Workloads
 Figure 2 and Figure 3 present the C and P results,
respectively, for the three approaches when using the small and
medium workloads. In all the experiments performed, the optimal
solution is found in the sense that N is zero. As expected, the
results show that for all three approaches: as the size of workload
increases giving rise to a larger number of tasks, P and C also
increase. From Figure 3, it can be observed that Approach 3
achieves the lowest P (note that the bars are quite small and may
not be visible); however, it also generated an output schedule that
produced the highest C. This can be attributed to the fact that in
Approach 3 the solver produces the first output schedule that
optimizes the objective function (minimizing N) and does not
focus on the minimization of C. The lower P achieved by
Approach 3 can be attributed to the mechanisms that CPLEX’s CP
Optimizer solving engine provides to efficiently solve
matchmaking and scheduling problems, including the use of the
interval decision variables, and functions to operate on those
variables [26] (as discussed in Section 4.3).

Figure 2. Completion time for the small & medium workloads.

Figure 3. Processing time for the small & medium workloads.
 Another observation that can be made from Figure 3 is that
the approaches that implement the CP model (i.e. Approaches 2
and 3) attained a lower P compared to Approach 1, which
implements the MILP model. The reason for this behavior can be
due to the large number of decision variables that the solver for
the MILP model has to generate and solve. Recall that the MILP
model uses a decision variable xtri, and that there is an xtri variable
for each combination of tasks in T, resources in R, and time points
in I. In the CP model there are less decision variables because
there are separate decision variables for matchmaking, xtr, and
scheduling, at. Note that Approach 2 was not able to handle the
Medium workload after a couple of hours of solving. This may be
due to the limitations of the solver from being able to handle such
a large number of tasks to map and schedule on our system, which
leads to a model that contains a large number of decision
variables.

5.2.2 Large Workloads
The C and P results for the three approaches when handling

the large workloads are shown in Figure 4. Approach 2 was not

able to handle these larger workloads for the same reasons as
discussed in Section 5.2.1, and Approach 1 was only able to
generate an output schedule for the Large 1 workload. When
attempting to generate solutions for the larger workloads with
Approaches 1 and 2, the system would eventually run out of
memory, and the solver would crash. The solvers of Approach 1
and 2 could not handle such a large number of decision variables
on our system. The results show that Approach 3 outperforms
Approach 1 for similar reasons as discussed in Section 5.2.1.

Figure 4. Completion time and processing time for the large
workloads.

In order, for Approach 1 to handle the Large 1 workload, the
granularity of I was reduced to decrease the number of decision
variables in the model. Recall from Section 3.1 that Approach 1
requires specifying a set of integers, I, which defines the range of
time (or time slots) during which jobs can be scheduled to start
executing on a resource. The time range can be chosen from time
i=0 to i=MAX_COMP_TIME where MAX_COMP_TIME is the
maximum completion time of the workload given that each job
executes sequentially on the m resources. The granularity of I can
be changed to restrict when jobs can be executed. For example,
the granularity of a set I1={1, 2, 3, …, 100} can be reduced to
I2={2, 4, 6, …, 100}. Note that such a change reduces the number
of members of I by 50%. The more values in I, the longer it takes
for the solver to generate and solve the MILP model used in
Approach 1 because more decision variables are present. The
MILP model has a decision variable, xtri, for each combination of
tasks t in T, resources r in R, and time i in I. As such, the number
of variables that are present in MILP model increases as the
number of tasks, number of resources, or number of time slots
increase.
 For the experiment where Large 1 was being used, the set I
for Approach 1 was set to have 100 time slots with an interval of
25 seconds between each slot: {0, 25, …, 2500}. If reducing the
granularity of I was not done, the MILP model would contain a
very large number of decision variables, and the system would not
have enough memory to find a solution and generate an output
schedule. A disadvantage of reducing the granularity of I is that
this procedure can increase C because some tasks cannot be
scheduled to start executing at their earliest start times. For
example, if a job j has sj =27s, and the time slots have intervals of
25s, the tasks of j cannot be executed until time 50s. Figure 4
shows C for Approach 1 is over 2500s, which is about three times
longer than Approach 3’s C. Therefore, the results show that for
Approach 1, there is tradeoff between being able to handle larger
workloads, and achieving a lower C.

5.2.3 Effect of Workload Parameters
 In this section, the effect of varying different workload
parameters on system performance is discussed. The experiments
conducted in this section are based on the Large 2 workload
(adopted from [10]). Approach 3 was the only approach capable
of handling the larger workloads with up to 100 jobs and 7000
tasks that were experimented with. As discussed in Section 5.2.2,

169

Approaches 1 and 2 could not handle larger workloads because
the system would crash due to lack of memory. Approach 3’s use
of CPLEX’s CP Optimizer solving engine provides mechanisms
and functions to efficiently solve scheduling problems [26]. As
discussed in Section 4.3, implementing the CP model using
CPLEX’s interval decision variables allows the solver to
efficiently use the system memory, which in turn allows larger
workloads to be handled by Approach 3. Note that for all the
experiments discussed in this section N was zero.
 Effect of number of jobs (n): Figure 5 shows C and P when
n is varied for the Large 2 workload. As expected, C increases
with n because there are more jobs to execute. In addition, P also
increases because there are more tasks to map and schedule on the
resources. It is observed P/C, a measure of resource management
overhead, increases with n. This shows that P is increasing at a
faster rate than C. For example, the results show that the highest
P/C is 0.26 (26%), and is achieved when n=100. In some systems,
this scheduling overhead may be too high; however, the overhead
can be tolerated in situations where the task to resource mapping
and scheduling for the batch of jobs is performed offline and the
execution of the batch takes place at a later point in time. When n
is less than 100, P/C is much smaller (0.0196 and 0.06074 for n =
25 and 50, respectively), and thus, in these situations, online
mapping and scheduling can be considered: the solver can be run
as soon as the batch of jobs becomes available on the system
followed by the execution of the batch.

Figure 5. The effect of number of jobs on performance.

 Effect of task execution time: Figure 6 shows P and C when
the upper-bound of the discrete uniform distribution used for
generating task execution times, denoted , is varied for the
Large 2 workload. As shown in Figure 6, P increases with
because there is now a higher chance of tasks having overlapping
execution. Thus, the solver requires more time to decide at what
time and on which resource to execute a task in order to generate
an output schedule that minimizes N. As expected, C also
increases because jobs require more time to execute. However, it
can be observed that P increases at a slower rate compared to C,
and thus, the P/C decreases as increases. The resource
management overhead is observed to be small: P/C varies from
0.0674 to 0.0320 as is changed from 10 to 100 seconds.

Figure 6. The effect of task execution time on performance.

A number of experiments were performed to analyze the
effect of changing the other workload and system parameters,
including: sj, dj, and m on system performance. Due to space
limitations, only a representative set of results is presented. The
following modified versions of the Large 2 workload were used:
(1) Large 2a: same as Large 2, but increases sj to ~DU(1,3000);
(2) Large 2b: same as Large 2, but increases dj to ~ sj + (emax)*
U(1,4); and (3) Large 2c-1, 2c-2, and 2c-3: same as Large 2, but
sets m to 10, 25, and 100, respectively. Figure 7 shows the results
for these additional Large 2 workloads.
 Effect of earliest start time (sj): Figure 7 shows that
increasing sj (see Large 2 and Large 2a) increases C because on an
average, jobs tend to start executing at a later time. Conversely,
increasing sj reduces P. Having a larger range of sj decreases the
chance of jobs having overlapping execution times, and also
reduces the contention for resources. This means that at a given
point in time, there may not be as many concurrent tasks that the
solver has to map and schedule compared to the situation where
the sjs are closer to one another. Thus, the solver is able to quickly
determine an output schedule that ensures that N is minimized.

Figure 7. System performance for the additional Large 2
workloads.
 Effect of deadline (dj): When comparing the Large 2 and
Large 2b workloads of Figure 7, it is observed that increasing dj
reduces P, but increases C. When the deadlines of the jobs are not
as stringent, jobs will have more slack time (also called laxity),
which is defined as the difference between the deadline, and the
sum of the execution time and the earliest start time of the job: dj –
(sj +). The slack time is the extra time a job has to complete
its execution before its deadline. When the slack time is higher,
the solver does not need to spend as much time to generate an
output schedule that minimizes N. The increase in C can be
attributed to the fact that the solver returns the first output
schedule that is able to minimize N, and does not focus on
minimizing C. When the jobs have smaller slack times, the solver
has to ensure that jobs are completed in shorter periods of time,
which in turn reduces C.
 Effect of number of resources (m): Figure 7 shows that
increasing m from 10 to 25 (see Large 2c-1 and Large 2c-2), both
P and C decrease because there are more resources in which to
map and schedule the tasks. Even though there are less decision
variables to generate and solve when m is smaller, the solver
requires more time to determine the best task to map and schedule
on the resources at a given time so that N is minimized. It is
observed that when m is increased from 25 to 50 (Large 2c-2 and
Large 2), P increases because the solver has more decision
variables to generate and solve. However, there are more
resources available to execute the tasks, which leads to a lower C.
Lastly, when increasing m from 50 to 100 (Large 2 and Large 2c-
3), P increases, whereas C stays the same. In this case, the
additional resources cannot be used to further decrease N or C
because both N and C are already minimized, and thus increasing

170

m just increases the number of decision variables that the solver
has to generate and solve, which adds unnecessary overhead, and
leads to higher P. Therefore, it can be observed that for a given
workload, changing m to a value that is too high or too small can
lead to an increase in P. In addition, increasing m tends to reduce
C until m is significantly high and no further improvement in C is
observed.

5.2.4 Summary of Experimental Results
 This section summarizes the key observations made from
analyzing the results of the experiments. Recall that solving an
MILP [11] and CP [13] generates optimal solutions, and therefore
all three approaches generated optimal output schedules with
regards to minimizing N. For the system and workload parameters
experimented with, and for the workloads that the approaches
could handle, optimal output schedules where N=0 were
generated. For workloads in which N was not be zero, a task
mapping and schedule that minimizes N is generated.
 Approach 1: did not perform well in the experiments
compared to the other two approaches. Along with Approach 2,
Approach 1 did generate a schedule that produced the lowest C
for the small workloads; however, for a given workload,
Approach 1 was measured to have a higher P compared to
Approach 2. In addition, for the Medium workload, Approach 1
generated an output schedule with 11.5% lower C compared to
Approach 3, but P was also 375% higher. Lastly, for the Large 1
workload, Approach 1 was outperformed and had higher C and P
compared to Approach 3. Thus, for the system and workload
parameters experimented with, it is not recommended that
Approach 1 be used unless P is not a concern. If, in addition to
meeting deadlines, reducing the completion times for the batch is
important, Approach 1 may be suitable to use in situations in
which the mapping and scheduling for the jobs can be performed
ahead of time (e.g. offline).
 Approach 2: is only able to handle the smaller workloads
(less than 150 tasks) on our system. For a larger value for the
total number of tasks in the batch, Approach 2 could not generate
a schedule because the system used would eventually run out of
memory, and the solver would crash. As discussed, along with
Approach 1, Approach 2 generated an output schedule with the
lowest C for the small workloads. Even though, P was lower
compared to Approach 1, Approach 2’s P is still over 100 times
larger than the P measured for Approach 3. Thus, for the small
workloads, there is a trade-off between having a lower C (using
Approach 2) versus a lower P (using Approach 3). Similar to
Approach 1, Approach 2 can be considered for small workloads
when the resource management can be performed ahead of the
time at which the batch becomes ready to execute.
 Approach 3: In general, the experimental results showed that
Approach 3 performed the best. Regardless of workload size, it
was able to achieve a much lower P compared to the two other
approaches. However, it also generated an output schedule with
slightly higher C. For example, for the Small 2 workload, the C is
1.8 times larger compared to Approaches 1 and 2, however; the P
is over 100 times smaller. On many systems satisfying the
deadlines is sufficient and achieving a small batch completion
time is only a secondary objective. Furthermore, Approach 3 is
able to handle the larger workloads (i.e. Large 2 and above) that
the other two approaches could not handle. In fact, the
experiments described in this paper indicate Approach 3 is able to
handle workloads containing up to 7000 tasks (see Figure 5).
 Overall, the experimental results indicated that Approach 3
would be the best candidate to implement a resource manager that
is capable of handling an open stream of requests arriving on the

system that is being considered for our future research. Approach
3 was the only approach capable of handling the larger workloads,
and was measured to have the lowest P. Having a low P is
important to consider when handling an open stream of job
requests, because a low matchmaking and scheduling overhead is
key to efficiently process incoming requests.

6. CONCLUSIONS
 This paper concerns resource management on clouds in which
the workload includes requests characterized by multiple stages of
execution, and an end-to-end SLA. More specifically, our work
focuses on engineering resource management middleware that can
effectively perform matchmaking and scheduling of MapReduce
jobs, each of which is characterized by an end-to-end SLA
comprising an earliest start time, execution time, and a (soft)
deadline specified by the user. Both the reduction of resource
management overhead as well as achieving high system
performance are objectives of this research. The problem of
matchmaking and scheduling MapReduce jobs with SLAs was
formulated using MILP and CP. The MILP and CP models were
implemented and solved using three approaches: (1) MILP model
implemented and solved using LINGO [6], (2) CP model
implemented using MiniZinc/FlatZinc [7] and solved using
Gecode [8], and (3) CP model implemented and solved using IBM
CPLEX. All three approaches have an associated learning curve
period; however, configuring, implementing, and executing the
models using Approaches 1 and 3 were easier compared to
Approach 2 because both LINGO and CPLEX provide a feature-
rich integrated development environment (IDE), whereas
MiniZinc and Gecode only provide command-line interfaces.
 Solving an MILP or CP model generates optimal solutions,
and therefore all three approaches are able to produce optimal
output schedules with regards to minimizing the number of jobs
missing their deadlines. Our investigation and experiences with
using the various techniques and software packages to formulate
and solve the matchmaking and scheduling problem were
discussed. A number of experiments were performed using
different workloads and parameters to compare the performance
of the three approaches in terms of metrics such as completion
time (C): time at which all jobs in the workload finish executing,
and processing time of the solver (P). Insights into system
behaviour gained from the experimental results for the workload
and system parameters we experimented with are presented.
 Approach 3 is observed to achieve the lowest P compared to

the two other approaches; however, it also generated an output
schedule that produced the highest C. In addition, Approach 3
was the only approach able to handle the larger workloads (over
1000 tasks in the workload, described in Section 5.2.3).

 Approaches 1 and 2 each had a case where they were able to
generate an output schedule that had the lowest C; however, the
P in these cases is much higher compared to Approach 3.

 The results show that Approaches 2 and 3, which use CP, have
lower P compared to Approach 1, which uses MILP.

 Approach 3 was observed to effectively handle the Large 2
workload that was adopted from [10]: the processing time was
only 6.7% of the batch completion time.

 A more detailed analysis of Approach 3 that includes the
effect of larger workloads was performed and the insights gained
are discussed.

 Both P and C are observed to increase when the number of jobs
(n) in the workload increases. The P to C ratio, denoted P /C,
which is an indicator for the mapping and scheduling overhead,
also increases with n. However, when n <=75 it was found that
P /C was reasonably small: less than 0.13.

171

 When execution time of tasks increases, both P and C increase
as well; however, in this case, P /C decreases as execution time
of tasks increase.

 For a given workload, if the number of resources in the system
(m) is too small or too high, P tends to increase, but having a
higher m typically can generate an output schedule with lower
C until a point where C can no longer be decreased. Increasing
m when the workload does not require it (i.e. number of tasks is
not sufficiently large), tends to increase P.

 Increasing the deadline of the jobs (dj) reduces P, but increases
C. Similarly, increasing the earliest start times of the jobs (sj)
decreases P, and tends to increase C as well.

If minimizing the number of jobs missing their deadlines is
the sole objective, Approach 3 that is able to handle workloads
with over 1000 tasks seems to be the most suitable because of the
lower P. However, it was observed that using Approach 3 leads to
a slightly higher C in comparison to the other approaches. Based
on the results of the experiments described in this paper, it was
found that Approaches 1 and 2 are most useful in cases where the
workloads are smaller (a few hundred tasks), and there is
sufficient time to perform the resource management decisions
(e.g. offline, where processing time is not a concern). Approach 3
would be best suited to implement a resource manager that can
perform matchmaking and scheduling of an open stream of
MapReduce jobs with end-to-end SLAs. Such a resource manager
warrants further investigation. Our plans for future research also
includes refining the optimization models to consider more
advanced features for resource management of MapReduce jobs
including data locality and speculative execution (backup tasks)
[5]. Evaluation of the three approaches in the context of more
complex and real workloads, and investigating techniques for
handling node failures, which are important for large systems,
form important directions for future research as well.

7. ACKNOWLEDGMENTS
We are grateful to Huawei Technologies, Canada, and the
Government of Ontario for supporting this research.

8. REFERENCES
[1] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., and

Brandic, I. 2009. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation Computer Systems. 25,
6 (June 2009), 599-616.

[2] Heinz, S., and Beck, J.C. 2011. Solving resource
allocation/scheduling problems with constraint integer
programming. In Proc. of Workshop on Constraint
Satisfaction Techniques for Planning and Scheduling
Problems (COPLAS) (12-13 June 2011). 23–30.

[3] Hooker, J.N. 2005. Planning and scheduling to minimize
tardiness. In van Beek, P., ed., Principles and Practice of
Constraint Programming. Vol. 3709 of LNCS (2005). 314–
327.

[4] Verma, A., Cherkasova, L., Kumar, V.S., and Campbell,
R.H. 2012. Deadline-based workload management for
MapReduce environments: Pieces of the performance puzzle.
In Proc. of Network Operations and Management
Symposium (NOMS) (16-20 April 2012). 900-905.

[5] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified
data processing on large clusters. International Symposium
on Operating System Design and Implementation (December
2004). 137–150.

[6] The Apache Software Foundation. Hadoop. Available:
http://hadoop.apache.org.

[7] Apache. Hadoop Wiki. Available:
http://wiki.apache.org/hadoop/PoweredBy

[8] Kc, K., and Anyanwu, K. 2010. Scheduling Hadoop Jobs to
Meet Deadlines. In Proc. of International Conference on
Cloud Computing Technology and Science (CloudCom)
(Nov. 30 2010-Dec. 3 2010). 388-392.

[9] Dong, X., Wang, Y., and Liao, H. 2011. Scheduling Mixed
Real-Time and Non-real-Time Applications in MapReduce
Environment. In Proc. of International Conference on
Parallel and Distributed Systems (ICPADS) (7-9 Dec. 2011).
.9-16.

[10] Chang, H., Kodialam, M., Kompella, R.R., Lakshman, T.V.
Lee, M., and Mukherjee, S. 2011. Scheduling in mapreduce-
like systems for fast completion time. In Proc. of IEEE
INFOCOM (10-15 April 2011). 3074-3082.

[11] Bosch, R. and Trick, M. 2005. Integer programming. Search
Methodologies. Springer US (2005). 69-95.

[12] Chinneck, J.W. 2004. Chapter 13: Binary and Mixed-Integer
Linear Programming. Practical Optimization: a Gentle
Introduction (2004). Available: http://www.sce.carleton.ca/
faculty/chinneck/ po.html

[13] Rossi, F., Beek, P., and Walsh, T. 2008. Chapter 4:
Constraint Programming. Handbook of Knowledge
Representation (2008). 181-211.

[14] Lindo Systems Inc. Lindo Systems – Optimization Software.
Available: http://www.lindo.com/.

[15] NICTA. MiniZinc and FlatZinc. Available:
http://www.MiniZinc.org/.

[16] Gecode. Generic Constraint Development Environment.
Available: http://www.gecode.org/.

[17] IBM. IBM ILOG CPLEX Optimization Studio. Available:
http://www-03.ibm.com/software/products/us/en/
ibmilogcpleoptistud

[18] Lustig, I. J., and Puget, J.-F. 2001. Program Does Not Equal
Program: Constraint Programming and Its Relationship to
Mathematical Programming. INTERFACES. 31, 6 (Nov.-
Dec. 2001). 29-53.

[19] Refalo, P. 2000. Linear formulation of constraint
programming models and hybrid solvers. Principles and
Practice of Constraint Programming–CP 2000. Springer
Berlin Heidelberg (2000). 369-383.

[20] Beldiceanu, N. and Demassey, S. Global Constraint Catalog.
Available: http://www.emn.fr/z-info/sdemasse/gccatold/
Ccumulative.html.

[21] Udupi, Y. and Dutta, D. Business Rules and Policies driven
Constraints-based Smart Resource Placement in Openstack.
White Paper. Cisco.

[22] Van den Akker, J. M., Hurkens, C., and Savelsbergh, M.
2000. Time-indexed formulations for machine scheduling
problems: Column generation. INFORMS Journal on
Computing. 12.2 (2000). 111-124.

[23] LINDO Systems Inc. 2011. LINGO 13.0: User’s Guide.
[24] Marriott, K., Stuckey, P.J., Koninck, L.D., and Samulowitz,

H. 2012. An Introduction to MiniZinc Version 1.6.
[25] IBM. 2009. IBM ILOG OPL Language Reference Manual.

White Paper. IBM Corporation (2009).
[26] IBM. 2010. Detailed Scheduling in IBM ILOG CPLEX

Optimization Studio with IBM ILOG CPLEX CP Optimizer.
White Paper. IBM Corporation (2010).

[27] Dong, T. 2009. Efficient modeling with the IBM ILOG OPL-
CPLEX Development Bundles. White Paper. IBM
Corporation (December 2009).

172

