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ABSTRACT 
This paper focuses on devising efficient resource management 
techniques used by the resource management middleware in 
clouds that handle MapReduce jobs with end-to-end service level 
agreements (SLAs) comprising an earliest start time, execution 
time, and a deadline. This research and development work, 
performed in collaboration with our industrial partner, presents 
the formulation of the matchmaking and scheduling problem for 
MapReduce jobs as an optimization problem using: Mixed Integer 
Linear Programming (MILP) and Constraint Programming (CP) 
techniques. In addition to the formulations devised, our 
experience in implementing the MILP and CP models using 
various open source as well as commercial software packages is 
described. Furthermore, a performance evaluation of the different 
approaches used to implement the formulations is conducted using 
a variety of different workloads. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems. C.4 [Performance of Systems]: performance attributes, 
modeling techniques.  

Keywords 
Resource management on clouds, MapReduce with deadlines, 
Optimization, Mixed integer linear programming (MILP), 
Constraint programming (CP). 

1. INTRODUCTION 
Cloud computing, which concerns improving the way 

Information Technology (IT) is managed and consumed is 
receiving a great deal of interest  from researchers and practioners  
from academia and industry. Cloud computing makes 
computational (hardware and software) resources accessible as 
scalable and on-demand services over a network such as the 
Internet [1]. To accomplish this goal, the cloud computing 
paradigm employs a wide-range of concepts and technologies 
such as virtualization, service-orientation, elasticity, scalability, 
and pay-as-you-go. Using the virtualization technology, cloud 
computing is able to deliver an on-demand, service-oriented 
model that offers: Infrastructure-as-a-Service (IaaS), Platform-as-

a-Service (PaaS), and Software-as-a-Service (SaaS). IaaS delivers 
basic computational resources (virtual machines) as an on-demand 
service whereas PaaS offers a higher-level service (e.g. 
application framework with development tools) where consumers 
can create and deploy their own scalable Web applications 
without having to invest in and maintain their own physical 
infrastructure. Lastly, SaaS provides consumers with complete 
end-user Web applications. Communication and social 
applications such as Customer Relationship Management (CRM) 
systems, email, and Facebook are examples of SaaS. Along with 
an on-demand service-oriented model, cloud computing also 
offers scalability, elasticity, and pay-as-you-go features. The 
scalability and elasticity characteristics of the cloud provide the 
ability to grow or shrink the number of resources allocated to a 
consumer’s request dynamically with time. With the pay-as-you-
go model, consumers can lease resources on-demand from the 
service provider and pay only for the time the resources are used. 

In addition to researchers and service consumers, cloud 
computing that is based on resources acquired on demand is 
generating a great deal of interest among service providers and 
system builders as well. Cloud service providers typically own a 
large pool of resources that include computing, storage, and 
communication resources. Effective resource management 
strategies and performance optimization techniques need to be 
developed for harnessing the power of the underlying resource 
pool. The important operations performed by a resource manager 
deployed in the resource management middleware for a cloud 
include: matchmaking and scheduling. When a request arrives, the 
resource manager invokes a matchmaking algorithm that selects 
the resource or resources (from a given a pool of resources) to be 
allocated to the request. Once a number of requests get allocated 
to a specific resource, a scheduling algorithm is used to determine 
the order in which these requests are to be executed. Both 
matchmaking and scheduling are well known as computationally 
hard problems because they need to satisfy a user’s requirements 
for a quality of service that is often captured in a service level 
agreement (SLA); while also achieving the desired system 
objectives for the service providers, such as generating a high 
resource utilization and adequate revenue. Matchmaking and 
scheduling decisions can be made in one joint step (see [2] and [3] 
for example). The resource management technique presented in 
this paper makes such a joint decision on matchmaking and 
scheduling. Note that in this paper the term output schedule is 
used to define the task to resource mapping, and when each task 
runs on their assigned resource. 

Both performance optimization and performance modeling 
are important components of performance engineering. This 
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research concerns engineering resource management middleware 
that has two primary objectives: reducing the overhead of making 
resource management decisions and making decisions that 
achieve high system performance. This paper focuses on the 
investigation of techniques for management of resources on 
clouds in which the workload includes requests characterized by 
an end-to-end SLA [1] that comprises an earliest start time, 
execution time, and (soft) deadline [4] specified by the user. On 
systems with soft deadlines, jobs are permitted to miss their 
deadlines; however, the desired system objective is to minimize 
the number of jobs that do miss their deadlines.  In addition, these 
requests also require multiple stages of execution with potentially 
different resources used in each stage. Considering these types of 
requests poses a new challenge to the resource management 
problem. Most of the works on resource management on clouds 
for workloads characterized by SLAs have only considered 
requests that require a single resource (i.e. single stage of 
execution). A scenario that involves reserving multiple resources 
simultaneously is important in the context of applications that 
require multiple system components, and can also arise from 
workflows that require the interaction of multiple applications that 
run on different resources. In this context, the workloads that are 
considered in this paper consist of MapReduce jobs.  

MapReduce is a programming model that is characterized by 
multiple stages of execution and requires that the user define two 
functions [5]: a map function and a reduce function. Google 
proposed the use of MapReduce for processing large amounts 
(e.g. terabytes) of raw data in a distributed (parallel) manner to 
generate or derive more meaningful data [5]. The map function 
generates a set of intermediate key/value pairs from a set of input 
key/value pairs. These intermediate key/value pairs are grouped 
together and then passed to the reduce function where the values 
with identical keys are merged. A typical MapReduce job consists 
of a set of map tasks and a set of reduce tasks. The reduce tasks 
generally do not start executing until all map tasks are completed. 
Many computations can be expressed using MapReduce. For 
example, a MapReduce application can be deployed to count the 
number of URL accesses on a web server [5]. In this application, 
the map function processes the web server logs and produces a 
data set with an intermediate key/value pair of the form: {URL, 
1}. This new data set is then processed by the reduce function, 
which sums all the values with identical keys to emit a new data 
set with the following key/value pair: {URL, total count}.  

A popular implementation of MapReduce is Apache Hadoop 
[6], which is used by many companies and institutions for a 
variety of applications such as data processing (e.g., sorting, 
indexing, and grouping), data analysis, data mining (e.g. web 
crawling), machine learning, and scientific research (e.g. 
bioinformatics) [7]. In all these cases, there may be situations 
where a batch of MapReduce jobs needs to be executed either on a 
private cluster, or a cloud (such as Amazon EC2). On both 
systems, matchmaking and scheduling a batch of MapReduce jobs 
needs to be performed by the resource management middleware. 
Completing each job in the batch within a specific period of time 
(characterized by a deadline) is often a user requirement [4][8].  
Resource management on such an environment is the focus of 
attention in this paper. Similar systems that map and schedule a 
batch of MapReduce jobs are investigated in [8], [9], and [10]. 

The goal of our research, performed in collaboration with 
Huawei Technologies, Canada, is to devise a cloud resource 
manager that can effectively perform matchmaking and 
scheduling of MapReduce jobs each of which is characterized by 
an end-to-end SLA comprising an earliest start time, execution 

time, and a deadline specified by the user. In this paper, we focus 
on describing our investigation and experiences with using 
various techniques and technologies to formulate and solve the 
matchmaking and scheduling problem. Figure 1 displays the three 
different approaches that are used for solving the matchmaking 
and scheduling problem. As shown in Figure 1, we formulate the 
matchmaking and scheduling problem as an optimization 
problem, and solve the matchmaking and scheduling problem 
jointly. More specifically, we describe our investigation/ 
experience in formulating the problem using: (1) Mixed Integer 
Linear Programming [11][12] (MILP), and (2) Constraint 
Programming [13] (CP) techniques. Both MILP and CP are well-
known theoretical techniques that can solve optimization 
problems and find optimal solutions. See Section 2 for a further 
discussion on MILP and CP. Various implementations of our 
solutions based on MILP and CP using different software 
packages are considered: Approach 1: MILP model implemented 
and solved using LINGO [14] (commercial software); Approach 
2: CP model implemented using MiniZinc/FlatZinc [15] and 
solved using Gecode [16] (both open source software); and 
Approach 3: CP model implemented and solved using IBM ILOG 
CPLEX Optimization Studio (CPLEX) [17] (commercial 
software).This paper is motivated by issues such as: 
 How to employ the existing theory on MILP and CP for 

devising efficient resource management algorithms that 
minimize the number of jobs missing their deadlines on a 
closed system subjected to a batch workload comprising 
MapReduce jobs with deadlines. 

 Development of efficient implementations of the algorithms 
using Commercial-Off-The-Shelf (COTS) packages that 
produce an acceptable system overhead accrued during the 
execution of the resource management algorithms. 

 Getting an understanding of the relationship between the size 
of the workload and system performance. 

A separate set of experiments is performed for evaluating the 
performance of each approach. The inputs used for a given set of 
experiments include a set of Jobs, J, and a set of resources, R, on 
which to execute J (see Figure 1). The MILP/CP solver program 
corresponding to the embodiment of an approach is executed on a 
desktop PC (described in Section 5). As captured in Figure 1 the 
output schedule (the mapping of tasks on resources and their 
assigned start times), along with the time required to complete the 
execution of the batch of MapReduce jobs, and the number of jobs 
missing their deadlines are obtained as an output at the end of a 
given experiment. The processing time required by the solver to 
produce the output is also measured by using the solver’s built-in 
timing utilities. A performance evaluation was conducted to 
compare the three approaches using various system and workload 
parameters. Our goal is to determine which of these approaches is 
able to solve the matchmaking and scheduling problem for 
MapReduce jobs efficiently, and understand the trade-off between 
processing time and the quality of the output schedule in terms of 
the number of jobs missing their deadlines, and the completion 
time of the workload. The main contributions of this paper 
include: 
 Devising a technique for generating an optimal solution that 

minimizes the number of jobs missing their deadlines. The 
formulation of two models, one using MILP and one using 
CP, for achieving the optimal solution for matchmaking and 
scheduling MapReduce jobs with SLAs are presented. 
o A comparison of MILP and CP, focusing on the 

differences in using these two techniques for achieving the 
resource management technique. 
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 A discussion of the three approaches used to implement the 
MILP and CP models is presented. 

 A performance evaluation of the three approaches using a 
variety of different system and workload parameters is 
presented. Insights gained into system behavior from the 
results of the performance evaluation are described. 

The results of this research will be useful to researchers, 
designers, and users of the resource management middleware, 
including system developers and cloud service providers. 
 The rest of the paper is organized as follows. Section 2 
provides a brief introduction to MILP and CP, and presents 
related work. Section 3 presents the problem description, and the 
formulations of the MILP and CP models. The design and 
implementation of the MILP and CP models using the three 
software packages are discussed in Section 4. In Section 5, the 
results of the performance evaluation, and a comparison of the 
performance of the three approaches are presented. Lastly, Section 
6 concludes the paper and provides directions for future work.  

2. BACKGROUND AND RELATED WORK  
 MILP [11] and CP [13] are well-known techniques that are 
used to solve optimization problems, and are capable of finding 
optimal solutions with regards to maximizing or minimizing an 
objective function. Both techniques have the same general 
modeling structure. There are a set of decision variables that need 
to be assigned values that ensure an objective function is 
optimized (maximized or minimized) subject to constraints—
conditions that cannot be violated. In addition, both MILP and CP 
have been shown to be effective in solving planning and 
scheduling problems, such as the traditional job shop scheduling 
problem [3]. MILP is a subfield of mathematical programming 
(MP) (also called mathematical optimization) where the model 
has the following characteristics: (1) some of the decision 
variables must be integers, and (2) the objective function and 
constraints are mathematically linear [12].  The theoretical basis 
for MILP and mathematical optimization in general is numerical 
algebra [18]. To solve MILP models, techniques such as cutting-
planes (constraint relaxations) and Branch and Bound are used. 
 CP was developed by computer science researchers in the 
mid-1980s by combining knowledge and techniques from 
artificial intelligence, logic and graph theory, and computer 
programming languages [13]. This theoretical foundation for CP 
is different than the theoretical foundation for MP techniques, 
such as MILP [18]. Unlike MILP models, CP models natively 
support a variety of arithmetic operators and logical constraints 
such as integer division, and the ‘implies’ constraint [19]. To 

formulate logical constraints in a MILP model, the ‘big-M’ 
formulation technique [11] is typically used [19]. CP also defines 
a general set of specialized constraints, called global constraints 
that model frequently used patterns seen in optimization problems 
[20]. For example, one such constraint is the cumulative constraint 
which is used in scheduling problems to ensure that the capacity 
of each resource is not violated at any point in time.  

 The main limitation of CP models is that, natively, the 
decision variables can only be discrete (i.e. integer or Boolean) 
[13], whereas MP models support both discrete and continuous 
decision variables. The theoretical basis for solving MP models is 
numerical algebra; in contrast, for CP models the theoretical basis 
is logical inference including logic and graph theory. Search 
algorithms, including back-tracking and local search [13], are 
commonly used to solve CP models. The general idea in these 
search algorithms is to use logical inferences to assign values to 
the decision variables, and then to evaluate if the new values of 
the decision variables produce a better output (higher value if 
maximizing or lower value if minimizing) for the objective 
function. 

 A significant body of knowledge exists in the area of 
resource management on grids and clouds. More recently, 
researchers have also started investigating the problem of 
scheduling and matchmaking MapReduce jobs with deadlines. 
Due to space limitations, a representative set of work is presented. 
Development of a resource management middleware for clouds 
that is able to make smart and global decisions for achieving high 
system performance is being considered in OpenStack [21], which 
is collaborative open-source cloud software project. The authors 
of [8], propose a Deadline Constraint Scheduler for Hadoop [6] to 
handle jobs with deadlines. A job execution cost model that 
considers parameters including the execution time of map and 
reduce tasks, and input data sizes is developed. Dong et al. [9] 
focus on the scheduling of workloads comprising of MapReduce 
jobs with deadlines (real-time jobs) and jobs with no deadlines 
(non-real-time jobs). They integrate techniques such as Tasks 
Forward Scheduling (TFS) and Approximately Uniform 
Minimum Degree of Parallelism (AUMD) into the existing 
Hadoop scheduler to form a two-level scheduler that is capable of 
scheduling both real-time and non-real-time jobs. In [4], Verma et 
al. propose two resource allocation policies based on the earliest 
deadline first (EDF) strategy for Hadoop. The first policy is 
MinEDF, which allocates the minimum number of task slots 
required for completing a job before its deadline. The second 
policy, called MinEDF-WC, enhances MinEDF by adding the 

Figure 1. Overview of our approach. 
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ability to dynamically allocate and de-allocate resources (task 
slots) from active jobs according to demand.  
 Similar to our research, the works discussed in [4], [8], and 
[9] investigate matchmaking and scheduling MapReduce jobs 
with deadlines. However, these works propose heuristic-based 
schedulers whereas our work describes using optimization 
techniques that can generate optimal solutions. These works also 
do not consider jobs characterized with earliest start times, which 
can be important in the context of advance reservation requests. In 
addition, the focus of [4], [8], and [9], is on improving the Hadoop 
[6] scheduler, which is an open source framework that implements 
the MapReduce programming model. The research described in 
this paper describes solutions for the general matchmaking and 
scheduling problem for MapReduce jobs with deadlines. 

3. PROBLEM DESCRIPTION AND 
MODEL FORMULATIONS 

This section describes the modeling of matchmaking and 
scheduling MapReduce jobs with end-to-end SLAs comprising an 
earliest start time, execution time, and a deadline. First, a model 
of the MapReduce matchmaking and scheduling problem is 
presented (Input box of Figure 1). The formulations of the MILP 
and CP models are then described in Sections 3.1 and 3.2, 
respectively. A general matchmaking and scheduling problem 
requires two components for input data: a workload component, 
and a system component [2]. The workload data component 
outlines the characteristics of the jobs, whereas the system data 
component defines the attributes of the resources that the jobs will 
be executed on. 

In our model, each MapReduce job j in the set of jobs, J, 
needs to mapped and scheduled on a cloud environment with m 
resources (or computing nodes), which is represented by a set 
ܴ ൌ  ሼݎଵ, ,ଶݎ … ,  ሽ. Each resource r in the set R has: (1) a mapݎ
task capacity (or number of map slots),ܿ

, and (2) a reduce task 
capacity (or number of reduce slots),ܿ

ௗ. The map and reduce task 
capacities specify the number of map and reduce tasks, 
respectively, that each of the resources can execute in parallel at a 
point in time.  In addition, the map task slots are independent from 
the reduce tasks slots, which means that a map task can be run at 
the same time that a reduce task is executing. 

The workload comprises a set (batch) of MapReduce jobs to 
schedule, ܬ ൌ  ሼ݆ଵ, ݆ଶ, … , ݆ሽ  where n is the number of jobs in the 
set. Each job j in the set J has the following: 
 A set of map tasks ܶ

  ൌ ሼݐ,ଵ
, ,ଶݐ

, … ݐ
,ೕ


 ሽ where 

݇
denotes the number of map tasks that are in job j.  

 A set of reduce tasks ܶ
ௗ  ൌ ሼݐ,ଵ

ௗ, ,ଶݐ
ௗ, … ,ೕݐ

ೝ
ௗ ሽ where ݇

ௗ
 

denotes the number of reduce tasks in job j.  
 A set ܶ ൌ ሼ ܶ

, ܶ
ௗሽ contains all tasks for job j.  

 Earliest start time for the job, ݏ 
 Deadline for the job, ݀, by which the job should be completed 

(i.e. soft deadline). 
Each task t in Tj has the following attributes: (1) a required 
execution time,݁௧, and (2) a resource capacity requirement, ݍ௧. 
Note that typical map and reduce tasks only require executing on 
one resource slot [4]. As such,  ݍ௧ is typically set to one. All the 
tasks of all jobs are placed in a master set T. 
 The requirements for mapping and scheduling the set of jobs J 
on to the set of resources R are summarized. Each task t in Tj can 
only be scheduled to start at, or after job j’s earliest start time, sj. 
Secondly, each task t in T can only be mapped to a single resource 
r where t executes on r for et time units.  Map tasks and reduce 
tasks can be executed in parallel, however, all the map tasks have 

to be completed before the reduce tasks can start executing. 
Furthermore, at each point in time, the capacity limits of the 
resources cannot be violated (i.e. a resource cannot be assigned to 
run more tasks in parallel than it can handle). The system 
objective for the resource manager (objective function) is to 
minimize the number of jobs that miss their deadlines (i.e. 
minimize the number of late jobs). 

3.1 Formulation of the MILP Model 
 The MILP model uses a time-indexed formulation [22], which 
is a commonly used model for formulating scheduling problems 
that considers discrete time (i.e. integer values for time). The 
discrete time values are contained in a set I called the time range. 

Although, time is a continuous variable, discrete time values can 
be considered by changing the unit of time. For example, if the 
execution of a task takes 5.1 seconds, the time can be converted 
into a discrete time value by changing it to 5100 milliseconds. In 
some cases, if the length of times are very different (e.g., 0.1s 
versus 103s), it may not best to change the unit of time because the 
converted values can be quite large (e.g. 0.1s becomes 100ms and 
103s becomes 106ms). In these cases, it may be more appropriate 
to round the non-discrete time values to the nearest higher integer. 
For instance, the 0.1s can be rounded up to 1s. 
 Table 1 presents the formulation of the MILP model. Recall 
that the input of the MILP model comprises a set of resources R 
on which to execute a set of jobs J, and that a set T contains all 
tasks of all jobs in J. The following decision variables are defined 
in the MILP model: 
 A binary variable, ݔ௧ where ݔ௧= 1 if task t is assigned to 

start executing on resource r at time i; otherwise, ݔ௧= 0. 
There is an xtri variable for each combination of tasks in T, 
resources in R, and times in I.  

 A binary variable, Nj, that denotes if a job misses its 
deadline, dj. The variable Nj=1 if job j misses its deadline; 
otherwise Nj=0. There is an Nj variable for each job in J. Nj is 
initially set to zero for all jobs. 

Table 1: Formulation of the MILP Model 

݁ݖ݅݉݅݊݅ܯ  ܰ

א

  such that  

  ௧ݔ ൌ 1
אோאூ

    ݐ א ܶ (1a) 

ቀሺ݅| ௧ݔ ൌ 1ሻ  ݏ ݐ    א ܶ
, ݎ א ܴ, ݅ א ቁܫ ݆       א  (2a) ܬ

ቌ
݅| ௧ݔ ൌ 1  max

௧ᇲא ೕ்
, ᇲאோ,ᇲאூ

ሺሺ݅ᇱ|ݔ௧ᇲᇲᇲ ൌ 1ሻ  ݁௧ᇲሻ   

ݐ א ܶ
ௗ, ݎ א ܴ, ݅ א ܫ

ቍ ݆ א  (3a) ܬ

ቆ ܰ ݀  max
௧א ೕ்

ೝ, אோ,אூ
൫ሺ݅| ௧ݔ ൌ 1ሻ  ݁௧൯ െ ݀ቇ ݆   א  (4a) ܬ

  ௧ݍ௧ᇲݔ  ܿ


ᇲאூೝ
்א௧כ

ݎ  א ܴ, ݅  א   ܫ

where  כܫ
௧ ൌ ሼ݅ᇱ|݅ െ ݁௧ ൏ ݅ᇱ  ݅ሽ  

(5a) 

Same as (5) but for reduce tasks. (6a) 

௧ݔ א ൛0, 1ൟ           ݐ א ܶ, ݎ   א ܴ, ݅  א  (7a)  ܫ

ܰ א ሼ0, 1ሽ           ݆ א  (8a) ܬ

݅ א Ժ (9a) 

 Constraint (1a) specifies that each task t in T is executed only 
on a single resource. This is accomplished by summing all the xtri 

variables for each task t, and ensuring that the sum is equal to one. 
Guaranteeing that the assigned start time of all the map tasks is 
after the job’s earliest start time (sj) is captured by constraint (2a). 
Constraint (2a) requires iterating through all the xtri variables, 
specifically focusing on the variables that represent map tasks of 
the jobs ( ܶ

). Furthermore, only the variables where xtri=1 are of 
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interest because these are the variables that define the assigned 
start time i of task t on resource r. Recall that constraint (1a) 
ensures that each task t has only one xtri variable equal to one. 
Thus, the term ൫݅| ݔ௧ ൌ 1൯ identifies the scheduled start time of 
task t, which is at time i. 
 Constraint (3a) ensures that the reduce tasks are scheduled to 
start only after all map tasks are completed. This is accomplished 
by iterating through all reduce tasks of a job j ( ܶ

ௗ), and ensuring 
that the start time of the reduce task is after the completion time of 
the latest finishing map task (LFMT) of job j. To calculate the 
completion time of the LFMT, the equation 
max௧ᇲא ೕ்

, ᇲאோ,ᇲאூ ሺሺ݅ᇱ|ݔ௧ᇲᇲᇲ ൌ 1ሻ  ݁௧ᇲሻ is used. This equation 

iterates through all map tasks and calculates the completion time 
of the task: sum of start time ሺ݅ᇱ|ݔ௧ᇲᇲᇲ ൌ 1ሻ and the execution 
time (݁௧ᇲሻ. The max function returns the maximum value from a 
given set of values. Constraint (4a) states that Nj, which is initially 
set to zero, should be changed to one if job j misses its deadline. A 
job j misses its deadline if the completion time of the latest 
finishing reduce task (LFRT) in job j is after the job’s deadline 
(dj). To ensure that Nj is set to one if j misses its deadline, the left-
hand side (LHS) is the product of Nj and dj , and this value must 
not be less than the right-hand side (RHS), which is equal to the 
completion time of the LFRT minus dj. For example, if job 1 has 
d1=30s, and the LFRT is 35s, which means job 1 missed its 
deadline, the RHS is equal to 5s, and the LHS evaluates to 0 since 
Nj is initially set to zero. To ensure that the LHS is greater than or 
equal to the RHS, Nj will have to be changed to one, such that the 
LHS=30, which is greater than the RHS=5. 
 Making sure that the map and reduce task capacities of each 
resource are not violated at any point in time is captured by 
constraints (5a) and (6a), respectively. Constraints (5a) and (6a) 
use an integer set  כܫ

௧ that is defined to contain the assigned start 
time of task t, if and only if, at time point i, t is still executing on 
resource r.  This set כܫ

௧ is used to ensure that only tasks still 
executing at a point in time i are included in the calculations to 
determine the number of tasks that are executing on a resource at 
time i. The total number of tasks executing on a resource r, at any 
point in time, must not exceed the capacity of the resource (cr). As 
shown in Table 1, כܫ

௧ is a set of integers defined as follows: 
ሼ݅ᇱ|݅ െ ݁௧ ൏ ݅ᇱ  ݅ሽ where ݅ᇱ represent the values in the set כܫ

௧. 
The following example task is used to explain the use of כܫ

௧ set. 
A task, denoted t1, has an execution time et1=5s, and the decision 
variable xtri=1 (task t is assigned to start executing on resource r at 
time i) has the following values for its indices: t=t1, r=r1, i=23, 
and thus, ݔ௧ଵ,ଵ,ଶଷ ൌ 1. Given the values for t1 described, and the 
current time of interest is i=25s, the set כܫ

௧ ൌ כܫ
௧ଵ,ଵ,ଶହ will have 

the following values {21, 22, 23, 24, 25}. As shown, this set does 
contains the assigned start time of t1, i=23s. Lastly, constraints 
(7a) to (9a) specify the valid domain of the decision variables, 
which restrict the values that the respective variables can have.   

3.2 Formulation of the CP Model 
 The formulation of the CP model is presented in Table 2. 
Similar to the MILP model, the input of the CP model comprises a 
set of resources R on which to execute a set of jobs J. Recall, also 
that a set T contains all tasks of all the jobs in J. The CP model has 
the following decision variables: 
 A binary variable, ݔ௧, which  is set to one if task t is assigned 

to resource r; otherwise, ݔ௧ ൌ 0 (used for matchmaking). 
There is an xtr variable for each combination of tasks in T, and 
resources in R. 

 An integer variable, ܽ௧, specifies the assigned (or scheduled) 
start time of a task t (used for scheduling). There is an at 
variable for each task in T. 

 A binary variable, ܰ , which is set to one if job j misses its 
deadline; otherwise, ܰ is set to zero. An Nj variable is defined 
for each job in J. 

The CP constrains are expressed differently than the MILP 
constraints, but perform the same role as the constraints for the 
MILP model.  The reason for the differences is because the CP 
model defines a separate decision variable for the assigned start 
time of the tasks (at), as well as makes use of CP’s global 
constraints, and native support for mathematical operators. 
Constraint (1b) iterates through all tasks in T and ensures that 
each task is mapped to only one resource. Similar to constraint 
(1a), this is done by summing all the xtr variables of a given task t, 
and ensuring the sum is equal to one. Constraint (2b) specifies that 
the scheduled start time of each map task in a job j (at) is at or 
after job j’s start time (sj). Constraint (3b) states that the scheduled 
start time of each reduce task of a job j (denoted ܽ௧ᇲ ) is at or after 
the completion time of the LFMT, which is calculated using the 
max function in a similar manner as explained for constraint (3a).  

Table 2: Formulation of the CP Model 

݁ݖ݅݉݅݊݅ܯ  ܰ

א

 such that   

 ௧ݔ

אோ

ൌ 1  ݐ א ܶ (1b) 

൫ܽ௧  ݏ ݐ א ܶ
൯  ݆ א  (2b) ܬ

൭ܽ௧ᇲ  max
ݐ א ܶ


ሺܽ௧  ݁௧ሻ ᇱݐ א ܶ

ௗ൱  ݆ א  (3b) ܬ

൭ max
ݐ א ܶ

ௗ
ሺܽ௧  ݁௧ሻ  ݀ ฺ ܰ ൌ 1 ൱     ݆ א  (4b) ܬ

൫ܿ݁ݒ݅ݐ݈ܽݑ݉ݑሺሺܽ௧|ݔ௧ ൌ 1ሻ, ሺ݁௧|ݔ௧ ൌ 1ሻ, ሺݍ௧|ݔ௧ ൌ 1ሻ,
ܿ

ሻ ݐ א ܶ
൯ݎ א ܴ 

(5b) 

൫ ௧ݔ|ሺሺܽ௧݁ݒ݅ݐ݈ܽݑ݉ݑܿ ൌ 1ሻ, ሺ݁௧|ݔ௧ ൌ 1ሻ, ሺݍ௧|ݔ௧ ൌ 1ሻ,
ܿ

ௗሻ ݐ א ܶ
ௗ൯ ݎ א ܴ 

(6b) 

ሺݔ௧ א ሼ0, 1ሽ  ݐ א ܶሻ ݎ א ܴ   (7b) 

ܰ א ሼ0, 1ሽ  ݆ א  (8b) ܬ
ܽ௧ א Ժ  ݐ א ܶ (9b) 

The CP model simplifies the expression of constraint (4a), 
which ensures that Nj should be changed to one (from zero) if job 
j misses its deadline, by using the ‘implies’ operator (see 
constraint (4b)). A job j misses its deadline if the completion time 
of the LFRT exceeds the deadline of the job (dj). The completion 
time of the LFRT is calculated in a similar manner as in the case 
of constraint (4a). In addition, constraints (5b) and (6b), which 
enforce that the map and reduce task capacities of the resources 
are not violated, are simplified by formulating the constraints 
using the CP global constraint, cumulative [20]. For each point in 
time, the cumulative function sums up the number of executing 
tasks at the given time point, and ensures that this number does 
not exceed the resource capacity limit. Four parameters are 
required by the cumulative constraint: the assigned start time, 
execution time, and resource requirement of the tasks, as well as 
the capacity of the resource. There is one cumulative constraint 
for each resource, and only the tasks that are assigned to that 
resource (i.e. xtr=1) are of interest for that particular constraint. 
The remaining constraints, (7b) to (9b), define the domain of the 
decision variables used in the formulation. 

Overall, it can be seen that the constraints in the CP model 
are expressed in a more intuitive and simple manner. For example, 
in the formulation of the CP model, constraint (4b) simply uses 
the logical operator, implies (ฺ) to set Nj to 1 if job j misses its 
deadline. Furthermore, to formulate constraint (5b) and (6b), the 
CP model uses CP’s global constraint, cumulative. Conversely, as 
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shown in Table 1, the formulation of constraints (4a), (5a), and 
(6a) for the MILP model requires using more complex 
mathematical formulas that are not as straightforward. 

4. DESIGN AND IMPLEMENTATION 
EXPERIENCE 

 Three approaches are used to implement the MILP and CP 
models presented in Section 3. For all three approaches, after 
solving the respective MILP or CP model, an output schedule that 
shows the mapping of tasks to resources, and the scheduled start 
time of the tasks, is generated. In other words, values are assigned 
to all the decision variables such that the constraints are satisfied, 
and the objective function is optimized. The use of MILP [11]  
and CP [13] in our resource management techniques led to an 
optimal solution. Thus, the output schedule that is produced is 
optimal with regards to the number of jobs that miss their 
deadlines. This means that there is no other output schedule that 
can produce a lower number of jobs missing their deadlines.  

4.1 Approach 1: MILP Model with LINGO  
LINGO is a tool used to build, model, and solve optimization 

problems (through mathematical programs) developed by LINDO 
Systems Inc. [23]. LINGO provides a built-in algebraic modeling 
language for expressing optimization models, and a powerful and 
efficient solving engine capable of solving a range of 
mathematical optimization problems including linear, non-linear, 
and integer problems. 
 This section briefly discusses how the MILP model was 
implemented in LINGO v13.0. More detail on how to use LINGO 
can be found in [23]. The LINGO modeling language provides a 
data type called Sets that can be used to model a group of related 
objects. By using Sets, constraints on the decision variables can be 
efficiently and compactly expressed using a single statement. 
Each set can have a number of attributes associated with each 
member of the set. In the implementation of the MILP model, sets 
were used to represent the jobs set J, tasks set T, resources set R, 
and time range set I. For example, the task set T is implemented as 
follows: 
SETS: TASKS: parentJob, type, execTime, resReq; 
The parent job attribute identifies which job the task belongs to. 
For example, if the parent job attribute of a task is 2, it means that 
this task belongs to the job with an id equal to 2. The type 
attribute indicates whether the task is a map task (type=0) or a 
reduce task (type=1). The execution time and resource 
requirement attributes represent et and qt, respectively. 
 A representative set of examples of how the constraints of the 
MILP model (defined in Table 1) are implemented using LINGO 
are presented. Constraint (1a) is implemented as follows: 
@FOR( TASKS(t):  
 @SUM( TIME(i): 
   @SUM( RESOURCES(r): x(t,r,i) )) = 1 ); 
The @FOR construct is used to iterate the members of a given set, 
and can be used to generate constraints for each member of the 
set. As the name suggests, the @SUM construct is a looping 
function that calculates the sum of all members in the given set. 
The variable x used in the LINGO model has the same role as the 
x decision variable discussed in Section 3.1.  
 The implementation of Constraint (5a) using LINGO is 
presented: 
@FOR( RESOURCES(r):  
 @FOR(TIME(i): 
 @SUM( TASKS(t)| type(t) #EQ# 0: 
   @SUM( TIME(i2|(i-execTime(t)) #LT# i2 #AND#  
         i2 #LE# i:  
   x(t,r,i2)*resReq(t) ) ) <= mapCapacity(r))  
); 

The @SUM construct uses LINGO’s conditional qualifier 
operator (‘|’), which limits the scope of the looping function and 
restricts the members of the set that are processed. More 
specifically, only the members of the set that evaluate the 
conditional qualifier equation to true will be processed. For 
example, the first @SUM construct specifies that only tasks with 
a type attribute equal to zero (i.e. map tasks) are processed.  

An important feature in this implementation is captured in 
how constraint (4a) is implemented. LINGO provides an If-Then-
Else flow of control construct, which performs a similar role to 
the if-else statements used in general programming languages. 
The If-Then-Else construct could have been used to simplify the 
implementation of constraint (4a) whose purpose is to set the 
decision variable Nj to 1 if the job j misses its deadline. However, 
it was determined that using the If-Then-Else construct to 
implement constraint (4a) changed the program from a MILP into 
a Mixed Integer Non-linear Program (MINLP). MINLPs are 
generally more difficult and require more processing time to solve 
compared to MILPs [23], and this leads to a longer time before a 
solution can be found. Thus, the use of the If-Then-Else construct 
was avoided. 

4.2 Approach 2: CP Model with MiniZinc 
and Gecode 

In Approach 2, the CP model is implemented with MiniZinc 
1.6 [15], which is an open-source CP-based modeling language 
that is designed to efficiently model and express constraint 
programming problems. To solve the MiniZinc model, it is first 
converted to a FlatZinc [15] model. FlatZinc is a low-level 
language that is designed to be easily translated to a form which 
CP solving engines can use. One such solving engine that 
supports solving FlatZinc models is Gecode 3.7.3 (short for 
Generic Constraint Development Environment) [16]. Gecode is an 
open-source tool implemented in C++ for solving CP problems. 
 This section briefly discusses how the CP model was 
implemented using MiniZinc. More detail on how to use the 
MiniZinc modeling language can be found in [24]. Similar to 
LINGO, MiniZinc also provides a mechanism to group together 
closely related data called Sets and Arrays. In MiniZinc, the data 
set for tasks is implemented as follows: 
set of int: Jobs = 1..NUM_JOBS; 
set of int: Tasks = 1..NUM_TASKS; 
array [Tasks] of Jobs: parentJob; 
array [Tasks] of 0..1: type; 
array [Tasks] of int: execTime;       
array [Tasks] of int: resourceReq;        

First a set of integers, called Tasks, is defined to represent the 
indices of the arrays. Next, the attributes of the tasks, which are 
the same as those discussed in Section 4.1, are declared using 
arrays. The domain of each of the attributes, which is the range of 
acceptable values that an attribute can have, is also declared here. 
For example, the domain of the parent job attribute is equal to the 
set of integers called Jobs, which has a range from 1 to 
NUM_JOBS where NUM_JOBS is the number of jobs in the batch 
that needs to be executed. As shown, the implementation of data 
sets in MiniZinc requires using two data types (sets and arrays), 
and is not as compact as the one used in LINGO, but performs the 
same function. 
 A representative set of examples of how the CP constraints 
(defined in Table 2) are implemented using MiniZinc is presented. 
In MiniZinc, constraint (2b) is expressed as follows: 
constraint forall(j in Jobs) ( 
 forall(t in Tasks where parentJob[t] == j /\  
      type[t]==0) ( 
     startTime[t] >= releaseTime[j]  )  
); 

166



All constraints in MiniZinc, start with the keyword constraint. 
The forall construct performs an identical function to LINGO’s 
@FOR construct. Similarly, the where keyword in the forall 
statement is MiniZinc’s conditional qualifier operator. The /\ 
operator performs a logical conjunction (logical and) operation. 
 A novelty of this implementation is the devising of a modified 
cumulative constraint for implementing constraints (5b) and (6b). 
The original cumulative constraint provided by MiniZinc [15] 
could not be used because it was not able to handle the two 
different task types present in MapReduce jobs:  map tasks and 
reduce tasks. Thus, a modified cumulative constraint, called 
mycumulative, is developed that ensures that map tasks and reduce 
tasks are only scheduled on the map slots and reduce slots of the 
resources, respectively, and also the capacities of the resources are 
not violated. The function prototype for the mycumulative 
constraint is presented:  
predicate mycumulative(array[int] of var int:  
  startTime, array[int] of int: execTime, 
  array[int] of int: resourceReq, array[int] of  
  int: resourceCapacity, array[int,int] of var  
  int: x, array[int] of int: type, int: taskType) 
The first four parameters: start time of the tasks, execution time of 
the tasks, resource requirement of the tasks, and the capacity of 
the resources, are the parameters in the original cumulative 
function provided by MiniZinc. The new parameters added 
include: the matchmaking variable x (discussed in Section 3.2), 
the type attribute of the tasks, and a variable taskType which 
indicates if the constraint should be computed for map tasks 
(taskType=0), or for reduce tasks (taskType=1). Another change 
made in mycumulative is that it ensures that the resource 
capacities are not violated for all the resources in R, within the 
function, which means that the mycumulative constraint needs to 
be invoked only once. The cumulative constraint provided by 
MiniZinc checks only a single resource within the function, and 
thus needs to be invoked separately for each resource.  
 A code snippet of the mycumulative constraint is shown: 
forall (r in Resources) ( 
 forall( i in Times ) ( 
 resourceCapacity[r] >=   
  sum( t in Tasks where type[t]==taskType) (   
   x[t,r]*resourceReq[t]*bool2int(  
   startTime[t] <= i /\ i < startTime[t] +  
   execTime[t]) )  
  ) ); 
The range of times in the Times set is calculated from the lower 
bound of the task start times to the upper bound of the task 
completion times. The matchmaking variable, x, is used to ensure 
that only tasks mapped to the resource of interest are included in 
the sum. The bool2int library function converts a Boolean value to 
an integer, where true is equal to one, and false is equal to zero. 
The bool2int component of the equation is used to ensure that 
only tasks that are still executing at the time of interest, i, are 
included in the resource capacity calculations. 

4.3 Approach 3: CP Model with CPLEX 
In Approach 3, the CP model is implemented and solved 

using IBM CPLEX 12.5 [17]. More specifically, CPLEX’s 
Optimization Programming Language (OPL) [25] is used to 
implement the CP model. OPL is an algebraic language 
specifically designed for expressing optimization problems, and 
therefore is able to provide a natural representation of 
optimization models that is more compact and less complex than 
using general-purpose programming languages. The OPL model is 
then solved using CPLEX’s CP Optimizer constraint 
programming solving engine, which provides specialized 
variables, constraints, and other mechanisms for modelling and 
solving scheduling problems efficiently [26][27]. For example, 

the CP Optimizer provides a built-in decision variable data type 
called interval that can be used to represent tasks (or activities) 
that need to be executed. The interval data type has five attributes: 
start time, duration, end time, optionality, and intensity. The 
optionality attribute is used to indicate whether or not the interval 
is required to be present in the solution. For example, the 
optionality attribute can be used to represent optional tasks that 
are not required to be executed for the solution to be valid, but can 
be executed if the constraints are not violated. The intensity 
attribute defines the resource usage or utility of a task over its 
interval. 

The implementation of the CP model using CPLEX is briefly 
discussed. Additional information for expressing CP models in 
OPL can be found in [25] and [26]. Similar to the other 
approaches, OPL supports using sets and a data type called tuple 
which allows related data to be grouped together. For example, 
the Tasks set is expressed in OPL as follows: 
tuple Task { 
  key string id;  int parentJob;  int type; 
  int execTime; int resReq; }; 
{ Task } Tasks = ...; 
First a task tuple is defined, and then this tuple is used to define a 
set of Tasks. The task tuple has the same attributes as those 
discussed for Approaches 1 and 2, except for an additional field 
called id which is required in OPL to uniquely identify the task.  
 A key feature of this implementation is that it makes use of 
CPLEX’s tuple sets and interval decision variable data type, 
which allows the system to use the optimized library functions 
and constraints that CPLEX provides, such as the alternative 
constraint and pulse function [26]. This in turn allows the system 
to efficiently solve the matchmaking and scheduling problem by 
reducing processing time and memory requirements [27]. More 
specifically, the CP model’s decision variables: at and xtr are 
implemented using CPLEX’s interval data type, and are named 
taskInterval and xtr, respectively: 
dvar interval taskInterval [t in Tasks] size  
   t.execTime 
dvar interval xtr [o in Options] optional 
There is a taskInterval variable for each task that needs to be 
mapped and scheduled, and this interval defines the task’s start 
time, end time, and execution time. There is also an xtr variable 
for each tuple in the Options set, which is a derived set that 
contains all the possible combinations of tuples of the form 
<Task, Resource>. Note that this interval is optional, which 
allows only a subset of the intervals to be present in the final 
schedule. By using the interval data type, the implementation can 
make use of the optimized library functions that CPLEX provides.  
 A representative set of examples of the implementation of the 
constraints of the CP model (defined in Table 2) is presented. For 
instance, in the OPL model, constraint (1b) is expressed using the 
alternative constraint as follows: 
forall (t in Tasks)  

alternative(taskInterval[t], all(o in Options:  
   o.task.id==t.id) xtr[o]); 

The alternative constraint is a synchronization constraint that 
requires two parameters: an interval i, and a set of intervals S. The 
alternative constraint states that the interval i will only be present 
in the solution if and only if there is exactly one interval in S 
(denoted j) that is also present in the solution. Both intervals i and 
j are synchronized meaning they both start and end at the same 
time. Thus, it is appropriate to use the alternative constraint to 
express constraint (1b), which ensures that each task is assigned to 
only one resource. In the example, the set S is produced by using 
the all construct invoked with a conditional qualifier (‘:’ 
operator). More specifically, S is a subset of xtr variables that have 
the same id as the task of interest, t. 
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 In the OPL model, constraint (5b) is expressed as follows: 
forall (r in Resources) {  
 sum (o in Options: o.resource.id ==r.id &&  
    o.task.type == 0)  
  pulse(xtr[o],o.task.resReq)<=r.mapCapacity; }   
The pulse function is used to generate the resource usage of a 
task, and requires two parameters: an interval i to represent the 
task, and a height value h to indicate the resource usage (i.e. 
capacity requirement) required by the task. The pulse function 
produces a value as a function of time. When the task is active 
(i.e. during the interval between the start and end times), the pulse 
function generates a value equal to the supplied value h to indicate 
the amount of resource usage of the task, and at all other points in 
time, the pulse function generates a value of zero. The expression 
for constraint (5b) states that for each resource r, the sum of all 
the values produced by the pulse function at each point in time, 
must be less than or equal to the map capacity of resource r.  

5. PERFORMANCE EVALUATION 
To evaluate the system performance achieved with the three 

approaches discussed in Section 4, experiments were performed 
on a closed system using various batch workloads where each 
batch comprised of multiple jobs to execute. Each experiment 
concluded after successfully mapping and scheduling all the jobs 
in the batch, and an output schedule and completion time of the 
batch is determined. Such an experimental environment, based on 
a closed system is similar to what is used by [8], [9], and [10], and 
is apt for evaluating and comparing the performance (e.g. 
processing time) of the modeling techniques and solvers. In future 
work, we will investigate techniques to handle an open system 
with a stream of job arrivals. 

To compare the performance of the three approaches the 
following metrics are used: 
 Completion time (C): time at which all jobs in the batch 

finish executing. 
 Processing time (P): time it takes for the solver to read the 

input data (job, task, and resource sets), generate the model, 
and produce the output schedule that minimizes the number 
of late jobs. 

 Number of jobs that miss their deadlines (N). 
 Size of workload (number of tasks) the approach could 

successfully handle. 
Note that the system focuses on meeting deadlines of the jobs in 
the workload and its primary objective is to minimize N. Ensuring 
that C is small is a secondary objective that can be considered 
given that the primary objective is achieved.  
 The experiments were conducted on a PC with a 3.2GHz Intel 
Core 2 Duo CPU and 6.00GB of RAM running under Windows 7 
Professional. Lower processing times for obtaining the solutions 
can be expected to be achieved by running the solvers on a system 
with a faster CPU and more memory. Each experiment was 
repeated ten times and the confidence intervals, which were all 
less than 8% at a confidence level of 95%, are shown on the 
figures as bars originating from the mean value.  

5.1 Description of Workloads 
 Table 3 presents the system and workload parameters for the 
experiments used to compare the three approaches. The workloads 
are synthetic workloads, each of which is characterized by a 
number of parameters. Similar workloads have been used by other 
researchers. For example, the Large 2 workload is adopted from 
[10], whereas the other workloads are derived by using the same 
distributions as those used in [10].  
 A walkthrough of Table 3 is provided. In the ‘Jobs’ column, 
the first row defines the number of jobs in the batch (n). The 

second and third rows define the earliest start time (sj) and 
deadline (dj) of each job j, respectively. The last row(s) of the 
Job’s column denotes the number of map tasks ( ݇

ሻ and reduce 
tasks ( ݇

ௗሻ, respectively, for job j. The next column, ‘Task 
Execution Times’, specifies the execution times of map tasks 
(݁௧

) and reduce tasks (݁௧
ௗሻ, respectively. The last column, 

‘Resources’, defines the number of resources (m) in the resource 
set, R. In addition, for each resource r in R, the number of map 
slots (ܿ

ሻ and reduces slots ( ܿ
ௗሻ are defined. Since the workload 

and system parameters are integers, discrete uniform distributions 
(DU) are used to generate the values for all parameters except dj. 
The calculation of dj uses a uniform distribution (U), which 
produces real values, for generating a multiplier for ݁

௫—the 
execution time (in seconds) of job j when all tasks are executed 
sequentially (i.e. max execution time of job j). To ensure that dj is 
an integer, the ceiling function is used at the end of the 
calculation. Note that in the ‘Large 2’ row, ݁

௧௧_ (in seconds) 
denotes the total execution time of all map tasks of job j. 

Table 3: System and Workload Parameters 
Workload Jobs, J 

(sj and dj in 
seconds, s) 

Task Execution 
Times (in 
seconds, s) 

Resources, 
R 

Small 1 

n =5:  
sj ~ DU(1,50) 
dj ~ sj + ( ݁

௫)*   
 U(1,5) 

݇
=10, ݇

ௗ=3 

݁௧
~ DU(1,15) 

݁௧
ௗ~ DU(1,50) 

m =10: 
ܿ

=2 
 ܿ

ௗ=2 
 

Small 2 

n =5:  
sj ~ DU(1,50) 
dj ~ඃݏ    ݁

௫ כ
Uሺ1,2ሻඇ  

݇
~ DU(1,15)  

݇
ௗ~DU(1, ݇

) 

݁௧
~ DU(1,15) 

݁௧
ௗ~ DU(1,75) 

m =25: 
ܿ

=2 
 ܿ

ௗ=2 
 

Medium  

n =10:  
sj ~ DU(1,50) 
dj ~ ඃݏ   ݁

௫ כ
Uሺ1,2ሻඇ 

݇
=10  

݇
ௗ=5 

݁௧
~ DU(1,25) 

݁௧
ௗ~ DU(1,75) 

m =15: 
ܿ

=2 
 ܿ

ௗ=2 
 

Large 1 

n =2:  
s1= 0, s2= 500 
dj ~ ඃݏ   ݁

௫ כ
Uሺ1,2ሻඇ 

݇
=100  

݇
ௗ=30 

݁௧
~ DU(1,15) 

݁௧
ௗ~ DU(1,50) 

m =25: 
ܿ

=4 
 ܿ

ௗ=4 
 

Large 2 
(adopted 

from [10]) 

n =50:  
sj ~ DU(1,1500) 
dj ~ ඃݏ   ݁

௫ כ
Uሺ1,2ሻඇ 

݇
~DU(1,100)  

݇
ௗ~DU(1, ݇

) 

݁௧
~ DU(1,10) 

 

݁௧
ௗ ൌ

ೕ
_

ೕ
ೝ    

 

m =50: 
ܿ

=2 
ܿ

ௗ=2 
 

 The goal of the experiments is to use various workloads with 
different characteristics such as the size of the batch, the number 
of tasks in a job, and the execution times of tasks, for analyzing 
the impact of workload characteristics on performance. For 
example, in the Small 1 workload there are five jobs, each job 
with 10 map tasks with execution times varying from 1s to 15s, 
and three reduce tasks with execution times varying from 1s to 
50s. The Large 2 workload comprises 50 jobs with each job 
having a varying number of map tasks from 1 to 100, and a 
varying number of reduce tasks from 1 to ݆݇

 Thus, on average .݉
the Large 2 workload has about 3750 tasks compared to the Small 
1 workload, which has 65 tasks.  
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5.2 Results of Experiments 
5.2.1 Small and Medium Workloads 
 Figure 2 and Figure 3 present the C and P results, 
respectively, for the three approaches when using the small and 
medium workloads. In all the experiments performed, the optimal 
solution is found in the sense that N is zero. As expected, the 
results show that for all three approaches: as the size of workload 
increases giving rise to a larger number of tasks, P and C also 
increase. From Figure 3, it can be observed that Approach 3 
achieves the lowest P (note that the bars are quite small and may 
not be visible); however, it also generated an output schedule that 
produced the highest C. This can be attributed to the fact that in 
Approach 3 the solver produces the first output schedule that 
optimizes the objective function (minimizing N) and does not 
focus on the minimization of C. The lower P achieved by 
Approach 3 can be attributed to the mechanisms that CPLEX’s CP 
Optimizer solving engine provides to efficiently solve 
matchmaking and scheduling problems, including the use of the 
interval decision variables, and functions to operate on those 
variables [26] (as discussed in Section 4.3). 

 
Figure 2. Completion time for the small & medium workloads. 

 
Figure 3. Processing time for the small & medium workloads.  
 Another observation that can be made from Figure 3 is that 
the approaches that implement the CP model (i.e. Approaches 2 
and 3) attained a lower P compared to Approach 1, which 
implements the MILP model. The reason for this behavior can be 
due to the large number of decision variables that the solver for 
the MILP model has to generate and solve. Recall that the MILP 
model uses a decision variable xtri, and that there is an xtri variable 
for each combination of tasks in T, resources in R, and time points 
in I. In the CP model there are less decision variables because 
there are separate decision variables for matchmaking, xtr, and 
scheduling, at. Note that Approach 2 was not able to handle the 
Medium workload after a couple of hours of solving. This may be 
due to the limitations of the solver from being able to handle such 
a large number of tasks to map and schedule on our system, which 
leads to a model that contains a large number of decision 
variables. 

5.2.2 Large Workloads 
The C and P results for the three approaches when handling 

the large workloads are shown in Figure 4. Approach 2 was not 

able to handle these larger workloads for the same reasons as 
discussed in Section 5.2.1, and Approach 1 was only able to 
generate an output schedule for the Large 1 workload. When 
attempting to generate solutions for the larger workloads with 
Approaches 1 and 2, the system would eventually run out of 
memory, and the solver would crash. The solvers of Approach 1 
and 2 could not handle such a large number of decision variables 
on our system. The results show that Approach 3 outperforms 
Approach 1 for similar reasons as discussed in Section 5.2.1. 

 
Figure 4. Completion time and processing time for the large 
workloads.  

In order, for Approach 1 to handle the Large 1 workload, the 
granularity of I was reduced to decrease the number of decision 
variables in the model. Recall from Section 3.1 that Approach 1 
requires specifying a set of integers, I, which defines the range of 
time (or time slots) during which jobs can be scheduled to start 
executing on a resource. The time range can be chosen from time 
i=0 to i=MAX_COMP_TIME where MAX_COMP_TIME is the 
maximum completion time of the workload given that each job 
executes sequentially on the m resources.  The granularity of I can 
be changed to restrict when jobs can be executed. For example, 
the granularity of a set I1={1, 2, 3, …, 100} can be reduced to 
I2={2, 4, 6, …, 100}. Note that such a change reduces the number 
of members of I by 50%. The more values in I, the longer it takes 
for the solver to generate and solve the MILP model used in 
Approach 1 because more decision variables are present. The 
MILP model has a decision variable, xtri, for each combination of 
tasks t in T, resources r in R, and time i in I. As such, the number 
of variables that are present in MILP model increases as the 
number of tasks, number of resources, or number of time slots 
increase.  
 For the experiment where Large 1 was being used, the set I 
for Approach 1 was set to have 100 time slots with an interval of 
25 seconds between each slot: {0, 25, …, 2500}. If reducing the 
granularity of I was not done, the MILP model would contain a 
very large number of decision variables, and the system would not 
have enough memory to find a solution and generate an output 
schedule. A disadvantage of reducing the granularity of I is that 
this procedure can increase C because some tasks cannot be 
scheduled to start executing at their earliest start times. For 
example, if a job j has sj =27s, and the time slots have intervals of 
25s, the tasks of j cannot be executed until time 50s. Figure 4 
shows C for Approach 1 is over 2500s, which is about three times 
longer than Approach 3’s C. Therefore, the results show that for 
Approach 1, there is tradeoff between being able to handle larger 
workloads, and achieving a lower C.  

5.2.3 Effect of Workload Parameters 
 In this section, the effect of varying different workload 
parameters on system performance is discussed. The experiments 
conducted in this section are based on the Large 2 workload 
(adopted from [10]). Approach 3 was the only approach capable 
of handling the larger workloads with up to 100 jobs and 7000 
tasks that were experimented with. As discussed in Section 5.2.2, 
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Approaches 1 and 2 could not handle larger workloads because 
the system would crash due to lack of memory. Approach 3’s use 
of CPLEX’s CP Optimizer solving engine provides mechanisms 
and functions to efficiently solve scheduling problems [26]. As 
discussed in Section 4.3, implementing the CP model using 
CPLEX’s interval decision variables allows the solver to 
efficiently use the system memory, which in turn allows larger 
workloads to be handled by Approach 3. Note that for all the 
experiments discussed in this section N was zero. 
 Effect of number of jobs (n): Figure 5 shows C and P when 
n is varied for the Large 2 workload. As expected, C increases 
with n because there are more jobs to execute. In addition, P also 
increases because there are more tasks to map and schedule on the 
resources. It is observed P/C, a measure of resource management 
overhead, increases with n. This shows that P is increasing at a 
faster rate than C. For example, the results show that the highest 
P/C is 0.26 (26%), and is achieved when n=100. In some systems, 
this scheduling overhead may be too high; however, the overhead 
can be tolerated in situations where the task to resource mapping 
and scheduling for the batch of jobs is performed offline and the 
execution of the batch takes place at a later point in time. When n 
is less than 100, P/C is much smaller (0.0196 and 0.06074 for n = 
25 and 50, respectively), and thus, in these situations, online 
mapping and scheduling can be considered: the solver can be run 
as soon as the batch of jobs becomes available on the system 
followed by the execution of the batch.  

 
Figure 5. The effect of number of jobs on performance. 

 Effect of task execution time: Figure 6 shows P and C when 
the upper-bound of the discrete uniform distribution used for 
generating task execution times, denoted , is varied for the 
Large 2 workload. As shown in Figure 6, P increases with  
because there is now a higher chance of tasks having overlapping 
execution. Thus, the solver requires more time to decide at what 
time and on which resource to execute a task in order to generate 
an output schedule that minimizes N. As expected, C also 
increases because jobs require more time to execute. However, it 
can be observed that P increases at a slower rate compared to C, 
and thus, the P/C decreases as  increases. The resource 
management overhead is observed to be small: P/C varies from 
0.0674 to 0.0320 as  is changed from 10 to 100 seconds. 

 
Figure 6. The effect of task execution time on performance. 

  

A number of experiments were performed to analyze the 
effect of changing the other workload and system parameters, 
including: sj, dj, and m on system performance. Due to space 
limitations, only a representative set of results is presented. The 
following modified versions of the Large 2 workload were used: 
(1) Large 2a: same as Large 2, but increases sj to ~DU(1,3000); 
(2) Large 2b: same as Large 2, but increases dj  to ~ sj + (emax)* 
U(1,4); and (3) Large 2c-1, 2c-2, and 2c-3: same as Large 2, but 
sets m to 10, 25, and 100, respectively.  Figure 7 shows the results 
for these additional Large 2 workloads.  
 Effect of earliest start time (sj): Figure 7 shows that 
increasing sj (see Large 2 and Large 2a) increases C because on an 
average, jobs tend to start executing at a later time. Conversely, 
increasing sj reduces P. Having a larger range of sj decreases the 
chance of jobs having overlapping execution times, and also 
reduces the contention for resources. This means that at a given 
point in time, there may not be as many concurrent tasks that the 
solver has to map and schedule compared to the situation where 
the sjs are closer to one another. Thus, the solver is able to quickly 
determine an output schedule that ensures that N is minimized. 

 
Figure 7. System performance for the additional Large 2 
workloads. 
 Effect of deadline (dj): When comparing the Large 2 and 
Large 2b workloads of Figure 7, it is observed that increasing dj 
reduces P, but increases C. When the deadlines of the jobs are not 
as stringent, jobs will have more slack time (also called laxity), 
which is defined as the difference between the deadline, and the 
sum of the execution time and the earliest start time of the job: dj – 
(sj + ). The slack time is the extra time a job has to complete 
its execution before its deadline. When the slack time is higher, 
the solver does not need to spend as much time to generate an 
output schedule that minimizes N. The increase in C can be 
attributed to the fact that the solver returns the first output 
schedule that is able to minimize N, and does not focus on 
minimizing C. When the jobs have smaller slack times, the solver 
has to ensure that jobs are completed in shorter periods of time, 
which in turn reduces C. 
 Effect of number of resources (m): Figure 7 shows that 
increasing m from 10 to 25 (see Large 2c-1 and Large 2c-2), both 
P and C decrease because there are more resources in which to 
map and schedule the tasks. Even though there are less decision 
variables to generate and solve when m is smaller, the solver 
requires more time to determine the best task to map and schedule 
on the resources at a given time so that N is minimized. It is 
observed that when m is increased from 25 to 50 (Large 2c-2 and 
Large 2), P increases because the solver has more decision 
variables to generate and solve. However, there are more 
resources available to execute the tasks, which leads to a lower C. 
Lastly, when increasing m from 50 to 100 (Large 2 and Large 2c-
3), P increases, whereas C stays the same. In this case, the 
additional resources cannot be used to further decrease N or C 
because both N and C are already minimized, and thus increasing 
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m just increases the number of decision variables that the solver 
has to generate and solve, which adds unnecessary overhead, and 
leads to higher P. Therefore, it can be observed that for a given 
workload, changing m to a value that is too high or too small can 
lead to an increase in P. In addition, increasing m tends to reduce 
C until m is significantly high and no further improvement in C is 
observed. 

5.2.4 Summary of Experimental Results 
 This section summarizes the key observations made from 
analyzing the results of the experiments. Recall that solving an 
MILP [11] and CP [13] generates optimal solutions, and therefore 
all three approaches generated optimal output schedules with 
regards to minimizing N. For the system and workload parameters 
experimented with, and for the workloads that the approaches 
could handle, optimal output schedules where N=0 were 
generated. For workloads in which N was not be zero, a task 
mapping and schedule that minimizes N is generated.  
 Approach 1: did not perform well in the experiments 
compared to the other two approaches. Along with Approach 2, 
Approach 1 did generate a schedule that produced the lowest C 
for the small workloads; however, for a given workload, 
Approach 1 was measured to have a higher P compared to 
Approach 2. In addition, for the Medium workload, Approach 1 
generated an output schedule with 11.5% lower C compared to 
Approach 3, but P was also 375% higher. Lastly, for the Large 1 
workload, Approach 1 was outperformed and had higher C and P 
compared to Approach 3. Thus, for the system and workload 
parameters experimented with, it is not recommended that 
Approach 1 be used unless P is not a concern. If, in addition to 
meeting deadlines, reducing the completion times for the batch is 
important, Approach 1 may be suitable to use in situations in 
which the mapping and scheduling for the jobs can be performed 
ahead of time (e.g. offline). 
 Approach 2: is only able to handle the smaller workloads 
(less than 150 tasks) on our system.  For a larger value for the 
total number of tasks in the batch, Approach 2 could not generate 
a schedule because the system used would eventually run out of 
memory, and the solver would crash. As discussed, along with 
Approach 1, Approach 2 generated an output schedule with the 
lowest C for the small workloads. Even though, P was lower 
compared to Approach 1, Approach 2’s P is still over 100 times 
larger than the P measured for Approach 3. Thus, for the small 
workloads, there is a trade-off between having a lower C (using 
Approach 2) versus a lower P (using Approach 3). Similar to 
Approach 1, Approach 2 can be considered for small workloads 
when the resource management can be performed ahead of the 
time at which the batch becomes ready to execute. 
 Approach 3: In general, the experimental results showed that 
Approach 3 performed the best. Regardless of workload size, it 
was able to achieve a much lower P compared to the two other 
approaches. However, it also generated an output schedule with 
slightly higher C. For example, for the Small 2 workload, the C is 
1.8 times larger compared to Approaches 1 and 2, however; the P 
is over 100 times smaller. On many systems satisfying the 
deadlines is sufficient and achieving a small batch completion 
time is only a secondary objective. Furthermore, Approach 3 is 
able to handle the larger workloads (i.e. Large 2 and above) that 
the other two approaches could not handle. In fact, the 
experiments described in this paper indicate Approach 3 is able to 
handle workloads containing up to 7000 tasks (see Figure 5).  
 Overall, the experimental results indicated that Approach 3 
would be the best candidate to implement a resource manager that 
is capable of handling an open stream of requests arriving on the 

system that is being considered for our future research. Approach 
3 was the only approach capable of handling the larger workloads, 
and was measured to have the lowest P. Having a low P is 
important to consider when handling an open stream of job 
requests, because a low matchmaking and scheduling overhead is 
key to efficiently process incoming requests. 

6. CONCLUSIONS 
 This paper concerns resource management on clouds in which 
the workload includes requests characterized by multiple stages of 
execution, and an end-to-end SLA. More specifically, our work 
focuses on engineering resource management middleware that can 
effectively perform matchmaking and scheduling of MapReduce 
jobs, each of which is characterized by an end-to-end SLA 
comprising an earliest start time, execution time, and a (soft) 
deadline specified by the user. Both the reduction of resource 
management overhead as well as achieving high system 
performance are objectives of this research. The problem of 
matchmaking and scheduling MapReduce jobs with SLAs was 
formulated using MILP and CP. The MILP and CP models were 
implemented and solved using three approaches:  (1) MILP model 
implemented and solved using LINGO [6], (2) CP model 
implemented using MiniZinc/FlatZinc [7] and solved using 
Gecode [8], and (3) CP model implemented and solved using IBM 
CPLEX. All three approaches have an associated  learning curve 
period; however, configuring, implementing, and executing the 
models using Approaches 1 and 3 were easier compared to 
Approach 2 because both LINGO and CPLEX provide a feature-
rich integrated development environment (IDE), whereas 
MiniZinc and Gecode only provide command-line interfaces. 
 Solving an MILP or CP model generates optimal solutions, 
and therefore all three approaches are able to produce optimal 
output schedules with regards to minimizing the number of jobs 
missing their deadlines. Our investigation and experiences with 
using the various techniques and software packages to formulate 
and solve the matchmaking and scheduling problem were 
discussed. A number of experiments were performed using 
different workloads and parameters to compare the performance 
of the three approaches in terms of metrics such as completion 
time (C): time at which all jobs in the workload finish executing, 
and processing time of the solver (P). Insights into system 
behaviour gained from the experimental results for the workload 
and system parameters we experimented with are presented. 
 Approach 3 is observed to achieve the lowest P compared to 

the two other approaches; however, it also generated an output 
schedule that produced the highest C. In addition, Approach 3 
was the only approach able to handle the larger workloads (over 
1000 tasks in the workload, described in Section 5.2.3). 

 Approaches 1 and 2 each had a case where they were able to 
generate an output schedule that had the lowest C; however, the 
P in these cases is much higher compared to Approach 3. 

 The results show that Approaches 2 and 3, which use CP, have 
lower P compared to Approach 1, which uses MILP. 

 Approach 3 was observed to effectively handle the Large 2 
workload that was adopted from [10]: the processing time was 
only 6.7% of the batch completion time.  

 A more detailed analysis of Approach 3 that includes the 
effect of larger workloads was performed and the insights gained 
are discussed.  

 Both P and C are observed to increase when the number of jobs 
(n) in the workload increases. The P to C ratio, denoted P /C, 
which is an indicator for the mapping and scheduling overhead, 
also increases with n. However, when n <=75 it was found that 
P /C was reasonably small: less than 0.13. 
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 When execution time of tasks increases, both P and C increase 
as well; however, in this case, P /C decreases as execution time 
of tasks increase. 

 For a given workload, if the number of resources in the system 
(m) is too small or too high, P tends to increase, but having a 
higher m typically can generate an output schedule with lower 
C until a point where C can no longer be decreased. Increasing 
m when the workload does not require it (i.e. number of tasks is 
not sufficiently large), tends to increase P.  

 Increasing the deadline of the jobs (dj) reduces P, but increases 
C. Similarly, increasing the earliest start times of the jobs (sj) 
decreases P, and tends to increase C as well. 

If minimizing the number of jobs missing their deadlines is 
the sole objective, Approach 3 that is able to handle workloads 
with over 1000 tasks seems to be the most suitable because of the 
lower P. However, it was observed that using Approach 3 leads to 
a slightly higher C in comparison to the other approaches. Based 
on the results of the experiments described in this paper, it was 
found that Approaches 1 and 2 are most useful in cases where the 
workloads are smaller (a few hundred tasks), and there is 
sufficient time to perform the resource management decisions 
(e.g. offline, where processing time is not a concern). Approach 3 
would be best suited to implement a resource manager that can 
perform matchmaking and scheduling of an open stream of 
MapReduce jobs with end-to-end SLAs. Such a resource manager 
warrants further investigation. Our plans for future research also 
includes refining the optimization models to consider more 
advanced features for resource management of MapReduce jobs 
including data locality and speculative execution (backup tasks) 
[5]. Evaluation of the three approaches in the context of more 
complex and real workloads, and investigating techniques for 
handling node failures, which are important for large systems, 
form important directions for future research as well. 
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