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ABSTRACT
Based on Intel’s Many Integrated Core (MIC) architecture,
Intel Xeon Phi is one of the few truly many-core CPUs - fea-
turing around 60 fairly powerful cores, two levels of caches,
and graphic memory, all interconnected by a very fast ring.
Given its promised ease-of-use and high performance, we
took Xeon Phi out for a test drive. In this paper, we present
this experience at two different levels: (1) the microbench-
mark level, where we stress ”each nut and bolt” of Phi in
the lab, and (2) the application level, where we study Phi’s
performance response in a real-life environment. At the mi-
crobenchmarking level, we show the high performance of five
components of the architecture, focusing on their maximum
achieved performance and the prerequisites to achieve it.
Next, we choose a medical imaging application (Leukocyte
Tracking) as a case study. We observed that it is rather
easy to get functional code and start benchmarking, but the
first performance numbers can be far from satisfying. Our
experience indicates that a simple data structure and mas-
sive parallelism are critical for Xeon Phi to perform well.
When compiler-driven parallelization and/or vectorization
fails, programming Xeon Phi for performance can become
very challenging.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Experience with Xeon Phi, Microbenchmarking, Performance
Analysis, Optimization.
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1. INTRODUCTION
Intel Xeon Phi (Phi) is the newest high-throughput ar-

chitecture targeted at high performance computing (HPC).
Without a doubt, Phi will be part of the very next genera-
tion of supercomputers that will challenge TOP5001.
To achieve its theoretical high performance (around 1 TFlop),

Intel Xeon Phi [15] uses around 60 cores and 30 MB of
on-chip caches, and relies on traditional many-core features
like vector units or SIMD/SIMT, high throughput, and high
bandwidth [17]. It adds to that some ”unconventional” fea-
tures, such as the overall L2 cache coherency and the ring
interconnect, all for the sake of performance and usability.
By taking Phi as a black-box with over 200 hardware

threads, we ran Leukocyte Tracking (a medical imaging ap-
plication [21]) on it. We found that (1) the sequential appli-
cation (a single thread) on Phi runs about 5× slower than
the same sequential execution on a ”traditional” multi-core
processor, and (2) that the Phi version scales only up to 40
threads (Figure 13, more details in Section 5). To explain
this (observed) performance behavior, as well as to eventu-
ally improve it, we require a deeper understanding of the
architecture and its parameters.
Moreover, previous experiences with massively parallel

high performance platforms such as NVIDIA GPUs or the
Cell-/BE showed that a trade-off between performance and
ease-of-use is necessary: ”simple” programming often leads
to disappointing performance [22,27]. Therefore, given Phi’s
promise of breaking this pattern, this work focuses on a test
drive of the platform: we have conducted a two-stage em-
pirical study of the Xeon Phi, stressing its high-performance
features both in isolation (aiming to quantify their maxi-
mum achievable performance), and in the real-life case-study
(aiming to understand its regular performance).
To this end, we have implemented and used dedicated mi-

crobenchmarks - gathered in a suite called MIC-Meter 2 - to
measure the performance of four key architectural features of
Xeon Phi: the processing cores, the memory hierarchies, the
ring interconnect, and the PCIe connection. Following these
experiments ”in isolation”, we propose a conceptual model of
the processor that facilitates the performance analysis and
optimization of the real-life case-study.
Such a thorough evaluation can benefit two different classes

of Phi users: the experts, who are interested in in-depth ar-
chitectural knowledge, and the production users, interested

1In June 2013, two Xeon Phi supercomputers - Tianhe-2

from NUDT and Stampede from TACC - were ranked first
and sixth in TOP500: http://www.top500.org.
2https://github.com/haibo031031/mic-meter
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in simple and effective ways to use processors. For expert
users - like most high performance computing (HPC) pro-
grammers and compiler developers are - knowing the require-
ments for density and placement of threads per cores, the
optimal utilization of the core interconnections, or the differ-
ence in latency between the different types of memories on
chip are non-trivial details that, when properly exploited,
can lead to significant performance gains. For production
users, a simplified view of the Xeon Phi machine is manda-
tory to help exploring different parallelism strategies. Such
a model is simplified view of the machine, including the most
important functionality and performance constraints.
The main contributions of our work are as follows:

• We present our hands-on experience achieved while mi-
crobenchmarking the Xeon Phi (Section 3). This ex-
perience also leads to interesting numerical results for
the capabilities of Phi’s cores, memories, interconnects
(i.e., the ring and the PCIe).

• We synthesize four essential platform-centric perfor-
mance guidelines, aimed at easing the development
and tuning of applications for the Xeon Phi (Section 4).

• We propose a conceptual model of Phi (SCAT ), which
strips off the performance irrelevant architectural de-
tails, presenting the programmers with a simple,
functionality-based view of the machine (Section 4).

• Using a case study (leukocyte tracking), we analyze
the application and optimize it, discussing the lessons
to be learned from this experience (Section 5).

2. BENCHMARKING INTEL XEON PHI
In this section, we introduce Intel Xeon Phi - with its novel

features and typical programming models, and we present
our benchmarking methodology.

2.1 The Architecture
Intel Xeon Phi has over 50 cores (the version used in this

paper belongs to the 5100 series and has 60 cores) con-
nected by a high-performance on-die bidirectional intercon-
nect (shown in Figure 1). In addition to these cores, there
are 16 memory channels (supported by memory controllers)
delivering up to 5.0 GT/s [12]. When working as an accel-
erator, Phi can be connected to a host (i.e., a device that
manages it) through a PCI Express (PCIe) system interface
- similar to GPU-like accelerators. Different from GPUs, a
dedicated embedded Linux µOS (version: 2.6.38.8) runs
on the platform.
Each core contains a 512-bit wide vector unit (VPU) with

vector register files (32 registers per thread context). Each
core has a 32KB L1 data cache, a 32KB L1 instruction cache,
and a core-private 512KB unified L2 cache. In total, a 60-
core machine has a total of 30MB of L2 cache on the die.
The L2 caches are kept fully coherent by the hardware, us-
ing DTDs (distributed tag directories), which are referenced
after an L2 cache miss. Note that the tag directory is not
centralized, but split up into 64 DTDs, each getting an equal
portion of the address space and being responsible for main-
taining it globally coherent. Another special feature of Xeon
Phi is the fast bidirectional ring interconnect. All connected
entities use the ring for communication purposes, using spe-
cial controllers called ring stops to insert requests and re-
ceive responses on the ring.

Figure 1: The Intel Xeon Phi Architecture.

The novelties of the Xeon Phi architecture relate to five
components : (1) the vector processing cores, (2) the on-chip
memory, (3) the off-chip memory, (4) the ring interconnect,
and (5) the PCIe connection. As these are the features that
differ, in one way or another, from a typical CPU - vectors
are wider, there are many more cores, cache coherency and
shared memory are provided with low penalty for 60 or more
cores, and a ring interconnect holds tens of agents that can
interchange messages/packets concurrently -, we focus our
benchmarking efforts on these features.

2.2 Programming
In terms of usability, there are two ways an application

can use Intel Xeon Phi: (1) in offload mode - the main ap-
plication is running on the host, and it only offloads selected
(highly parallel, computationally intensive) work to the co-
processor, or (2) in native mode - the application runs in-
dependently, on the Xeon Phi only, and can communicate
with the main processor or other coprocessors [13] through
the system bus. In this work, we benchmark Xeon Phi in
both modes.
Finally, to program applications on Xeon Phi, users need

to capture both functionality and parallelism. Being an x86

SMP-on-a-chip architecture, Xeon Phi offers the full capabil-
ity to use the same tools, programming languages, and pro-
gramming models as a regular Intel Xeon processor. Specifi-
cally, tools like Pthreads [5], OpenMP [2], Intel Cilk Plus [1],
and OpenCL [24] are readily available. Given the large num-
ber of cores on the platform, a dedicated MPI version is
also available. In this work, all the experiments we present
are programmed using C/intrinsics/assembly with OpenM-
P/Pthreads; we also use Intel’s icc compiler (V13.1.1.163).

2.3 MIC-Meter
We show our MIC-Meter in Figure 2. The goal of our

benchmarking is two-fold: to show how the special capabil-
ities of Xeon Phi can and should be measured, to quantify
the performance of this novel many-core architecture, and
eventually to identify the impacting factors. To this end, we
choose a microbenchmarking approach: we measure each
capability in isolation, under variable loads, and we quan-
tify its performance in terms of both latency-oriented and
throughput-oriented metrics.
Simply put, latency is the time required to perform an

operation and produce a result. As latency measurement
focuses on a single action from its beginning to its end,
one needs to isolate the operation to be measured and use
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Figure 2: The MIC-Meter Overview.

a highly accurate, non-intrusive timing method. Alterna-
tively, we can measure a long enough sequence of operations
with an accurate timer, and estimate latency per operation
by dividing the measured time by the number of operations.
In this paper, latency measurements are done with a single
thread (for individual operations) or two threads (for trans-
fer operations) with Pthreads. All latency benchmarks are
written in C (with inline assembly).
Throughput is the number of (a type of) operations exe-

cuted in a given unit of time. As higher throughput means
better performance, microbenchmarking focuses on measur-
ing the maximum achievable throughput for different oper-
ations, under different loads; typically, the benchmarked
throughput values are slightly lower than the theoretical
ones. Thus, to measure maximum throughput, the main
challenge is to build the workload such that the resource that
is being evaluated is fully utilized. For example, when mea-
suring computational throughput, enough threads should be
used to fully utilize the cores, while when measuring memory
bandwidth, the workload needs to have sufficient threads to
generate enough memory requests. For all the throughput
measurements in this paper, our multi-threaded workloads
are written in C and OpenMP.
We note that the similarities between Phi and a regular

multi-core CPU allow us to adapt existing CPU benchmarks
to the requirements of Xeon Phi. In most cases, we use such
”refurbished” solutions, that prove to serve our purposes.

3. EMPIRICAL EVALUATION
In the following sections, we present in detail the MIC-

Meter and the results for each of the components: (1) the
vector processing cores, (2) the on-chip and off-chip memory,
(3) the ring interconnect, and (4) the PCIe connection.

3.1 Vector Processing Cores
We evaluate the vector processing cores in terms of both

instruction latency and throughput. For latency, we use
a method similar to those proposed by Agner Fog [7] and
Torbjorn Granlund [9]: we measure instruction latency by
running a (long enough) sequence of dependent instructions
(i.e., a list of instructions that, being dependent on each
other, are forced to be executed sequentially - an instruction
stream).
The same papers propose a similar approach to measure

throughput in terms of instructions per cycle (IPC). How-
ever, we argue that a measurement that uses all processing
cores together, and not in isolation, is more realistic for pro-
grammers. Thus, we develop a flops microbenchmark to
explore the factors for reaching the theoretical maximum
throughput on Xeon Phi (Section 3.1.2).

3.1.1 Vector Instruction Latency
Xeon Phi introduces 177 vector instructions [11]. We

roughly divide these instructions into five classes 3: mask
instructions, arithmetic (logic) instructions, conversion in-
structions, permutation instructions, and extended mathe-
matical instructions.
The benchmark for measuring the latency of vector in-

structions is measuring the execution time of a sequence
of 100 vector operations using the same format: zmm1 =
op(zmm1, zmm2), where zmm1 and zmm2 represent two
vectors and op is the instruction being measured. By mak-
ing zmm1 be both a source operand and the destination
operand, we ensure the instruction dependency - i.e., the
current operation will depend on the result of the previous
one.
For special classes of instructions - such as the conversion

instructions vcvtps2pd and vcvtpd2ps - we have to measure
the latency of the conversion pair (zmm2 = op12(zmm1);
zmm1 = op21(zmm2)) in order to guarantee the depen-
dency between contiguous instructions (i.e., it is not possi-
ble to write the result of the conversion in the same source
operand, due to type incompatibility). Similarly, we mea-
sure the latency of extended mathematical instructions such
as vexp223ps and vlog2ps in pairs, to avoid overflow (e.g.,
when using 100 successive exp()’s).
The interesting results for vector instruction latency are

presented in Table 1. With these latency numbers, we know
how many threads or instruction streams we need to hide
the latency on one processing core.

Table 1: The vector instruction latency (in cycles).
Instruction Category Latency
kand, kor,
knot, kxor

mask instructions 2

vaddpd, vfmadd213pd,
vmulpd, vsubpd

arithmetic instructions 4

vcvtdq2pd, vcvtfxpntdq2ps,
vcvtfxpntps2dq, vcvtps2pd

convert instructions 5

vpermd, vpermf32x4 permutation instructions 6
vexp223ps, vlog2ps,
vrcp23ps, vrsqrt23ps

extended
mathematical instructions

6

3.1.2 Vector Instruction Throughput
The Xeon Phi 5100 has 60 cores working at 1.05 GHz,

and each core can process 8 double-precision data elements
at a time, with maximum 2 operations (multiply-add or
mad) per cycle in each lane (i.e., a vector element). There-
fore, the theoretical instruction throughput is 1008 GFlops
(approximately 1 TFlop). But is this 1 TFlop perfor-
mance actually achievable? To measure the instruction
throughput, we run 1, 2, 4 threads on a core (60, 120, and
240 threads in total). During measurement, each thread per-
forms one or two instruction streams for a fixed number of
iterations: bi+1 = bi op a, where i represents the iteration,
a is a constant, and b serves as an operand and the destina-
tion. The loop was fully unrolled to avoid branch overheads.
The microbenchmark is vectorized using explicit intrinsics,
to ensure a 100% vector usage.

3Note that we choose not to measure the latency of memory
access instructions because the latency results are highly
dependent on the data location(s).
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Figure 3: Arithmetic throughput using different
numbers of threads (60, 120, 240), different instruc-
tion mixes (mul versus mad), and issue widths (using
one and two independent instruction streams).

The results are shown in Figure 3. We note that the
peak instruction throughput - i.e., one vector instruction
per cycle (1TFlops in total) - can be achieved when using
240 threads and the multiply-add instruction. As expected,
the mad throughput is twice larger than the mul through-
put. Further, two more observations can be added. First,
when using 60 threads (one thread per core), the instruction
throughput is low compared with the cases when using 120
or 240 threads. This is due to the fact that it is not pos-
sible to issue instructions from the same thread context in
back-to-back cycles [12]. Thus, programmers need to run at
least two threads on each core to be able to fully utilize the
hardware resources. Second, when a thread is using only one
instruction stream, we have to use 4 threads per core (240
threads in total) to achieve the peak instruction throughput.
This is because the latency of an arithmetic instruction is 4
cycles (Table 1), and we need no less than four threads to
totally hide this latency (i.e., fill the pipeline bubbles [10]).
To comply, programmers need to either use 4 threads per
core or have more independent instruction streams.
To summarize, for a given instruction mix (mul or mad),

the achievable instruction throughput depends not only on
the number of cores and threads, but also on the issue width
(i.e., the number of independent instruction streams). We
also benchmarked the EMU (extended math unit) and see [6]
for more details.

3.2 Memory Latency
Available benchmarks, such as BenchIT [25] and lmbench [18]

use pointer-chasing to measure the on-chip and off-chip mem-
ory access latency. This approach has the advantage of not
only determining the latency itself, but also exposing the dif-
ferences between consecutive layers of a memory hierarchy
(i.e., different layers of caches and main memory will have
significantly different latencies). Thus, we use a similar ap-
proach to measure the latency for an Xeon Phi core (i.e.,
the latency for accessing local caches and main memory -
see Section 3.2.1).
When more than two cores communicate, measuring la-

tency is complicated. For this, Daniel Molka et al. proposed
an approach to quantify cache-coherency effects [19]. In our
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work, we adapt this approach to Xeon Phi using the correct
memory fences and cache flushing instructions 4.

3.2.1 Access Latency on a Single Core
To reveal the local access latency, we use a pointer-chasing

benchmark similar to those used by BenchIT and lmbench.
Essentially, the application traverses an array A of size S
by running k = A[k] in a fully unrolled loop. The array is
initialized with a stride, i.e., A[k] = (k + stride)%S. By
measuring the execution time of the traversal, we can easily
obtain an estimate of the average execution time for one iter-
ation. This time is dominated by the latency of the memory
access. The traversal is done in one thread and utilizes only
one core. Therefore, the memory properties obtained here
are local and belong to one core.
The results are shown in Figure 4. We see that the Xeon

Phi has two levels of data caches (L1 and L2). The L1 data
cache is 32KB, while the L2 data caches should be smaller
than 512KB. Furthermore, the accessing latency of L1 and
L2 data caches is around 2.87 ns (3 cycles) and 22.98 ns (24
cycles), respectively. With a stride of 64 bytes, Xeon Phi
takes 287.51 ∼ 291.18 ns (302 ∼ 306 cycles) to finish a data
access in the main memory (when the dataset is larger than
512KB). We note that when traversing the array in a larger
stride (e.g., 4KB), the latency of accessing data in off-chip
memory is slightly larger. This is because the contiguous
memory accesses fall into different pages. Furthermore, we
can observe (from the upper trend) that threads operate the
data in a batch manner, i.e., a 64-byte cache-line. Informa-
tion about cache associativity can also be seen in Figure 4
(see [23] for the calculation approach).

3.2.2 Remote Cache Latency
We have illustrated our measurements and results for mem-

ory latency on a single core in Section 3.2.1. In this section,
we focus on measuring remote cache latency. For these mea-
surements, we use an approach based on that proposed for a
traditional multi-core processor by Daniel Molka [19]. Our
setup is built as follows: prior to the measurement, the to-
be-transferred cache-lines are placed in different locations
(cores) and in a certain coherency state (modified, exclu-
sive, or shared). In each measurement, we use two threads

4Since Xeon Phi has no mfence or clflush, we need to
change the benchmark by searching and replacing them with
equivalent instructions.
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Figure 5: Read latencies of Core 0 accessing the
cache lines on Core 1 (D+1), Core 2 (D+2), Core
4 (D+4), Core 8 (D+8), Core 16 (D+16), Core 32
(D+32), Core 44 (D-16), Core 52 (D-8), Core 56
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(T0, T1), with T0 pinned to Core 0 and T1 pinned on an-
other core (Core X). The latency measurement always runs
on Core 0, transferring a predefined number of cache lines
from Core X to Core 0.
Figure 5 shows our results for remote cache accesses la-

tency on Xeon Phi. In Figure 5(a), we see that when the
cache line is in modified state, the overall latency of remote
access averages around 250 cycles, which is much larger than
the local cache access latency (by an order of magnitude)
but still smaller than the off-chip memory access latency
(by 17%). By getting the median value of all the input data
sets (up to 128 KB), we get the overall remote latency shown
in Figure 5(b). We note no relationship between the remote
access latency and the cache-line states, except that access-
ing remote shared cachelines takes a few less cycles. This
is because in whichever state a cacheline is, when a core ac-
cesses it, a transfer is needed from a remote core (different
from a traditional multi-core CPU with cores sharing the
last-level cache). Furthermore, Xeon Phi adopts the MOESI

cache coherence protocol [12] to share a cacheline before
writing it back, and thus Figure 5(b) shows no penalty of
writing data back. In [6], our experiments have shown that
there is a relation between the latency and the core distances
on an older version of the Xeon Phi (namely, 31S1P), but
this effect seems to have disappeared on the newer Xeon Phi
5110.

3.3 Memory Bandwidth
McCalphin’s stream benchmark [16] includes a memory

bandwidth benchmark and presents results for a large num-
ber of high-end systems. However, his solution is based on
a combination of both read and write operations. In this
paper, we want to separate reads and writes so as to quan-
tify the impacting factors. In BenchIT, Daniel Molka et al.
presents a solution to measure bandwidth in a similar way
with that of latency measurement (see Section 3.2.2). His
microbenchmark requires compiler optimizations to be dis-
abled (i.e., the code should be compiled with the -O0 option),
thus disabling the software prefetching on Xeon Phi. As
a result, this measurement will underestimate bandwidth.
In this section, we present our own OpenMP implementa-
tion of a memory bandwidth microbenchmark, considering
hardware/software prefetching, streaming stores, ECC ef-
fects and off-chip/on-chip differences.

3.3.1 Off-Chip Memory Bandwidth
The Xeon Phi used in this work has 16 memory chan-

nels, each 32-bits wide. At up to 5.0 GT/s transfer speed 5,
it provides a theoretical bandwidth of 320 GB/s. But is
this theoretical bandwidth really achievable in real
cases? To answer this question, we use separate bench-
marks to measure the memory bandwidth for both read and
write operations. The read benchmark reads data from an
array A (b = b+A[k]). The write benchmark writes a con-
stant value into an array A (A[k] = C). Note that A needs
to be large enough (e.g., 1 GB) such that it cannot fit in
the on-chip memory. To avoid the impact of ”cold” TLBs,
we start with two ”warm-up” iterations of the benchmarks,
before we measure a third one. We use different numbers of
running threads - from 1 to 240.
Our results are shown in Figure 6 (HWP+SWP) (we plot

the median value of ten runs of the benchmarks). Over-
all, we see that the maximum bandwidth for both read and
write is far below the theoretical peak of 320 GB/s. More-
over, both the read and write memory bandwidth increases
over the number of threads - which happens because when
using more threads, we can generate more requests to mem-
ory controllers, thus making the interconnect and memory
channels busier. Thus, if aiming to achieve high memory
bandwidth, programmers need to launch enough threads to
saturate the interconnect and the memory channels. Fig-
ure 6(a) shows that the read bandwidth peaks at 164 GB/s,
achievable with using 60 threads or more (pinning at least
one thread to a core). However, we can obtain the maximum
write bandwidth (76 GB/s, as seen in Figure 6(b)) only
when using 240 threads. In general, the write bandwidth is
around half of the read bandwidth. This happens because
Xeon Phi implements a write-allocate cache policy and the
original content has to be loaded into caches before we over-
write it completely. To avoid the memory bandwidth waste,
programmer can use streaming stores 6 on Xeon Phi [14]. We
see that using streaming store instructions speeds-up write
operations up to 1.7 times (Figure 6(b):HWP+SWP+SS),
with memory write bandwidth now peaking at 120 GB/s.
Thus, programmers must consider using streaming stores to
optimize the memory bandwidth.

5GT/s stands for Giga Transfers per second.
6Streaming stores do not require a prior cache line read for
ownership (RFO) but write to memory ”directly”.
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Figure 6: Read and write memory bandwidth.

Prefetch Effects: Xeon Phi supports both hardware
prefetching (HWP) and software prefetching (SWP). The
L2 cache has a streaming hardware prefetcher that can selec-
tively prefetch code, read, and RFO (Read-For-Ownership)
cachelines into the L2 cache [12]. Figure 6 shows the memory
bandwidth of four different configurations: no prefetching,
HWP or SWP only, or both. When disabling both HWP
and SWP, the memory bandwidth is low (45 GB/s for read-
ing and 33 GB/s for writing). With only SWP, we already
achieve similar memory bandwidth to that achieved when
enabling both of them. This similarity indicates that the
hardware prefetcher will not kick in when software prefetch-
ing performs well. Furthermore, enabling only HWP deliv-
ers about half of the bandwidth achieved when enabling only
SWP (the bandwidth is roughly 1.9× smaller, on average).
To further evaluate the efficiency of prefetching on Xeon

Phi, we use the Stanza Triad (STriad) [4] benchmark with
a single thread. STriad works by performing a DAXPY
(Triad) inner loop for a length L stanza, then jumps over
k elements, and continues with the next L elements, until
reaching the end of the array. We set the total array size
to 128 MB, and set k to 2048 double-precision words. For
each stanza, we ran the experiment 10 times, with the L2
cache flushed each time, and we calculate median value of
the 10 runs to get the memory bandwidth for each stanza
length. Figure 7 shows the results of the STriad experi-
ments on both Xeon Phi and a regular Xeon processor (Intel
Xeon E5-2620). We see an increase in memory bandwidth
over stanza length L, and we note it eventually approaches
a peak of 4.7 GB/s (note that this is achieved per core).
Further, we see the transition point (from the bandwidth-
increasing state to the bandwidth-stable state) appears ear-
lier on Xeon than on Xeon Phi. Therefore, we conclude that
non-contiguous access to memory is detrimental to memory
bandwidth efficiency, with Xeon Phi showing more restric-
tions on the stanza length when prefetching data than the
regular Xeons. To comply, programmers have to create the
longest possible stanzas of contiguous memory accesses, im-
proving prefetching and memory bandwidth.
ECC Effects: The Xeon Phi coprocessor supports ECC

(Error Correction Code) to avoid software errors caused by
naturally occurring radiation. Enabling ECC adds reliabil-
ity, but it also introduces extra overhead to check for errors.
We examined the bandwidth differences with and without
disabling ECC. With ECC disabled, we noticed a 20% to
27% bandwidth increase [6]. Note that all the experiments
in this paper are performed with ECC enabled. Further-
more, the new µOS kernel on Phi adds support of the trans-
parent huge pages (THP) functionality, which is enabled by
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Figure 7: Performance of STriad on the Xeon Phi
(the x-axis is in log scale and the results on Xeon
are normalized to those on Xeon Phi).

default and often improves application performance without
any code or environmental changes.

3.3.2 Aggregated On-Chip Memory Bandwidth
The available on-chip memory bandwidth is always essen-

tial in performance tuning and analysis. So, how large is
the on-chip memory bandwidth that can be achieved?
To answer this question, we measure the cache bandwidth
on a single core 7 and calculate the aggregated cache band-
width by multiplying it with the number of cores. We first
use a set of vmovapd instructions to measure the native read
or write bandwidth. Our results show that the L1 access
(read or write) throughput is 64 bytes per cycle. Thus, the
aggregated L1 bandwidth is 4032 GB/s for read or write.
Then we measure the maximum achieved bandwidth from
programmers’ point of view for scale1 (O[i] = a × A[i]),
scale2 (O[i] = a × O[i]), saxpy1 (O[i] = a × A[i] + B[i]),
and saxpy2 (O[i] = a × A[i] + O[i]) operations. To avoid
overheads from the high-level code, we use intrinsics in the
kernel code. We also disable the software prefetching due to
the fact that the data is located in caches after warming up.
The results are shown in Figure 8. We see that the maxi-

mum achieved bandwidth on a core is 73 GB/s, 96 GB/s, 52
GB/s, 69 GB/s for scale1, scale2, saxpy1, saxpy2, respec-
tively. The bandwidth of scale2 and saxpy2 is 1.3× larger
(than scale1 and saxpy1, respectively) because the data
cache allows a read/write cache-line replacement to happen
in a single cycle 8. The L1 bandwidth on a single core could
be larger when further unrolling the loops or better schedul-
ing instructions for each dataset. The aforementioned num-
bers are achieved by unrolling the loops 16 times without
changing the assembly code.
Furthermore, it is difficult to exactly measure the L2 band-

width due to the presence of the L1 cache. The bandwidth
depends on the memory access patterns. Specifically, when
we use a L2-friendly memory access pattern, the compiler
will identify the stream pattern and prefetch data to the L1
cache in time. By this, we will get a much larger bandwidth
due to the common efforts of L1 and L2. On the other hand,
an unfriendly memory access will experience many L1 misses

7Note that we choose not to measure the inter-core com-
munication bandwidth because we assume that cache-line
transfers occur rather scattered, and not in a large volume.
Thus, the measurement of inter-core (remote) access latency
is of greater use.
8http://software.intel.com/en-us/articles/
intel-xeon-phi-core-micro-architecture
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(c) saxpy1 bandwidth.
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Figure 8: Cache bandwidth on a single core.
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Figure 9: Core and thread distribution effects (we
use the read kernel and the array size is 1 GB).

and result in cache thrashing. Our benchmarking results are
obtained when disabling the software prefetching. When us-
ing 4 threads on a core, we notice a bandwidth of 11 GB/s,
20 GB/s, 10 GB/s, 16 GB/s for scale1, scale2, saxpy1,
saxpy2, respectively (Figure 8).

3.4 Ring Interconnect
On Xeon Phi, the cores and memory controllers are inter-

connected in a bi-directional ring. When multiple threads
are requesting data simultaneously, shared components like
the ring stop or DTDs can become performance bottlenecks.
In order to check this hypothesis, and its eventual perfor-
mance impact, we use thread affinity to fix threads on cores,
and we run the bandwidth microbenchmarks to quantify po-
tential bandwidth changes (in GB/s) for different thread-to-
core mapping scenarios.

3.4.1 Core/Thread Distribution
First, we measure the read memory bandwidth by dis-

tributing threads onto separate cores in three different pat-
terns: (1) compact - the cores are located close to each other,
(2) scattered - the cores are evenly distributed around the
ring, and (3) random - the core IDs are selected randomly
with no repeats. The bandwidths are measured using 2, 4, 8,
and 16 cores and the results are presented in Figure 9(a). We
see that the three approaches achieve very similar memory
bandwidths. Thus, the cores around the ring are symmetric
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on Xeon Phi, and the distance between has practically no
impact on the achieved bandwidth.
Second, as each Xeon Phi core supports up to four hard-

ware threads, we investigate whether there is any impact on
bandwidth if the threads are all gathered on the same core
(thus, less interconnect traffic) or distributed among differ-
ent cores. Figure 9(b) shows that when the threads run on
the same core, the bandwidth stabilizes at 4.7 GB/s. We
also note that running threads on separate cores results in a
linear bandwidth increase with the number of threads. We
conclude that when multiple threads on the same core re-
quest data simultaneously, they will compete for the shared
hardware resources (e.g., the ring stops), thus serializing the
requests. On the bright side, the threads located on the
same core share cache data and have faster data accesses
(see Section 3.2).

3.4.2 Accessing Shared-Data
Section 3.4.1 focuses on the achieved bandwidth when

threads access separate memory spaces. In this section we
investigatewhat is the bandwidth when different threads
access the same memory space simultaneously? We
expect that the bandwidth would resemble that obtained by
a single thread, assuming the memory requests are served by
broadcasting. Figure 10 presents the measured bandwidth,
showing that the read bandwidth decreases over the num-
ber of threads until 24 (or 16). Thereafter, the bandwidth
is constant around 1.5-2.0 GB/s (i.e., one third of the single
thread bandwidth). When using more threads than cores,
the bandwidth drops even further. This behavior is differ-
ent from the linear increase trend (shown in Figure 9(a))
seen when accessing separate memory spaces. We assume
the bottleneck lies in the simultaneous access to the DTDs.
Therefore, for bandwidth gain, applications should strive
to keep threads accessing different parts/cachelines of the
shared memory space (for as much as possible), to avoid the
effects of contention at the interconnect level.

3.5 PCIe Data Transfer
When used as a coprocessor, Xeon Phi is connected via

PCIe to a host (e.g., a traditional CPU). When offloading
computation to the Xeon Phi, the tasks and the related data
need to be transferred back and forth between the two pro-
cessors. As seen for GPUs [?], these transfers can be ex-
pensive in terms of overall application performance. Thus,
we have designed a benchmark to measure the data transfer
bandwidth. To do so, we use the offload pragma (specify-
ing in and out for the transfer direction) to transfer datasets
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Figure 11: Achieved data transfer bandwidth (over
PCIe) between a host and an Xeon Phi.

of different sizes from host to Xeon Phi and back. The trans-
ferred data is allocated with a 4KB alignment, for optimal
DMA performance [12].
The achieved bandwidth between host and Xeon Phi is

presented in Figure 11 (we report the results over 1000 times).
We note that the bandwidth increases with data size, and
it is relatively stable for different runs, for both directions.
However, for data transfers larger than 32 MB, the Phi to
host bandwidth shows a large variation, with the median

bandwidth value decreasing sharply (up to 6 times!). The
reasons for this large variance are still under investigation.

4. SCAT: AN XEON PHI MODEL
We compare our results with the information provided by

the Intel Software Development Guide (SDG) in Table 2.
We note that we did improve on the content of the official
data: instruction latency data, local and non-local memory
access bandwidth and latency data, an interconnect study,
and a PCIe offload evaluation. We also have the following
key observations, which lead to optimization guidelines.
High Throughput: Xeon Phi is indeed a high-throughput

platform. The peak instruction throughput is achievable,
but it depends on the following factors: (1) the number of
threads and threads/core occupancy, (2) the utilization of
the 512-bit vectors, (3) the issuing width (i.e., the num-
ber of independent instruction streams), (4) the instruction

Table 2: A comparison with the data in SDG (‘N/A’
stands for ”not available” in SDG).

Metric SDG Measured
VPU

Latency general statement cycles/instruction
Throughput 1008 GFlops 1008 GFlops

EMU evaluation general statement quantified
L1 Cache (32KB)

Latency (local) 1 cycle 3 cycles
bandwidth (local) N/A R=64B/c;W=64B/c

L2 Cache (<512KB)
Latency (local) 11 cycles 24 cycles

Bandwidth (local) N/A quantified
Latency (remote) N/A 250 cycles

Off-chip memory
Latency N/A 302 cycles

Bandwidth 320 GB/s R=164GB/s;W=76GB/s
Prefetching general statement quantified
ECC factor general statement quantified

Interconnections
Ring Traffic Contention N/A ring stops, DTDs
PCI Express Bandwidth N/A up to 7 GB/s

Figure 12: The SCAT model of Intel Xeon Phi.

mix. Furthermore, single-precision data leads to better per-
formance for math-intensive kernels.
Memory Selection: Accessing the local L1 cache is 8 times

faster than accessing the local L2 cache, which is again an
order of magnitude faster than accessing the remote caches
or the off-chip memory. However, the difference between a
remote cache access and an off-chip memory access is rela-
tively small (17%). Furthermore, the remote access latency
does not depend on the cache-line state.
Efficient Memory Access: Data is read and written from/to

the off-chip memory in cache lines (64 bytes). The maximum
achievable bandwidth is 164 GB/s for read operations and
76 GB/s for write operations - a lot lower than the theoret-
ical peak of 320 GB/s. With streaming store instructions,
the write bandwidth can increase up to 1.7 times. Fur-
ther, programmers need many threads (at least 60 - one per
core) to issue enough memory requests to saturate the ring
interconnect and the memory channels. The hardware and
software prefetching can improve bandwidth; their efficiency
increases with the length of the stanzas of contiguous mem-
ory accesses. Finally, disabling ECC leads to an average of
20% increase in bandwidth.
Ring Interconnect: All cores can be seen as symmetri-

cal peers, and the distance between cores has little impact
on performance. However, memory requests from threads
running on the same core are serialized, provided that the
bandwidth reaches 4.7 GB/s. Furthermore, when threads
(on different cores) are accessing the same data, the simul-
taneous access to the DTD leads to bandwidth loss.
Overall, we believe our results are complementary to the

SDG, and, being backed up by more practical guidelines, be
of added value for programmers using this platform.
SCAT Model: Based on the numbers and the observa-

tions, we attempt to build a simple view of the Xeon Phi,
providing production users with a platform model for reason-
ing about parallel algorithm design and performance opti-
mization. Figure 12 shows the machine model for Xeon Phi.
The machine has 60 symmetrical cores, each of which con-
tains 1/2(/3/4) vector threads working on 8 double-precision
or 16 single-precision data elements in a lock-step manner.
Family threads (threads suited in the same core) differ
from remote threads (threads suited in another core) in
that they share and compete local resources. Furthermore,
compared with accessing local caches, remote caches and
off-chip memory are slow (see the numbers in Table 2). We
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summarize the model as SCAT (symmetric cores and asym-
metric threads).
This machine model limits itself to those architectural

details that are important for performance. For example,
programmers do not have to keep the ring interconnect in
mind because the cores perform symmetrically. On the other
hand, the threads on the same core share and compete the
shared resources, putting up asymmetry and impelling us
to take care of thread affinity. Therefore, this platform
model captures the key performance features of the proces-
sor, ensuring good performance with relatively low program-
ming effort (i.e., using high-level programming tools).

5. LEUKOCYTE TRACKING
In this section, we focus on our case-study application,

Leukocyte Tracking. Specifically, we aim to evaluate the
gap(s) between the achieved performance of the application
and the performance indicated by the microbenchmarks.
Leukocyte Tracking is a medical imaging application which

detects and tracks rolling leukocytes (white blood cells) in
vivo video microscopy of blood vessels. The velocity of
rolling leukocytes provides important information about the
inflammation process, which aids biomedical researchers in
the development of anti-inflammatory medications [21].
In the application, cells are detected in the first video

frame and then tracked through subsequent frames [21]. Track-
ing accounts for around 90% of the total execution time and
thus we focus on this procedure. Tracking is accomplished
by first computing, in the area surrounding each cell, a Mo-
tion Gradient Vector Flow (MGVF) matrix. The MGVF is
a gradient field biased in the direction of blood flow, and it
is computed using an iterative Jacobian solution procedure.
After computing the MGVF, an active contour is used once
again to refine the shape and determine the new location of
each cell. Unfortunately, leukocyte tracking is computation-
ally expensive, requiring more than four and a half hours to
process one minute of video. Boyer et al. have translated
the tracking algorithm from Matlab to C and OpenMP [3].

5.1 Performance Analysis
Without any code changes, we compile and run the kernel

on both Phi and SNB (Intel Xeon E5-2620, a dual 6-core
processor with hyper-threading disabled), and show their
performance in Figure 13. We see that, on SNB, the execu-
tion time decreases when increasing the number of threads.
On Phi, the execution time decreases when the number of
threads is less than 40. Using more than 40 threads brings
no further performance gain. Overall, we note that the per-
formance on Phi (with 40 threads) is 2× worse than that on
SNB (with 12 threads), while the sequential execution of the
same application (i.e., running on a single thread) on Xeon
Phi is 5× slower than on SNB.
To further understand these results, we analyze the over-

all performance by taking both parallelism and per-thread
performance into account, and focus on two aspects: (1) the
single-thread performance and (2) scalability. The analysis
includes the interactions between kernel characteristics and
processor features.
Single thread: When tracking a leukocyte, we use 18

data structures/matrix (1 input sub-image, 1 motion gradi-
ent vector field, 8 neighbours to store intensity differences,
and 8 neighbours to store the heaviside value). For the
given input dataset, each matrix has 41 × 81 elements (in
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Figure 13: The initial performance results of Leuko-
cyte Tracking on an Xeon Phi processor (240
threads) and an Xeon processor (12 threads).

double-precision). In total, tracking a leukocyte needs 467
KB (18 × 41 × 81 × 8), which is smaller than the size of a
local L2 cache (Figure 12 and Table 2). Thus, the iterative
Jacobian solver will work intensively on tracking a leuko-
cyte with data located on-chip, and the tracking speed is
not limited by the memory access.
As for computation without vectorization, a thread on Phi

(working at 1.05 GHz and issuing an instruction every two
cycles, see Section 3.1) runs 4× slower than one on SNB
(working at 2.0 GHz and issuing instructions every cycle).
With vectorization, the difference is lowered to roughly 2×.
In our practical experience, the single thread performance on
Phi is around 5× worse than that on SNB, an indication that
vectorization is not applied on both platforms. Indeed, the
compiler reports an auto-vectorization failure (consequently,
only 12.5% of the SIMD lanes are used).
Scalability: Figure 13 shows that the performance on

Phi varies little when using over 40 threads. Through code
analysis, we observed that parallelization is performed over
the number of leukocytes. As the number of leukocytes from
the input datasets is 36, increasing the number of threads to
more than 36 brings no performance gain. In other words,
the kernel parallelism does not match Phi’s massive hard-
ware parallelism (36 << 240, see Figure 12). On the other
hand, SNB has only has 12 threads, showing much better
scalability. To fully utilize the hardware resources on Phi,
we must increase the paralellism of the application.

5.2 Performance Optimization

5.2.1 Vectorizing the Kernel
When tracking a leukocyte, the kernel loops over a fixed-

sized portion of a frame (a sub-image with 41×81 pixels). A
typical loop is shown in Figure 14 (m = 41, n = 81). As we
have mentioned, the compiler fails to vectorize this code due
to the assumption of data dependency (the original code uses
pointers to pointers and dereferencing the data structure
is too complex for the compiler to automate).
We note that enabling vectorization for these cases re-

quires an intervention from the programmer. The typical
approach for manual vectorization is to add low-level intrin-
sics in the high-level C code, thus specifically instructing the
compiler to use the vector units.
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input: MAT* z, double v, double e
output: MAT* H
double one_over_pi = 1.0 / PI;
double one_over_e = 1.0 / e;
for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {
double z_val=m_get_val (z, i, j)*v;
double H_val=one_over_pi * \

atan(z_val*one_over_e )+0.5;
m_set_val (H, i, j, H_val);
}

}

Figure 14: The Heaviside step function.

We identify three main factors that make code vectoriza-
tion for leukocyte tracking cumbersome. First, data align-

ment: when vectorizing the code, data accesses should start
with an address aligned at 64 bytes (512 bits). This must
be insured with specific memory allocation (i.e., dedicated
APIs). Second, the non-unit-strided memory access: when
the 8 elements in a vector are non-contiguous, the offset for
each element must be specified. This occurs when calculat-
ing the gradient in the tracking kernel. Third, and final,
vectorizing a loop requires special care when the number of
iterations is not a multiple of the vector length. Thus, we
also need to deal with the remainder of the inner-loop (i.e.,
because n%8 �= 0). Therefore, we use two loops in the track-
ing kernel: a vector loop (for the bulk of the computation),
and a scalar loop (used to deal with the loop remainder).
Fixing all these problems (and thus manually vectorizing

this code using intrinsics) takes an expert programmer two
days. Moreover, the kernel code doubles in size (from ∼200
lines to ∼400 lines). Correspondingly, the tracking time per
frame decreases to 8.5s from 31s (∼4× faster) on Phi. The
remaining optimization space is roughly 2×. The limiting
factor is that the kernel uses trigonometric operations, which
can be further optimized by using EMU (Section 3.1 and [6]).

5.2.2 Changing Parallelism
As we have mentioned, the parallelism of leukocyte track-

ing is limited by the number of leukocytes (36 in the given
data set). For the traditional multi-core processors, this
number is still larger than that of the hardware threads.
But on a Phi with 240 hardware threads, running the track-
ing kernel with 36 parallel threads can never fully utilize the
platform.
We attempt to improve on this situation by increasing

parallelism. Thus, we spawn a second-level parallelism over
the outer loop of the sub-image in Figure 14. Next, we need
to tune the dimensions of the two parallel levels by specifying
the number of first-level threads (FLT ) and the number of
second-level threads (SLT ). We select these two numbers
from those that satisfy the following constraints: (1) FLT ×
SLT ≤ 240, (2) FLT ≤ 36, (3) SLT ≤ 41. We autotune the
kernel using FLS ∈ {1, 2, 3, 4, 6, 9, 12, 18, 36} and SLT ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 9. Figure 15
shows the tracking time per frame for different combinations.
We see that the best performance achieved by Phi is around
0.1s per frame when FLT = 4 and SLT = 8, indicating
that using more threads does not mean a faster tracking

9SLT can be as large as 41, but our results show a large
SLT is not necessary due to the limited per-thread work.
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Figure 15: The selection of FLT and SLT .

(4 × 8 < 240). According to the SCAT model (Figure 12),
it is of no use binding multiple threads to the same core due
to little data reuse.

5.2.3 Overall Performance
We compare the execution time of tracking leukocytes

per frame on Phi against the ones achieved by SNB (us-
ing a higher clock and better performing cores, but a lot
less parallelism), and on an NVIDIA Kepler GPU (K20m,
a GPU with a similar peak performance and more mas-
sive parallelism, programmed in CUDA implementation 10).
The comparison is illustrated in Table 3. We notice that
Xeon Phi is 6× faster than SNB, while it is around 40%
slower than K20. Admittedly, optimizing the tracking ker-
nel on SNB (by hand-tuning for enabling vectorization) can
lead to a performance increase (a maximum 4×, most likely,
with SNB-specific intrinsics). K20 performs better than Phi
due to the more efficient reduction implemented in the GPU
shared memory [3]. Specifically, at the second level of par-
allelism, we use multiple threads that are bound to separate
cores on Phi, while the CUDA implementation runs the same
amount of work on a block (and a multi-processor). Thus,
when performing reduction, the shared (reduction-)variable
on Phi has to be transferred back and forth at the second-
level cache. As we have measured, the remote cache access
is as slow as accessing the off-chip memory (Figure 12 and
Table 2). With CUDA on K20, this reduction happens in
shared memory, with much higher performance. The final
code of leukocyte tracking for Phi is publicly available 11.

Table 3: Tracking time per frame (in seconds).
’VEC’ represents ’vectorization’; ’FMT/SMT’ is ’to
use the first-level/second-level multi-threading’, re-
spectively. The optimizations are incrementally
added.

1T +VEC +FMT +SMT Overall
Phi 31 8.5 0.7 0.1 0.1
SNB 6 – 0.6 – 0.6
K20 – – – – 0.06

10We change the original Rodinia single-precision version to
the double-precision version for a fair comparison.

11https://github.com/haibo031031/mic-apps
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5.3 Discussion
One of the important selling points of Phi is the continu-

ity of programming models from the traditional multi-core
processors - the OpenMP and MPI models and codes are
functionally compatible. Ideally, programmers should ob-
tain high performance without a lot of investment in pro-
gramming model learning (e.g., OpenCL), tuning and hack-
ing low-level code (e.g., assembly code with pthreads). Ef-
fectively, the expectation is that re-compiling the code with
the -mmic option will do. Our experience leads to a different
conclusion: porting legacy code or developing new code still
needs a lot of developer interventions.
Note 1. Using intrinsics indeed brings us a significant per-

formance gain, but it exposes low-level implementation de-
tails to users, conflicting with the principles of encapsulation
and high-level programming. It also requires code special-
ized for Phi, which will further fail to run the on traditional
multi-core processors. This deviates from the original de-
sign goal of Phi, i.e., to keep using traditional programming
models. A possible solution is to provide a high-level vec-
tor template/library/model (e.g., ispc 12). The template
can present users with the required operations (e.g., multi-
ply and reduction). When implementing the template, we
translate the operations into their equivalent intrinsics spe-
cialized to a platform. Thus, we can keep code portable and
not hinder performance.
Note 2. Xeon Phi truly needs massive parallelism to fully

use the hardware threads. This observation makes a signifi-
cant difference between SNB and Phi. SNB has a dozen of
hardware threads, while Phi has over a two hundred. Only
those applications with abundant parallelism can fully uti-
lize the machine. When lacking parallelism, applications can
either look for finer grain parallelism (atypical for OpenMP,
but useful when available), or find a way to load multiple
(independent) tasks on the platform. However, note that
the number of required threads depends on applications and
their run-time contexts.
Note 3. On Xeon Phi, using OpenMP can perform global

reduction on the globally shared caches, but this proves to
be less efficient than expected (apparently due to frequent
memory transfers). When using CUDA/OpenCL on GPUs,
an efficient reduction can be performed in shared memory
(or local memory in OpenCL) at the block (or work-group
in OpenCL) level. Further, our experience shows that the
leukocyte tracking maps more naturally to the GPU archi-
tecture: mapping a leukocyte to a multi-processor. While
on Phi, we need to map a leukocyte to multiple processing
cores. Thus, we believe that a multiprocessor on GPUs is
equivalent to multiple processing cores on Phi, at least in
the context of leukocyte tracking.
To summarize, we conclude that (1) although it often de-

stroys portability, manual vectorization is mandatory for ex-
ploiting Phi’s performance; a high-level library can be used
to hide the platform-dependent details, but vectorization
must be enabled as much as possible, and (2) massive par-
allelism is needed on Phi to fully use the hardware. In a
nutshell, merely relying on compilers with traditional pro-
gramming models to achieve high performance on Phi is still
far from reality.

12http://ispc.github.io/

6. RELATED WORK
In this section, we survey and briefly discuss the work

related to our (micro)benchmarking approach. We focus
mainly on existing CPU and GPU benchmarking methods,
as there are no other comprehensive studies of Xeon Phi -
yet.
In [23], the authors develop a high-level program to eval-

uate the cache and TLB for any machine. Part of our work
is based on their approaches (targeting uni-core processors,
though). Multiple studies are also performed on multi-core
CPUs. In [20], the authors report performance numbers
from three multi-core processors , including not only execu-
tion time and throughput, but also a detailed analysis on
the memory hierarchy performance and on the performance
scalability between single and dual cores. Daniel Molka et
al. [19] revealed many fundamental details of the Intel Ne-
halem using benchmarks for latency and bandwidth between
different locations in the memory subsystem. We use similar
approaches for the access latency of remote caches.
For GPUs, Volkov et al. [28] presented detailed bench-

marking of the GPU memory system that reveals sizes and
latencies of caches and TLB. Later, Wong et al. [29] pre-
sented an analysis of the NVIDIA GT200 GPU and their
measurement techniques. They used a set of micro-benchmarks
to reveal architectural details of the processing cores and the
memory hierarchies. Their results revealed the presence of
some undocumented hardware structures. While these mi-
crobenchmarks are in CUDA and targeted NVIDIA GPUs,
Thoman et al. [26] develop a set of OpenCL benchmarks
targeting a large variety of platforms. They include code
designed to determine parameters unique to OpenCL, like
the dynamic branching penalties prevalent on GPUs. They
also demonstrate how their results can be used to guide al-
gorithm design and optimization
Garea et al. [8] developed an intuitive performance model

for cache-coherent architectures and demonstrated its use
on Intel Xeon Phi. Their model is based on latency mea-
surements, which match well with our latency results. In
addition to the cache access latency, we have shown how we
benchmark the instruction throughput, the memory band-
width at different levels, and the interconnect performance.

7. CONCLUSION AND FUTURE WORK
Given its performance promises, Intel Xeon Phi is very

likely to become popular for both low-end high performance
computing applications (smaller scale scientific applications
like Leukocyte Tracking), and the next generation of su-
percomputers. In this paper, we presented our hands-on
experience with this processor - in both the ”lab” and us-
ing a real application - and discussed several key insights
into the performance of this new many-core processor. By
using a set of self-designed microbenchmarks, we charac-
terized the major components of this architecture - cores,
memory, and interconnections - summarizing them into four
machine-centric observations (potential optimization guide-
lines). We also made a first attempt to provide a simple
machine view (SCAT ) to facilitate application design and
performance tuning on the Xeon Phi.
In general, our benchmarking results are consistent with

Xeon Phi’s published data. However, the data we have
added through this benchmarking effort allowed us to ex-
pose more accurately the expected key performance factors
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for the Xeon Phi. We have shown that the platform is able
to deliver its performance promises in terms of computation,
but programmers will need to find the right parallelization
strategy to fill 240 hardware threads with compute-intensive
tasks, while finding the right balance between data parti-
tioning and coherent memory requests to achieve sufficient
memory bandwidth. Thus, we believe the number of ap-
plications that can easily use Xeon Phi’s potential in their
existing, naive form is, for now, very limited. And for high
performance, our and other experience show that program-
mers need to take a lot of efforts on parallelization, analysis,
and optimization.
In terms of future work, we are extending our hands-on

experience with more application studies. As a long term
plan, we are targeting a quantified performance model for
Xeon Phi, which could be used in identifying performance
bottlenecks and guiding performance optimization. This
model would build upon the microbenchmarks and applica-
tion characteristics for its foundations, but expose different
complexity layers depending on the user requirements.
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