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ABSTRACT
Garbage collection, if not tuned properly, can considerably
impact application performance. Unfortunately, configur-
ing a garbage collector is a tedious task as only few guide-
lines exist and tuning is often done by trial and error. We
present what is, to our knowledge, the first published work
on automatically tuning Java garbage collectors in a black-
box manner considering all available parameters. We pro-
pose the use of iterated local search methods to automati-
cally compute application-specific garbage collector config-
urations. Our experiments show that automatic tuning can
reduce garbage collection time by up to 77% for a specific
application and a specific workload and by 35% on average
across all benchmarks (compared to the default configura-
tion). We evaluated our approach for 3 different garbage
collectors on the DaCapo and SPECjbb benchmarks, as well
as on a real-world industrial application.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
Management (Garbage Collection)

General Terms
Performance, Experimentation, Measurement

Keywords
Garbage Collection, Configuration, Optimization, Java

1. INTRODUCTION
Garbage collection (GC) relieves programmers from re-

claiming unused heap objects manually. This convenience
has led to a wide-spread use of managed execution environ-
ments. Moreover, compacting garbage collectors allow for
faster allocations because allocating an object is as simple
as appending it to the end of the used heap, making expen-
sive searches for a fitting memory block unnecessary.
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However, while object allocations produce a direct and
easy to understand performance impact, the costs of garbage
collections are easily overlooked. Programmers are often un-
aware of the proportion their application spends on collect-
ing garbage. They often also do not know that the lifetime
and the modification patterns of objects can have a big influ-
ence on GC behavior. This unawareness may result in bad
throughput, long response times, or even in applications that
are completely unresponsive, due to long GC pauses.

Managed environments such as the Java virtual machine
(VM), which we used in our research, often provide hundreds
of parameters for tuning the garbage collector to the needs
of a specific application. Each of these parameters comes
with a default value that has been selected to fit the ‘aver-
age application’. However, defining an average application
is hard considering today’s application diversity. Brecht et
al. [8] observed that the default configuration of a garbage
collector is rarely perfect for any given application. As only
a few parameters come with guidelines on how to choose
appropriate values, most operators stick to tuning only this
small set of parameters, ignoring others which might lead
to additional improvements. Due to the lack of documenta-
tion, they often exhaustively profile their application with
different GC configurations, having only a faint clue of what
they are doing. This attempt is tedious, and might even be
futile, due to the sheer number of parameters, the lack of
knowledge about the GC implementation, and the unknown
influence of each parameter. Thus, operators have to spend
a lot of time for tuning their application, often without find-
ing a configuration that provides a significant improvement.

In this paper, we propose to use iterated local search to
automatically find an application-tailored GC configuration
in a black-box manner. We also present experiments show-
ing that our approach decreases GC time and thus over-
all run time significantly on well-known Java benchmarks
and on a real-world industrial application. Furthermore, we
provide explanations on why an optimized configuration is
well-suited for the respective application.

Our scientific contributions are a method for automati-
cally tuning a Java garbage collector for a specific appli-
cation as well as an empirical evaluation for a large set of
benchmarks and three widely used garbage collectors.

We conducted our research in cooperation with Com-
puware Austria GmbH. Compuware develops leading-edge
performance monitoring tools for multi-tier Java and .NET
applications. In their own applications as well as in applica-
tions of their customers, high GC times are a problem that
currently cannot be resolved with Compuware’s tools.
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This paper is structured as follows: Section 2 provides
a basic understanding of garbage collection; Section 3 de-
scribes the problem we want to address in more detail; Sec-
tion 4 illustrates our optimization approach; Section 5 de-
scribes our research method and experimental setup as well
as detailed results; Section 6 discusses related work; Sec-
tion 7 shows open research questions; and Section 8 con-
cludes the paper.

2. GARBAGE COLLECTION IN HOTSPOT
This section provides a basic understanding of the garbage

collectors available in the Java 8 HotspotTM VM.
The Serial GC is the oldest of them and was designed

for single-core machines with a small heap. It is a stop-
the-world collector, meaning that it suspends the entire VM
during garbage collection. Furthermore, it is a generational
collector [16, 24], i.e., it divides the heap into a young genera-
tion and an old generation of objects. The young generation
consists of a nursery and two survivor spaces, called from
space and to space. New objects are allocated in the nursery.
When the nursery is full, i.e., when there is not enough free
space for a new object, all live objects are marked recur-
sively (mark phase) based on the root pointers (i.e., static
variables, local variables and pointers originating from other
heap spaces). Subsequently, all marked objects in the nurs-
ery and in the from space are copied to the to space, and
the two survivor spaces are swapped, resulting in an empty
nursery and an empty to space (copy phase). Copying col-
lectors waste memory because one survivor space is always
empty, but they allow for fast collections because the col-
lection time only depends on the number of live objects and
not on the amount of garbage. When an object has survived
a certain number of garbage collections in the young genera-
tion, it is tenured, i.e., it is copied into the old generation. If
the old generation becomes full, it must be garbage collected
as well. For the old generation, the Serial GC uses a mark-
and-compact scheme. First, all live objects are marked; then
all marked objects are moved towards the beginning of the
heap, while all pointers to them are adjusted. Mark-and-
compact collection is significantly slower than copying col-
lection but it does not waste memory for empty semi-spaces.
Furthermore, collections of the young generation (minor col-
lections) are done much more frequently than collections of
the old generation (major collections) because most objects
die young, and thus the old generation does not fill up so
quickly.

The Parallel GC uses the same heap layout and the same
algorithms as the Serial GC. However, each phase is done in
parallel by multiple threads, decreasing the garbage collec-
tion time considerably on multi-core processors.

The Concurrent Mark and Sweep GC is again generational
and is based on the Parallel GC. However, it is not a stop-
the-world collector. Rather, it reduces the time of major
collections by doing parts of its work (e.g., marking) concur-
rently in the background while the application (the mutator)
runs in the foreground and might even modify references,
thus interfering with the collector. Using the Concurrent
Mark and Sweep GC increases application responsiveness,
especially if all available cores are used by the mutator. On
the other hand, if the mutator is under heavy load and thus
interferes with the collector heavily, the collector might have
to revisit parts of the heap because references were modified
by the mutator.

The Garbage First GC [10] is a generational collector. It
divides the heap into a number of small regions; the young
generation (i.e., the nursery and the survivor spaces) and
the old generation are logical sets of such regions and are
not contiguous. The marking phase is done concurrently,
similar to the Concurrent Mark and Sweep GC, but regions
with only a few live objects are collected first in order to
free as much memory as possible per collection. Thus, this
collector can deal with large heaps efficiently, because long
collections of many regions arise rarely.

3. PROBLEM
The HotspotTM VM [20] comes with 681 parameters (1338

with a debug build), most of them documented only by
sparse comments in the VM’s source code. These param-
eters are only exposed with the PrintFlagsFinal VM flag.

To get an overview of this mass of parameters, we cate-
gorized them into several groups, e.g., compiler parameters,
memory parameters, or threading parameters. As our goal
was to parameterize the garbage collector, we focused on
the memory group. This group was again split into one sub-
group for each garbage collector of the HotspotTM VM. We
also introduced an additional group of parameters affecting
all garbage collectors, e.g., parameters setting the field lay-
out of an object or the size of allocation buffers. Every group
is stripped from all tracing and debugging flags so that only
performance-relevant parameters remain.

Table 1 shows all subgroups of the memory group and
their respective sizes.

Group Parameters
Generic Memory 17

Parallel GC (Parallel Old GC) 37
Garbage First GC (G1) 45

Concurrent Mark and Sweep (CMS) 103
Parallel New GC (ParNew) 41

Serial GC 37
280

Table 1: Memory parameter groups

Some parameters, such as the preferred heap size and just-
in-time compiler, are chosen automatically at startup by the
virtual machine. This mechanism, called Ergonomics [17],
takes the underlying hardware (e.g., the number of proces-
sors) as well as a pause-time goal into account to choose
values for a small set of parameters automatically. For ex-
ample, the parameter ParallelGCThreads is automatically
set to the number of available processors when using a paral-
lel stop-the-world collector. Unfortunately, this mechanism
takes only static information into account and cannot adjust
parameters in response to program characteristics.

Furthermore, parameters are often added or removed from
one VM release to the next, making previous tuning results
obsolete. If an application is executed on different VMs, the
GC parameters might differ entirely. Tuning GC parame-
ters automatically counteracts these problems in addition
to improving performance.

4. APPROACH
Our approach is to use iterated local search for tuning a

garbage collector to the specific needs of a given application.
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The core of this method is an optimization algorithm that
adjusts parameter values so that the performance is max-
imized. For the optimization, we need a parameter model
describing the available parameters and their respective le-
gal values, as well as an objective function able to evaluate
a given configuration by returning a single value describ-
ing the induced performance. This function will profile the
application with the given parameter values because it can-
not compute or guess the induced performance in advance.
Figure 4 shows the individual elements of our approach.

Optimization
Algorithm

Parameter
Model

Best Config
input output

Application

Objective
Function

profile

parameter 
values performance

Figure 1: Approach

For the optimization algorithm we decided to use
ParamILS [14], an existing optimization framework that is
publicly available and easy to use. In the future, however,
we also plan to try other optimization frameworks.

4.1 Parameter Model
The input of the optimization algorithm defines the pa-

rameter model, with the names of all available parameters,
their valid values, and their start values. Furthermore, it
includes a description of the relationships between parame-
ters, e.g., parameter A must not be set if parameter B has
a certain value. Figure 2 shows a partial model of four GC
parameters in ParamILS-specific syntax.

XX:TargetSurvivorRatio {25, 50, 75} [50]
XX:? DisableExplicitSystemGC {0, 1} [0]
XX:? UseAdaptiveSizePolicy {0, 1} [0]
XX:? UseAdaptiveSizePolicyWithSystemGC {0,

1} [0]

Conditionals:
XX:? UseAdaptiveSizePolicyWithSystemGC |

XX:? DisableExplicitSystemGC in {0}
XX:? UseAdaptiveSizePolicyWithSystemGC |

XX:? UseAdaptiveSizePolicy in {1}

Figure 2: ParamILS input example

The parameter XX:TargetSurvivorRatio is a numeric pa-
rameter with the legal values 25, 50, and 75, and a start
value of 50. The parameters XX:?DisableExplicitSystem-

GC, XX:?UseAdaptiveSizePolicy, and XX:?UseAdaptive-

SizePolicyWithSystemGC are boolean parameters, 0 being
false and 1 being true. As the names suggest, UseAdaptive-
SizePolicy enables an adaptive heap-resizing policy dur-
ing garbage collection. XX:?UseAdaptiveSizePolicyWith-

SystemGC enables this policy also when System.gc() is
called, whereas System.gc() calls can be disabled by setting
XX:?DisableExplicitSystemGC to true. Obviously, allowing

adaptive resizing with System.gc() makes no sense if adap-
tive resizing was disabled in the first place. Such constraints
are defined in the last section of the input file, headed by
the Conditionals keyword. Each line in this section de-
scribes that the first parameter is only to be set if the value
of the second parameter is within the specified values. This
can reduce the search space for the optimization algorithm
significantly, producing better results faster.

4.2 Objective Function
In addition to the parameter model, we need an objective

function translating given parameter values into a perfor-
mance metric. In our case, the objective function is im-
plemented by a script that starts a Java application several
times and extracts its garbage collection time via Java Man-
agement Beans and returns the median to the optimization
algorithm. As we extract the aggregated garbage collection
time, the optimization algorithm will optimize for overall
throughput. Other optimization goals that could be consid-
ered will be briefly discussed in Section 7.

4.3 ParamILS
When provided with a parameter description (i.e., a pa-

rameter model) and an appropriate problem launcher (i.e.,
an objective function), ParamILS can optimize the param-
eter settings for any kind of problem. For finding an opti-
mum, the solution space (i.e., all sets of parameter values)
is searched using an iterated local search plus a heuristic for
making random changes to the configuration from time to
time in order to avoid getting stuck in local minima. To
determine the quality of a configuration, the quality metric
value returned by the objective function is used. This ap-
proach is very similar to hill climbing, i.e., it changes one
parameter at a time until no more improvement is observed,
then it repeats the same with the next parameter, and so
on. Furthermore, ParamILS introduces a technique called
adaptive capping, which aborts runs as soon as they become
obvious to not yield any improvement. The optimization al-
gorithm and its implementation are explained in more detail
in Hutter et al. [14].

5. EXPERIMENTS
We used our approach described in Section 4 to find the

best GC parameter settings for several Java benchmarks us-
ing an iterated local search algorithm that tunes parameter
values in order to find the smallest overall GC time for a
given application and a given input. This section describes
our experiments and their results for three different GCs.

5.1 Setup and Research Method
Figure 3 shows the setup of our experiment. As described

in Section 4, we use ParamILS as a configuration optimizer.
The output of the optimizer, i.e., the best configuration
found, is piped to the configuration minimizer, which elimi-
nates all parameters that retained their default values. This
minimum configuration is used by the validator to execute
several runs, both with the default configuration and with
the minimum configuration, to make more detailed quality
measurements.

Since the number of possible parameter configurations is
huge, the optimizer cannot explore them all. So we have to
stop after a certain number of runs or after a certain time.
We decided to stop the optimization of an application after
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Application
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Configuration

Default Configuration

Validator
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Figure 3: Experiment setup

4 hours. Experiments showed that not much improvement is
to be expected after that time for most of our benchmarks,
but of course different termination criteria could be used for
other experiments. Our experiments optimize for through-
put, i.e., the quality metric to be minimized is the overall
GC time in an application. Other optimization objectives
are discussed in Section 7.

The following subsections describe our research method in
more detail, i.e., the selection of benchmarks, the selection
of garbage collectors, and the definition of quality metrics.

5.1.1 Benchmarks
To get a broad set of benchmarks, we used applications

from various sources. We looked at the DaCapo 2009
benchmark suite, based on Blackburn et al. [7, 1], and
selected seven GC-intensive benchmarks, i.e., eclipse, h2,
jython, sunflow, tomcat, tradesoap and xalan. Unfortu-
nately, eclipse crashes on Java 8 [20] and was therefore ex-
cluded from our selection. In addition to that, we selected
the SPECjbb 2005 benchmark which puts a lot of pressure
on the garbage collector. The DaCapo benchmarks were
always executed with the largest input supported and the
SPECjbb benchmark was executed with eight warehouses.
For each of these benchmarks, we experimentally determined
the minimum heap required for execution. Table 2 shows our
benchmarks as well as their minimum heap sizes and average
run times when using Java 8 and the Parallel GC.

Benchmark Min. Heap [MB] Run Time [s]
DaCapo h2 300 36.89
DaCapo jython 40 11.03
DaCapo sunflow 10 6.49
DaCapo tomcat 75 6.08
DaCapo tradesoap 25 18.18
DaCapo xalan 10 11.00
SPECjbb 300 451.68

Table 2: Benchmarks used for the experiments

5.1.2 Garbage Collectors
To show that our approach is applicable to any garbage

collector, we conducted our experiments with three different
garbage collectors and their respective parameters:

• The Parallel GC is the default garbage collector, mak-
ing it one of the most frequently used GCs.

• The Concurrent Mark and Sweep GC was selected be-
cause the customers of our industrial partner make
heavy use of it.

• The Garbage First GC (also called G1 GC) was in-
cluded because is uses a relatively new algorithm, and
is therefore quite different from the other garbage col-
lectors. Furthermore, it enjoys increasing popularity
with large server applications.

We excluded parameters setting the heap size because there
is ample evidence (e.g., Yang et al. [27], Brecht et al. [8])
that the heap size has a significant impact on garbage collec-
tor performance. Furthermore, if we enable the optimizer to
adjust the heap size as well, it will always choose the biggest
allowed value.

5.1.3 Quality Metrics
We defined four quality metrics for determining the qual-

ity of a garbage collector configuration:

• The garbage collection time is the overall time the
benchmark spent on collecting garbage. Minimizing
this metric is the main goal of our optimization.

• The run time or throughput determines the impact of
the optimized configuration on the overall application
behavior. The DaCapo benchmarks process a given in-
put and terminate subsequently, making the run time
a good performance indicator. The SPECjbb bench-
mark, on the other hand, runs for a fixed amount of
time, making the run time a useless metric. In this
case, we rather measure the throughput.

• The garbage collection frequency describes the number
of garbage collection cycles that occurred during the
benchmark execution. Together with the garbage col-
lection time, this metric can be used to estimate the
average length of garbage collection pauses.

• The peak heap usage indicates the maximum amount
of live memory during benchmark execution.

Whenever these metrics were measured, we executed a num-
ber of warm-ups first in order to stabilize the caches and to
JIT-compile all the hot spots.

We examined all optimized configurations and their in-
duced behavior by injecting custom agents into the VM,
which extract information such as the GC frequencies and
the GC times. These agents use the Java Virtual Machine
Tool Interface (JVMTI) to access VM-internal information.

In order to better understand the results and offer detailed
interpretations, we also used the built-in GC logging mech-
anism as well as VM instrumentation to collect additional
data, e.g., the run time of individual GC phases or the av-
erage object ages. Our custom VM does not introduce any
costly computations, but rather aggregates and exposes al-
ready existing information. For example, the average object
age is computed during the marking phase, because the GC
has to traverse all objects anyway. Nevertheless, to reduce
the risk of tainted results, all figures in the following sub-
sections have been created without GC logging and with an
unmodified VM.
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5.1.4 Hardware and Software
We ran our experiments on an Intel R© CoreTM i7-3770

CPU @ 3.40GHz×4 (8 Threads) on 64-bit with 18GB RAM
running Ubuntu 12.10 Quantal Quetzal with the Kernel
Linux 3.5.0-38-generic. All unnecessary services were dis-
abled and the experiments were always executed in text-only
mode. We used the OpenJDK 8 Early Access Release b100
[20], because significant changes were made to the garbage
collectors compared to Java 7, e.g., the permanent genera-
tion was removed.

5.2 Results
This subsection provides an overview of the results of our

experiments. A detailed discussion will follow in Section 5.3.
Figures 4 - 7 show the measured quality metrics for all

benchmarks with a specific garbage collector. Each subfig-
ure is a histogram with 2 bars per benchmark; the left (dark)
bars indicate the results of the default parameter configura-
tions; the right (light) bars show the results of the optimized
parameter configurations. All values are medians of multi-
ple runs, normalized with respect to the value of the default
configuration. We used the median because it is more real-
istic than the peak performance, more stable with respect
to outliers than the arithmetic mean, and more meaningful
for our metrics than the geometric mean. The error interval
on top of each bar indicates the standard deviation. Due to
the normalization, a large error interval on a long running
benchmark might indicate the same standard deviation as
a smaller error interval in a shorter running benchmark (cf.
Table 2). For benchmarks that execute for a fixed amount of
time, i.e., SPECjbb, the throughput is normalized by divid-
ing the default configuration throughput by the optimized
throughput. The rightmost two bars represent the arith-
metic mean of the individual speedups.

Figure 4 shows the results of the parameter optimization
for the Parallel GC without any memory pressure applied,
i.e., the VM is allowed to increase the heap size arbitrarily.
Please note that the heap usage diagram has a different scale
and that the heap size is not explicitly set but is a result of
the optimized configuration. The results show that the over-
all run time is decreased by 9% in the tradesoap benchmark
and shows slight speedups for almost all other benchmarks.
Of course, the impact on the overall run time depends on
how much time a benchmark spends for garbage collection.
The GC time, on the other hand, has been reduced signif-
icantly for all benchmarks. With the optimized parameter
configuration, the tradesoap benchmark does not need any
garbage collection at all, reducing the GC frequency and
the GC time to zero. Sure enough, these results are mostly
due to the fact that the heap size has been increased by a
factor of 13. Large heaps lead to less garbage collections,
because it takes longer to fill the heap. Furthermore, the
GC time depends only on the number of live objects which
is independent of the heap size.

To show that the GC time depends on more than just the
heap size and that it can be reduced by optimizing the GC
configuration, we decided to artificially apply memory pres-
sure to all benchmarks. This was done by experimentally de-
termining the minimum heap size for a benchmark and set-
ting the actual heap size to a multiple of that value. Table 2
shows the determined minimum heap sizes of our bench-
marks. For the following experiments, we decided to use a
maximum heap size that is twice the minimum heap size

for every benchmark because this seems to create a realistic
memory pressure. When the memory pressure is decreased,
i.e., the heap is increased, measurements have shown that
the results converge to the values shown in Figure 4.

5.2.1 Parallel GC
Figure 5 shows the results of optimizing the Parallel GC

with twice the minimum heap size. Due to the memory pres-
sure, the heap cannot grow arbitrarily but the memory man-
ager must get along with the space available. In some cases,
i.e., in h2, jython, and tomcat, the heap usage is higher
than with the default configuration, although it is below the
allowed maximum heap size. Thus, the optimized configura-
tion obviously uses the available space more efficiently than
the default configuration, e.g., by choosing better sizes for
the survivor spaces. The GC time and the GC frequency
have both been reduced on all benchmarks. Compared to
the results without memory pressure (Figure 4) the overall
run time speedup is significantly higher (by up to 42% for
xalan) because the garbage collection ratio is bigger, i.e., due
to memory pressure the application spends a larger percent-
age of its run time on garbage collection. The h2 and the
SPECjbb benchmarks show less improvement than the oth-
ers, because due to their larger execution time, fewer runs
could be executed by the optimizer in the fixed time frame.

5.2.2 Concurrent Mark and Sweep GC
The results of optimizing the Concurrent Mark and Sweep

GC (Figure 6) show only small improvements, indicating
that the default parameter settings were more or less ad-
equate for our benchmarks. One might also question the
statistical significance of the results considering the small
speedups and their standard deviations.

5.2.3 Garbage First GC
Optimizing the Garbage First GC yields results (Figure 7)

that are similar to those of the Parallel GC. Some bench-
marks show a remarkable reduction in GC time, which is,
however, not observable in the overall run time, because
GC time seems to be only a small fraction of the run time
in this configuration. Nevertheless, the overall run time of
SPECjbb could be reduced by 10%. The sunflow benchmark
uses only a fraction of the heap space available with the de-
fault configuration. The optimized configuration utilizes the
available space better, resulting in a spike in the heap us-
age. Furthermore, the standard deviation is much higher
compared to the Parallel GC. This indicates that, due to
the large number of small heap regions, the Garbage First
GC is easily influenced by external factors, such as the ob-
ject allocation order or the heap layout. The optimization
on tradesoap does not find a configuration resulting in a sig-
nificant speedup, indicating that the default configuration is
already well suited for this application. The GC frequency
of h2 increased whereas the GC time dropped, meaning that
although the application ended up collecting garbage more
often, the individual GC pauses where shorter, resulting in
an overall reduction of GC time.

5.3 Detailed Results and their Interpretation
We have selected two benchmarks for which we will discuss

the results in more detail. These benchmarks have been
selected based on their differing optimum configurations.
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Figure 4: Optimization results for the Parallel GC (normalized, without memory pressure)
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Figure 5: Optimization results for the Parallel GC (normalized, with memory pressure)

5.3.1 Parallel GC applied to xalan
This section looks at the optimization of the Parallel GC

when running the DaCapo xalan benchmark. Figure 8 shows
the GC frequencies, the GC times, and the heap usage for
the xalan benchmark broken down into different heap sub-
spaces and their respective GC algorithms. The left (dark)
bars are the values produced by the default configuration,
and the right (light) bars are produced by the optimized
configuration. Scavenge denotes the collection of the young
generation and MarkSweep the collection of the old gener-
ation. Eden Space and Survivor Space together make up
the young generation (the second survivor space required by
the scavenge algorithm is not shown as it is always empty).
Please note that this figure shows the peak space usage and

not the actual space size. However, the peak usage is equal
to the size in the eden space and the old generation because
GCs mostly occur when a space is full. The size of the
survivor space depends on the usage and the value of the
TargetSurvivorRatio parameter. The default value for this
parameter is 50, i.e., the survivor space is sized so that up to
50% are occupied after a minor GC, meaning that the size
of the survivor space is approximately twice the usage. Fig-
ure 8 shows that both the GC frequency and the GC time
dropped dramatically in the optimized configuration when
more space was given to the young generation. If the young
generation is larger it needs less frequent collections and thus
gives young objects more time to die between collections. If
objects die before they are tenured, the old generation be-
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Figure 6: Optimization results for the CMS GC (normalized, with memory pressure)
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Figure 8: Detailed optimization results for xalan (Parallel GC with memory pressure)
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comes smaller and the expensive MarkSweep GC can run
less frequently. Obviously, the xalan benchmark has many
short-living objects ([7]) so that the optimized configuration
is beneficial here.

Figure 9 shows that with the optimized configuration ev-
ery Scavenge run frees more than four times as much memory
as with the default configuration. This confirms our conjec-
ture that in the optimized configuration most objects die
before the next GC run.
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Figure 9: Amount of memory freed in the young
generation for xalan (Parallel GC with memory
pressure)

The optimized configuration and its interpretation.
Table 3 compares the optimized (new) parameter values

with their default (old) values for the xalan benchmark. Pa-
rameters that retained their default values are excluded.

Parameter old new
AdaptiveSizeDecrementScaleFactor 4 2
AdaptiveSizeMajorGCDecayTimeScale 10 5
AdaptiveSizePolicyCollectionCostMargin 50 40
AdaptiveSizeThroughPutPolicy 0 1
BindGCTaskThreadsToCPUs - +
CollectGen0First - +
MinHeapFreeRatio 40 20
MinSurvivorRatio 3 1
NewRatio 2 1
OldPLABSize 1024 2048
PLABWeight 75 80
ResizeOldPLAB + -
SurvivorPadding 3 2
TargetSurvivorRatio 50 70
TenuredGenerationSizeIncrement 20 30
TenuredGenerationSizeSupplement 80 85
TenuredGenerationSizeSupplementDecay 2 16
UseAdaptiveGCBoundary - +
UseAdaptiveGen.SizePolicyAtMajor + -
UseAdaptiveGen.SizePolicyAtMinor + -
UseAdaptiveSizeDecayMajorGCCost + -
UseAdaptiveSizePolicyFootprintGoal + -
YoungGenerationSizeIncrement 20 30
YoungPLABSize 4096 1024
YoungGenerationSizeSupplement 80 75
YoungGenerationSizeSupplementDecay 8 2

Table 3: Optimized parameter configuration for
xalan (Parallel GC with memory pressure)

The NewRatio parameter configures the size ratio between
the old generation and the young generation, i.e., a default

value of 2 results in an old generation that is twice as big
as the young generation. Changing this value to 1 doubles
the size of the young generation, thus cutting the GC fre-
quency of the young generation at least in half. Enabling
the UseAdaptiveGCBoundary flag allows the VM to move
the boundary between heap spaces, making it easier to fur-
ther increase the size of the young generation. Decreasing
the MinSurvivorRatio from 3 (i.e., the eden space is at least
three times as big as a single survivor space) to 1 results in
bigger survivor spaces. Therefore, more objects can be kept
in the young generation for a longer time before they are
promoted to the old generation. Additionally, increasing the
TargetSurvivorRatio enables a bigger fraction of the survivor
space to be occupied and thus allows more live objects in
the survivor spaces without forcing a premature promotion.
CollectGen0First forces a collection of the young generation
just before collecting the old generation, avoiding a major
GC immediately followed by a minor GC. Furthermore, the
YoungPLABSize (i.e., the size of the young-to-old promotion
buffer) is decreased because it is hardly used in xalan. The
OldPLABSize (i.e., the size of the promotion buffer used for
compacting objects in the old generation), is increased to
reduce the frequency of buffer overflows during major GCs.
Furthermore, the optimized configuration disables several
adaptive policies (e.g., UseAdaptiveGenerationSizePolicyAt-
Minor, UseAdaptiveGenerationSizePolicyAtMajor, and Use-
AdaptiveSizePolicyFootprintGoal) that would interfere with
other chosen parameter values. Please note that these de-
pendencies were not in our parameter model, but were found
automatically during optimization. The optimized configu-
ration also contains some false positives, such as Adaptive-
SizeThroughPutPolicy, AdaptiveSizeDecrementScaleFactor,
and AdaptiveSizeMajorGCDecayTimeScale. These param-
eters were modified by the optimization algorithm before it
disabled the corresponding policies. There was not enough
time for the optimization algorithm to determine that these
parameters are now without any impact.

Note that this parameter configuration is specific for the
xalan benchmark and would not necessarily produce good
results for other benchmarks.

Optimization.
Figure 10 shows the progress when optimizing the param-

eter configuration for xalan. The horizontal axis represents
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Figure 10: Optimization progress for xalan (Parallel
GC with memory pressure)

the number of iterations, the vertical axis represents the
quality of the respective iterations (i.e., GC time in sec-
onds). As expected, a relatively good configuration is found
very early. Afterwards, the algorithm tries to further op-
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timize the configuration, occasionally making a bad choice
resulting in spikes, but returning immediately if a change
does not show an improvement. In all our benchmarks, a
good configuration was already found after a few iterations,
and no further significant improvements were made after a
total optimization time of 4 hours.

5.3.2 Garbage First GC applied to SPECjbb
This section looks at the optimization of the Garbage First

GC when running the SPECjbb benchmark. In terms of al-
location rates and absolute GC times, this benchmark puts
significantly more pressure on the garbage collector than
the xalan benchmark. Moreover, measurements have shown
that, although many objects die young, the average object
age at death is considerably higher than in xalan. Figure 11
shows the GC time and the GC frequency per generation
as well as the heap space usages. It turned out that the
default parameter configuration kept almost all objects in
the young generation. However, tenuring long-living objects
earlier would decrease the GC time of the young generation
at the expense of the old generation. The optimized configu-
ration has found the sweet spot, or at least an approximation
of it, for the object distribution between generations.

The optimized configuration and its interpretation.
Table 4 compares the optimized parameter values with

their default values for the SPECjbb benchmark. Values
marked with a ‘*’ are chosen at start-up time for our machine
by the GC ergonomics.

Parameter old new
G1ConfidencePercent 50 40
G1ConcRefinementGreenZone 8* 4
G1ConcRefinementServiceIntervalMillis 300 150
G1ConcRefinementYellowZone 24* 32
G1ConcMarkStepDurationMillis 10 5
G1ConcRSHotCardLimit 4 16
G1HeapRegionSize 1MB* 4MB
G1HeapWastePercent 10 15
G1MixedGCCountTarget 8 16
G1ReservePercent 10 5
G1RSetUpdatingPauseTimePercent 10 15
G1RSetScanBlockSize 64 128
G1SATBBufferEnqueueThresholdPercent 60 30
G1UseAdaptiveConcRefinement + -

Table 4: Optimized parameter configuration for
SPECjbb (G1 GC with memory pressure)

The parameter G1RSetUpdatingPauseTimePercent de-
fines a limit for the time used updating the remembered
sets. This limit affects the concurrent refinement and when
a GC is triggered. These sets contain all root pointers per
heap region, i.e., all pointers into the region originating from
other regions. Increasing this parameter enables the garbage
collector to process more updates to this set necessary for
the heavy load of the SPECjbb benchmark. Increasing the
G1ConcRSHotCardLimit allows more pointer updates in a
memory card before the card is considered hot, thus trig-
gering a garbage collection later than usual. If code with
many pointer updates but only few allocations is executed,
a higher limit prevents unnecessary collections. The G1-
ConcRefinementGreenZone and G1ConcRefinementYellow-

Zone define how many update buffers for the remembered set
will be left in the queue (see Detlefs et al. [9]) and at which
queue size how many concurrent refinement threads are trig-
gered. Reducing the green zone results in fewer buffers left
in the queue whereas increasing the yellow zone results in
concurrent processing being triggered later as usual. There-
fore, less concurrent refinement threads are triggered less
often but have to process a bigger queue, reducing the in-
terference between the concurrent refinement and the mu-
tator. This behavior is favorable for heavy load with many
pointer updates, as observed in the SPECjbb benchmark.
The G1ConcMarkStepDurationMillis is decreased, resulting
in smaller incremental steps in the marking phase. Thus, if
many pointers are modified (as it is the case with SPECjbb)
the necessary re-marking steps due to the mutator inter-
ference are also shorter, decreasing the time spent on re-
marking and thus the overall GC time. To reduce paral-
lelization overhead, the G1RSetScanBlockSize is increased,
resulting in bigger chunks for each worker thread. An
increased G1SATBBufferEnqueueThresholdPercent leads to
more SATB (Snapshot At The Beginning) buffers to be en-
queued, enabling the garbage collector to handle pointer up-
dates more quickly. Finally, the G1HeapRegionSize is in-
creased, resulting in improved locality of sequentially allo-
cated objects (i.e., it is more likely that sequentially allo-
cated objects are in the same heap space) and in longer in-
tervals between garbage collections. Therefore, objects have
more time to die and each garbage collection can free a big-
ger fraction of a heap region.

Similarly to xalan, this parameter configuration was opti-
mized to fit the exact needs of the SPECjbb benchmark.

5.4 Real-world Experiment
In addition to the DaCapo and SPECjbb benchmarks, we

conducted our experiments also on a real-world industrial
application. This subsection describes the modified setup
and the results of this experiment.

5.4.1 Modified Setup and Research Method
The application for which we tuned the garbage collec-

tor is the dynaTrace Server 5.5 from our industrial partner
Compuware. The dynaTrace Server receives monitoring in-
formation, such as stack traces, allocation events, garbage
collector information, and captured parameter values, from
agents that are injected into other real-world applications
in order to monitor them. This information has to be pro-
cessed and aggregated in real time and has to be stored into
a performance warehouse (i.e., a database) to be accessible
via the dynaTrace Client.

When the load is too high, i.e., when the agents send too
much data per time unit to the server, it starts to ignore
incoming data. Compuware has experimentally determined
the maximum data rate that the server is able to handle
without having to skip anything for a given hardware setting
and given VM parameters. For our experiment, we used 68
agents to send data at that rate, resulting in a server that
is used up to its maximum capacity but is still handling the
received data correctly.

Due to the typical environment characteristics of Com-
puware’s customers, the heap size was fixed at 8GB. Until
now, Compuware achieved the best performance with the
Concurrent Mark and Sweep GC. Therefore, we optimized
the configuration of this GC.
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Figure 11: Detailed optimization results for SPECjbb (G1 GC with memory pressure)

As the server is handling requests continuously, we fixed a
single optimization iteration, i.e., a single run with a given
configuration, to 15 minutes. The optimization was con-
ducted for 2.5 days, resulting in about 600 iterations.

Similar to the other benchmarks, the objective function
was defined as the aggregated GC time during 15 minutes
under load. We had to add additional safeguards to the ob-
jective function because some configurations, while leading
to an overall GC time improvement, had significantly longer
GC pauses. Such configurations resulted in a decreased re-
sponsiveness, forcing the server to skip data. Thus, the
objective function continuously reads the server logs and
reports a configuration as crashed when the server starts
skipping data or when it loses the connection to the agents
due to long GC pauses. Such effects arise early, which en-
ables the optimization algorithm to save time because it can
prematurely abort runs with such configurations.

The server ran on 4 × MJ3GK E7540 @ 2.4GHz×6 Intel R©
Xeon R© Multi Core Dunnington D0 on 64-bit with 96GB
RAM running Linux Ubuntu 10.10 Maverick Meerkat. The
agents creating the load ran on separate machines in the
same network in order to avoid biased results.

5.4.2 Results
Figure 12 shows the aggregated GC time and the GC fre-

quency before (left, dark) and after (right, light) the op-
timization. Although the GC frequency increased up to
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Figure 12: Optimization results for the dynaTrace
Server (normalized, with the CMS GC)

161%, the GC time dropped to 58%. We do not show the
run time or the throughput because the agents were config-
ured to send requests at the same fixed rate before and after
the optimization.

The detailed results (Figure 13) show that the eden space
(Par Eden Space) has been cut in half, resulting in an in-
creased minor collection frequency, whereas the old gener-

ation space (CMS Old Gen) was increased by 26%. Most
objects allocated by the dynaTrace Server are temporary ob-
jects that are created during request processing. These ob-
jects usually die before the first GC cycle. Therefore, 73% of
the GC time was spent on minor collections (ParNew). How-
ever, there are also long-living objects which the dynaTrace
Server keeps in memory to enable fast access for dynaTrace
Clients. As these objects are usually stored in caches, they
can be collected within the first few major collections. In-
creasing the old generation space gives them more time to
die and thus speeds up collections in the old generation.

The optimized configuration leads to a better balance of
short-living and long-living objects between the two gener-
ations. As most objects die before the first collection, the
size of the young generation can be safely reduced and ob-
jects that survive the first collection are promoted to the old
generation. Increasing the size of the old generation reduces
the major GC frequency and gives long-living objects more
time to die there before the next major collection. Prelimi-
nary tests have shown that, in this scenario, the transaction
throughput can be increased by as much as 14%.

These results show that our approach of automatically
tuning GC parameters not only works for smaller bench-
marks but also for real-world industrial applications

5.5 Threats to Validity
Impact of individual parameters Although we examined

the GC logs carefully and performed additional runs with
our instrumented VM in order to be able to explain the
optimization effects, more experiments would be required to
better understand the impact of each parameter in isolation
as well as in combination with others.

Applicability to other VMs Our approach is applicable to
any VM that exposes parameters to control garbage collec-
tion behavior. In order to verify this, experiments would
have to be conducted for other VMs. However, we are con-
fident that our approach yields similar results because they
use similar garbage collection algorithms and parameters.

Hardware diversity All benchmarks were executed on the
same machine. Although we expect most parameters to be
hardware independent, additional experiments would be re-
quired to verify this assumption and to analyze potentially
different result configurations for the same benchmark.

6. RELATED WORK
To the best of our knowledge, no work has been published

on automatically tuning a GC considering all parameters.
There is some research, though, on choosing proper sizes for

120



 0

 0.2

 0.4

 0.6

 0.8

 1

ParNew ConcurrentMarkSweep

G
a

rb
a

g
e

 C
o

lle
c
ti
o

n
 T

im
e

 0

 0.5

 1

 1.5

 2

ParNew ConcurrentMarkSweep

G
a

rb
a

g
e

 C
o

lle
c
ti
o

n
 F

re
q

u
e

n
c
y

 0

 0.2

 0.4

 0.6

 0.8

 1

Par Eden Space Par Survivor Space CMS Old Gen

S
p

a
c
e

 U
s
a

g
e

Figure 13: Detailed optimization results for the dynaTrace Server (normalized, with the CMS GC)

the entire heap or for individual spaces, for manual tuning,
GC performance, and parameter value selection in general:

Heap space sizes Yang et al. [27] implemented a heap
size analysis to minimize paging while maximizing through-
put by adjusting the heap size accordingly. Only moderate
changes to the garbage collector are necessary to employ
their approach, which can reduce the GC time considerably.
Brecht et al. [8] experimentally examined the performance
impact (e.g., the overall run time, GC pause times, and
footprint) of changing the heap size for Java applications.
Furthermore, they devised a heuristic algorithm to resize
the heap with respect to the observed application behav-
ior. Guan et al. [12] investigated the performance effects
of different nursery sizing policies. They proposed a hy-
brid policy for handling different memory pressure scenarios
efficiently, enabling server applications to deal with higher
workloads. Balsamo et al. [3] used a queuing model for pre-
dicting the optimal activation rate, i.e., the GC frequency
to minimize the mean response time. Vengerov [26] devel-
oped a mathematical analysis to maximize the throughput
based on the sizes of the young and the old generation, as
well as on the tenuring threshold. He showed that, using his
definition, the heap size and the tenuring threshold converge
to their optimal values, achieving the optimal throughput.
Valesco et al. [25] proposed a method for dynamic reor-
ganization of the heap in a generational collector. They
present two techniques for choosing the percentage of re-
served space and show that these techniques can reduce the
collection time substantially. Singer et al. [22] introduced
the allocation curve as a special form of the demand curve
from economics as well as the term allocation elasticity to
control heap growth.

Manual tuning Gousios et al. [11] examined the impact
of GC tuning on Java server applications. Using the results
of their experiments, they devised a number of guidelines to
tune the Sun and the IBM virtual machines. However, these
guidelines refer only to the heap size and to the selection of a
garbage collector. Hirt et al. [13] described some parameters
of the JRockit VM and the capability of the JRockit Mis-
sion Control to provide statistics about heap space usage.
The described parameters are mostly about individual heap
space sizes and their resizing, and the selection of GC algo-
rithms. Moreover, the interpretation of the provided heap
space statistics is left to the user as only little guidance on
tuning is provided.

GC performance Blackburn et al. [6] identified key al-
gorithmic features of three GC algorithms and developed a
function for expressing their performance costs based on the
heap size.

GC selection Singer et al. [21] implemented a method
to select a garbage collection algorithm based on a single
profiling run, achieving a significant speedup over choosing
the default GC each time. However, they focus on choosing
the garbage collector only, ignoring the GC parameters.

GC parameters Singer et al. [23] suggest using decision
trees to predict a small set of parameters, i.e., the GC algo-
rithm and one of two new-to-old generation ratios. However,
they do not consider the entire set of available parameters.
Other sources provide guidelines on how to select values for
certain parameters of the Java VM. Oracle [19, 18] provides
information about some parameters of the HotspotTM VM
and explains their effect on the garbage collector. However,
this description is limited to parameters controlling the size
of individual heap spaces, the size of the entire heap, the
heap growth, and the GC algorithm. Lee [15] offers similar
instructions about choosing the heap size. Beckwith [4] pro-
vides more insight into the Garbage First collector and its
most important parameters [5]. However, some of the sug-
gested parameter values are experimental and most of them
remain unexplained.

7. FUTURE WORK
Optimizing other VM parameters As our approach is of

a black-box manner, it is not limited to garbage collection,
but could also be applied to other VM parameters such as
compiler heuristics or threading behavior.

Choosing other optimization frameworks We used
ParamILS because it is easy to adapt and publicly avail-
able for academic use. However, one might consider other
optimization frameworks as well (e.g., Heuristic Lab [2]) in
order to check whether they can find better optima.

Changing the optimization goal Our optimization goal was
the overall throughput of an application. Therefore, we used
the aggregated GC time as an objective function for the
optimization algorithm. However, one could also think of
other optimization goals such as the average or maximum
GC pause time.

8. CONCLUSIONS
In this paper we proposed a technique for the automatic

tuning of GC parameters for specific applications using an
optimization tool that applies a modified hill climbing ap-
proach. We conducted detailed experiments with a variety
of GC-intensive benchmarks from the DaCapo benchmark
suite and from SPECjbb 2005 as well as with a real-world
industrial application (the dynaTrace Server). The experi-
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ments were performed for 3 widely used garbage collectors
of the HotspotTM VM.

Our measurements show that for some benchmarks, the
GC time can be reduced by up to 77% leading to an over-
all run-time speedup of up to 42% relative to the default
configuration. The average reduction of GC time across all
benchmarks was 35% and the average speedup on overall
run time was 9% (for the HotspotTM default GC).

With dozens of GC parameters, which are scarcely docu-
mented and hard to understand, the manual tuning of ap-
plications is a tedious task which is often guided by trial
and error. Automatic tuning can be an attractive alterna-
tive that exploits otherwise hidden GC potential based on
the characteristics of specific applications.
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Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java Benchmarking Development and
Analysis. In Proc. of the Annual ACM SIGPLAN
Conf. on Object-oriented Programming Systems,
Languages, and Applications, pages 169–190, 2006.

[8] T. Brecht, E. Arjomandi, C. Li, and H. Pham.
Controlling Garbage Collection and Heap Growth to
Reduce the Execution Time of Java Applications.
Trans. Program. Lang. Syst., 28(5):908–941, 2006.

[9] D. Detlefs. Concurrent Remembered Set Refinement
in Generational Garbage Collection. In USENIX Java
VM Research and Technology Symp., 2002.

[10] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-First Garbage Collection. In Proc. of the Intl.
Symp. on Memory Management, pages 37–48, 2004.

[11] G. Gousios, V. Karakoidas, and D. Spinellis. Tuning
Java’s Memory Manager for High Performance Server
Applications. In Proc. of the 5th Intl. System
Administration and Network Conf., pages 69–83, 2006.

[12] X. Guan, W. Srisa-an, and C. Jia. Investigating the
Effects of Using Different Nursery Sizing Policies on
Performance. In Proc. of the Intl. Symp. on Memory
Management, pages 59–68, New York, NY, USA, 2009.

[13] M. Hirt and M. Lagergren. Oracle JRockit: The
Definitive Guide. 2010.

[14] F. Hutter, H. H. Hoos, K. Leyton-Brown, and
T. Stutzle. ParamILS: An Automatic Algorithm
Configuration Framework. Journal of Artificial
Intelligence Research, 36:267–306, 2009.

[15] S. Lee. How to Tune Java Garbage Collection.
http://www.cubrid.org/blog/textyle/428187, 2012.

[16] H. Lieberman and C. Hewitt. A Real-time Garbage
Collector Based on the Lifetimes of Objects. Commun.
ACM, 26(6):419–429, 1983.

[17] Oracle. Garbage Collector Ergonomic.
http://docs.oracle.com/javase/7/docs/

technotes/guides/vm/gc-ergonomics.html, 2013.

[18] Oracle. Java HotSpot VM Options.
http://www.oracle.com/technetwork/java/javase/

tech/vmoptions-jsp-140102.html, 2013.

[19] Oracle. Java SE 6 HotSpot[tm] Virtual Machine
Garbage Collection Tuning.
http://www.oracle.com/technetwork/java/javase/

gc-tuning-6-140523.html, 2013.

[20] Oracle. OpenJDK 8 Early Access Release b100.
http://jdk8.java.net/archive/8-b100.html, 2013.

[21] J. Singer, G. Brown, I. Watson, and J. Cavazos.
Intelligent Selection of Application-specific Garbage
Collectors. In Proc. of the Intl. Symp. on Memory
Management, pages 91–102, 2007.

[22] J. Singer, R. E. Jones, G. Brown, and M. Luján. The
Economics of Garbage Collection. In Proc. of the Intl.
Symp. on Memory Management, pages 103–112, 2010.

[23] J. Singer, G. Kovoor, G. Brown, and M. Luján.
Garbage collection auto-tuning for java mapreduce on
multi-cores. In Proc. of the Intl. Symp. on Memory
Management, pages 109–118, 2011.

[24] D. Ungar. Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm. In
Proc. of the ACM SIGSOFT/SIGPLAN Software
Engineering Symp. on Practical Software Development
Environments, pages 157–167, 1984.

[25] J. Velasco, A. Ortiz, K. Olcoz, and F. Tirado.
Dynamic Management of Nursery Space Organization
in Generational Collection. In INTERACT-8,
workshop, pages 33–40, 2004.

[26] D. Vengerov. Modeling, Analysis and Throughput
Optimization of a Generational Garbage Collector. In
Proc. of the Intl. Symp. on Memory Management,
pages 1–9, 2009.

[27] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and
J. E. B. Moss. Automatic Heap Sizing: Taking Real
Memory into Account. In Proc. of the Intl. Symp. on
Memory Management, pages 61–72, 2004.

122

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.compuware.com
http://www.dacapobench.org/
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
http://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All
http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://www.oracle.com/technetwork/articles/java/g1gc-1984535.html
http://www.cubrid.org/blog/textyle/428187
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/gc-ergonomics.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/gc-ergonomics.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://jdk8.java.net/archive/8-b100.html

	Introduction
	Garbage Collection in Hotspot
	Problem
	Approach
	Parameter Model
	Objective Function
	ParamILS

	Experiments
	Setup and Research Method
	Benchmarks
	Garbage Collectors
	Quality Metrics
	Hardware and Software

	Results
	Parallel GC
	Concurrent Mark and Sweep GC
	Garbage First GC

	Detailed Results and their Interpretation
	Parallel GC applied to xalan
	Garbage First GC applied to SPECjbb

	Real-world Experiment
	Modified Setup and Research Method
	Results

	Threats to Validity

	Related Work
	Future Work
	Conclusions
	Acknowledgments
	References



