
Using Performance Models to Support Load Testing
in a Large SOA Environment

Christian Vögele, Andreas Brunnert,
Alexandru Danciu, Daniel Tertilt

fortiss GmbH
Guerickestr. 25

80805 München, Germany
{voegele,brunnert,danciu,tertilt}@fortiss.org

Helmut Krcmar
Technische Universität München
Chair for Information Systems

Boltzmannstr. 3
85748 Garching, Germany

krcmar@in.tum.de

ABSTRACT
Load testing in large service-oriented architecture (SOA) en-
vironments is especially challenging when services are under
the control of different teams. It gets even more difficult if
services need to be scaled before a load test starts. It is thus
important to estimate workloads for services involved in a
load test. Service workloads can be specified by the amount
of service operation invocations distributed over time. We
propose the use of performance models to derive this in-
formation for SOA-based applications before executing load
tests. In a first step, we use these models to select usage sce-
narios. Afterwards, these models are transformed in a way
that each scenario can be simulated separately from each
other. These simulations can predict service workloads for
selected usage scenarios and different user counts.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques

General Terms
Measurement, Performance

Keywords
Load Testing, Service Workload, Usage Scenario, Perfor-
mance Models, Service-oriented Architecture

1. INTRODUCTION
This paper describes an approach to support load test-

ing in a large SOA environment using performance models.
The approach is developed and applied in an ongoing project
that transforms an IT landscape into a service-oriented ar-
chitecture (SOA)1. The SOA paradigm describes how loosely

1Project details can be found in our previous work [2]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LT’14, March 22, 2014, Dublin, Ireland.
Copyright 2014 ACM 978-1-4503-2762-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2577036.2577038.

coupled software components offer services in a distributed
environment [5]. SOA enables the integration of legacy sys-
tems and aims at increasing the flexibility of enterprise IT
environments. However, the transformation into a SOA is
associated with technical challenges. One of the key chal-
lenges is to ensure that given performance requirements (i.e.
response times for a given workload) are met by enterprise
applications in such an environment. Legacy systems that
need to be integrated into a SOA are often not designed for
this type of interaction. New access patterns and additional
software layers lead to different performance characteristics.

Especially for enterprise applications that extensively reuse
existing services, it is important to evaluate the performance
before they are rolled out to a production environment [5].
However, planning and executing load tests is a cumbersome
task. The complexity of this task increases if several teams
are involved in this process and the services provided by
these teams are not yet in production.

The IT environment in our project context comprises more
than twenty complex information systems maintained by
several teams in the organization. These information sys-
tems provide more than seventy different services in the
SOA environment. It is thus important to not only esti-
mate the workload for the enterprise applications but also
for the services used during a test. Service workloads can be
specified by the amount of service operation invocations dis-
tributed over time. Service level agreements (SLA) between
service providers and consumers could be violated when the
expected service workloads can not be handled by the ser-
vice deployments in a test environment [4]. Thus, estimating
these workloads is necessary so that a test environment can
be set up correctly. Otherwise, the performance evaluation
results might be interesting for the service providers but not
for the enterprise application consuming these services. We
propose an approach to support these tasks using perfor-
mance models.

2. USING PERFORMANCE MODELS TO
SUPPORT LOAD TESTING

The applications we are evaluating are intended to be used
by 10,000 users in a pilot phase whereas 100,000 users are ex-
pected once they are in production. These applications are
developed using a model-driven development approach and
are modeled as Unified Modeling Language (UML) activity
diagrams. The UML activity diagrams contain the applica-
tion control flow including information about which service
operations are called. Additionally, the expected user be-

5

havior represented as user think times and call probabilities
is integrated into the UML activity diagrams. This infor-
mation is collected by interviewing domain experts.

In order to reduce the modeling effort, UML activity dia-
grams are automatically transformed into performance mod-
els. The Palladio Component Model (PCM) [1] is used as
meta-model for the performance models. The PCM model-
ing notation is closely aligned with the UML notation and
is thus easily comprehensible for technical staff in an organi-
zation. A detailed description of the transformation process
from UML activity diagrams to PCM models can be found
in [2].

In the next section, we describe how the PCM models are
used to select usage scenarios for load tests. Afterwards, we
describe how predictions using these models help to estimate
service workloads for selected usage scenarios.

2.1 Selecting Usage Scenarios
A usage scenario is defined as a path from a specified

start element to one of the specified end elements of a PCM
model. Parameterizable control flow elements like proba-
bilistic branches and loops describe the sequence of the mod-
eled user actions within these paths and represent the infor-
mation collected from the domain experts [1].

To detect all possible scenarios, the generated PCM mod-
els are traversed recursively using a depth-first search. While
traversing the PCM models, the call probability for each
scenario is calculated by multiplying the probabilities of all
branch transitions within a specific path. Users can define
thresholds for the minimum likelihood of execution and the
minimum (and/or maximum) number of user actions within
a scenario. These thresholds help to avoid that too many
scenarios are extracted and that endless loops occur.

The result of the depth-first search is a set of usage scenar-
ios including their probability of being called. Additionally,
the number of user actions and service operations called dur-
ing a usage scenario is provided as a result. Based on this
information test experts can select a set of scenarios for the
load test which match their test goals. Afterwards, load test
scripts for each of these scenarios are created manually.

2.2 Predicting Service Workloads
Before executing a load test, the test environment must be

scaled according to the expected workload. This is especially
important if services involved in a load test need to be scaled
in an integration or pre-production environment. Therefore,
we use the PCM models to derive predictions about service
workloads. Afterwards, the prediction results can be com-
municated to each service development team. These teams
can then ensure that given SLAs can be met for the expected
workloads on the services.

However, the PCM models generated based on the UML
activity diagrams are modeled in a way that all usage sce-
narios are represented as one graph. Thus, it is not possi-
ble to evaluate only selected usage scenarios because they
are not modeled separately from each other. Therefore, we
transform the PCM models to represent the usage scenarios
independently from each other. Single usage scenarios can
now be excluded or included for the following analysis by
adjusting their probabilities manually. To exclude single us-
age scenarios their call probability can be set to zero. The
probability of the remaining usage scenarios must then be
extrapolated to one.

The PCM models are enhanced with information about
worst case response times for service operations as specified
in SLAs. Using these transformed models as input for a sim-
ulation engine allows to derive predictions for selected usage
scenarios. The number of simulated users can be varied to
assess the impact of different user counts. The prediction re-
sults show how often each service operation is invoked over
time. Additionally, the expected throughput for the given
usage scenarios can be derived from these results. The sim-
ulation time should be chosen according to the planned ex-
ecution time of the load tests to simplify the analysis.

3. CONCLUSION AND FUTURE WORK
As shown in this paper, predictions based on performance

models can simplify the load test planning and execution in
a SOA project. The applicability of the approach presented
in this work depends on the availability of software models
depicting the control flow of enterprise applications. In case
other notations are used to represent the control flow, a
new transformation from these notations to PCM must be
implemented. However, the resulting PCM models can be
used for the approach without further adaption.

Future work includes automatic load test script generation
for selected usage scenarios. Additionally, we investigate the
use of machine learning to prioritize usage scenarios based
on the test goals automatically, e.g. using scenarios that
are most likely, that include the most service calls or which
lead to the highest resource utilization. Capacity planning
using performance models enhanced with resource demand
information as shown in [3] is another area to pursue in the
future.

4. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The palladio

component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3 –
22, 2009.

[2] A. Brunnert, A. Danciu, C. Vögele, D. Tertilt, and
H. Krcmar. Integrating the palladio-bench into the
software development process of a soa project. In
Proceedings of the Symposium on Software
Performance: Joint Kieker/Palladio Days, pages
30–38, 2013.

[3] A. Brunnert, C. Vögele, and H. Krcmar. Automatic
performance model generation for java enterprise
edition (ee) applications. In M. S. Balsamo, W. J.
Knottenbelt, and A. Marin, editors, Computer
Performance Engineering, volume 8168 of Lecture
Notes in Computer Science, pages 74–88. Springer
Berlin Heidelberg, 2013.

[4] G. Canfora and M. Di Penta. Service-oriented
architectures testing: A survey. In Software
Engineering, pages 78–105. Springer, 2009.

[5] Y. Liu, I. Gorton, and L. Zhu. Performance prediction
of service-oriented applications based on an enterprise
service bus. In International Computer Software and
Applications Conference (COMPSAC), pages 327–334,
Beijing, China, 2007.

6

