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ABSTRACT

Wireless Sensor Networks (WSNs) are often used for envi-
ronment monitoring, an application which requires reliable
routing of messages from source to sink nodes via multi-
hop networks. Prior to installing such WSNs, engineers
commonly analyse the network using discrete event simula-
tion (DES). Whilst sophisticated simulators such as Castalia
and TOSSIM take into account many low-level features of
WSNs, their biggest drawback is the lack of scalability. This
inhibits design-time system optimisation for large or com-
plex networks. In this paper, we discuss how Population
CTMC (PCTMC) models, used in conjunction with mean-
field analysis, can be used to mitigate this problem. To illus-
trate the potential of PCTMC models in the WSN domain,
we present a PCTMC model for a failsafe, dynamic rout-
ing protocol, which we implemented in Castalia. We show
that the mean-field solution for the model yields good qual-
itative agreement with corresponding low-level simulations,
but at a fraction of the computational cost. In particular
we see good agreement for average metrics describing buffer
occupancy and data flow behaviour. Moreover, our PCTMC
model produces good results when packets are lost due to
channel interference, an important consideration for WSNs.

Categories and Subject Descriptors

C.4 [Performance of systems]: Modeling techniques

General Terms

Application of modelling formalisms
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1. INTRODUCTION

With the increasing availability of inexpensive wireless
sensor hardware, the number of application areas for wire-
less sensor networks (WSNs) has continually grown over the
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last couple of years. One such application is environment
monitoring, an application in which WSN nodes periodically
capture local information such as temperature, humidity or
luminosity and forward the information to a sink node via a
multi-hop ad hoc network. In addition to periodical samples,
some of these applications further allow event notification.
This is beneficial, for instance, in the case of forest fire being
detected by an environment monitoring WSN or where an
intruder has entered an area surveilled by a security moni-
toring WSN. In the literature there are numerous examples
of WSNs for different applications such as fire detection [3],
landslide detection [25] and agricultural area monitoring [30]
as well as structural monitoring and controlling [32, 2].

While all of the above examples use periodic and event
based communication patterns, the requirements in terms of
energy efficiency, reliability or throughput vary considerably
between different deployments. An outdoor application for
instance usually requires better energy efficiency as battery
replacement is more expensive in locations that are difficult
to access. An indoor intrusion detection system on the other
hand may require low latency and high throughput to trans-
mit pictures of an intruder. As a consequence, many MAC
and network protocols have been developed for WSNs over
the last decade in order to cater for a large variety of Qual-
ity of Service (QoS) demands [4]. However, it is difficult to
decide which protocol to use for a given application, as the
performance depends on the WSN topology and the config-
uration of the protocol stack. A recent study [10] came to
the conclusion that protocol comparison literature generally
provides insufficient information regarding experimental se-
tups. Moreover, the study claims that too many protocol
comparisons do not adequately tune protocols for their test
environment. Being left with a range of candidate proto-
cols for a specific application, engineers need to test a large
number of different protocol stacks with different param-
eter configurations in order to optimise their WSN before
deployment.

The most widely used low-level WSN simulators for this
task are TOSSIM [21], Castalia [6] (an extension to the Om-
net++ [20] simulation environment) and ns-2/3 [22]. These
tools provide state-of-the-art models for simulating wire-
less networks, enabling engineers to test complete proto-
col stacks under fairly realistic conditions [5]. The major
downside of these discrete event simulation (DES) frame-
works, however, is the lack of scalability, so that the analysis
of large wireless networks with hundreds of nodes becomes
computationally expensive [8]. This makes it virtually im-
possible to test a large range of protocol stacks and con-



figurations in an effort to optimise the software for an ap-
plication. Population CTMC (PCTMC) analysis methods
potentially provide an alternative to DES when investigat-
ing particular aspects of WSNs. PCTMCs are continuous
time Markov chains that keep track of the evolution of pop-
ulations over time. Their main advantage is that the popu-
lation moments of the underlying stochastic process, such as
mean and variance of the populations, can be approximated
by ordinary differential equations (ODEs) [18, 19]. This effi-
cient form of analysis, which is also referred to as mean-field
analysis [23], has made PCTMCs a popular paradigm for
modelling large client-server systems. Naturally one of the
major constraints of PCTMCs is that the delay between any
two events must be negatively exponentially distributed or
alternatively belong to a distribution which can be approx-
imated by a phase-type distribution. In the past this may
have deterred some engineers from using PCTMC models
to represent WSN protocols, which often exhibit determin-
istically timed behaviour. As a consequence PCTMC-style
models for large WSNs are hardly covered in the literature’.
Nevertheless, a promising example of a PCTMC-style model
was given in [7], where the authors showed how mean-field
analysis can be used to investigate the swarm intelligence
based network reorganisation of a failsafe network originally
described in [24]. Another example was the use of PCTMC-
style models to investigate different sleep policies for WSN
nodes [13]. In [16] we reviewed existing PCTMC WSN
modelling techniques, presented the simple interference-free
PCTMC WSN model that is reviewed in Section 3.2 and dis-
cussed open challenges. Moreover, in [15] we showed that for
the resulting models, recently developed mean-field analysis
tools are capable of efficiently approximating higher-order
statistics for various WSN specific metrics. This is partic-
ularly useful when analysing transient behaviour of WSNs
during network topology changes.

Though self-contained, this paper builds upon the work
presented in [15, 16]. The contributions of this paper are
as follows. In Section 3.3 this paper addresses the missing
representation of channel interference in the simple PCTMC
model described in [16] (cf. Section 3.2). This may appear
to be a mere incremental improvement, however, it is gen-
erally a non-trivial problem to incorporate and analyse in-
terference in mathematical models with complex topologies.
Moreover, interference representation is an essential feature
that is required if we aim to promote PCTMC modelling as
a tool in the engineering community. In addition to this,
we show that mean-field analysis is a tractable, fast solution
technique for PCTMC WSN models even when simultane-
ously considering dynamic routing, message exchange and
interference effects. Finally, in contrast to [15, 16] this paper
compares the steady-state mean-field results of our PCTMC
models with the simulation results obtained from a low-level
Castalia protocol stack implementation and shows that the
PCTMC model can be seen as a limiting case when message
sampling and forwarding rates in the network become large.

Our paper is organised as follows; in Section 2 we provide
background on PCTMC and spatial PCTMC modelling and
evaluation techniques. In particular we introduce the so-
called mean-field ODE analysis technique [23]. Section 3
subsequently describes a Castalia and a PCTMC model im-

!By PCTMC-style we mean models that have been ex-
pressed in any formalism for which a lossless mapping to
PCTMCs exists.
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plementation of a data gathering WSN with dynamic rout-
ing. In Section 4 we then compare the data flow results
from the Castalia simulation and the PCTMC ODE analy-
sis for different topologies and communication constraints.
In particular we compare our model to the Castalia simula-
tion under both ideal and more realistic wireless channels.
Finally, Section 5 concludes our work and suggests further
research opportunities.

2. BACKGROUND

In this section we first introduce the notion of popula-
tion modelling, which has inspired the development of pop-
ulation CTMCs (PCTMCs). Subsequently, we formally re-
view PCTMCs and the mean-field moment approximation
method for PCTMCs. We then introduce some extra no-
tation for PCTMCs to simplify the representation of spa-
tially distributed populations, which will later be used for
describing our WSN model. Thereafter, we look at basic
WSN concepts and terminology.

2.1 PCTMCs

In population models it is assumed that a large number
of identical individuals belonging to a particular population
interact with individuals from other populations. While we
generally assert that individuals within a population have
the same behaviour, this does not prevent populations of
different individuals from interacting with one another. In-
teractions either result in a proportion of individuals chang-
ing their state locally or in births and deaths of individuals.
The abstraction from individuals to populations can help to
reduce the complexity and the state-space of the underlying
model. Moreover, in the case of CTMCs, PCTMCs arise
from a lumpable state-space, which can be efficiently anal-
ysed using mean-field techniques discussed below. Common
examples of population models are chemical reaction mod-
els [12], where populations represent molecule concentra-
tions, ecology models [31] describing the behaviour of groups
of animals or plants and software performance models [29]
capturing the interactions between components in massively
parallel systems.

Population Continuous-Time Markov Chains (PCTMCs)
consist of a finite set of populations S, n = |S| and a set E of
transition classes. States are represented as an integer vec-
tor P(t) = (Pi(t),..., Pa(t)) € Z", with the i component
being the current population level of species S; € S at time
t. A transition class (re,¢.) € E for an event e describes
a transition with negatively exponentially distributed delay
D at rate 7 : Z™ — R which changes the population vector
P(t+ D) to P(t)+ .. The analogue to PCTMCs in the sys-
tems biology literature are Chemical Reaction Systems, were
P(t) describes a molecule count vector and transition classes
represent chemical reactions between the molecules with 7.
being the reaction rate function and ¢. the stoichiometric
vector for a specific reaction. For notational convenience we
write an event/reaction e as
at re(ﬁ(t))

in out

where S, € S represent different species that are involved in

the event. The corresponding change vector is &, = (57"
st ..., 808 — s) € Z™ where si® represents the number of

occurrences of a particular species S; € S on the left hand



side of the event and s its number of occurrences on the

right hand side. The event rate is

{re(]s(t)) if Pi(t) > s foralli=1,...,n @)

0 otherwise

An important feature of PCTMC models is that approxima-
tions to the evolution of population moments of the under-
lying stochastic process can be represented by the following
system of ODEs [18]

%E[T(ﬁ(t))] =D E(T(P()+&)-T(P(t)r(P())] (3)

To obtain the ODE describing the evolution of the mean of
a population, all we need to do is to substitute T(P(t)) =
P;(t) in the above equation, where P;(t) is the random vari-
able representing the population count of species S; at time
t. In the literature the resulting ODEs are often referred
to as mean-field approximations [23]. Similarly ODEs for
higher joint moments can be obtained by choosing adequate
T(P(t)), e.g. T(P(t)) = (Pi(t) — u;)?® for the variance of
P;(t). Alternatively stochastic simulation [12] can be used
to evaluate PCTMCs. Like discrete event simulation for
low-level protocol models, this latter simulation technique
captures the stochastic behaviour of PCTMCs exactly, but
does not scale for models with larger populations.

2.2 Spatial PCTMCs

When modelling spatially distributed networks, it is of-
ten easier to use Spatial PCTMCs (SPCTMCs). SPCTMCs
have a discrete, finite number of locations each with a finite
number of population for different agent states. When eval-
uating an SPCTMC we keep track of the evolutions of all
agent state populations in all locations. Aside from helping
modellers to describe spatial processes more easily, the ex-
tra spatial information can occasionally be used to speed-up
higher-order moment ODE analysis [27]. When describing
SPCTMCs we usually first describe local agent behaviour.
Later a composite model which describes topology, initial
agent state populations for all locations and interactions be-
tween neighbouring populations is created. For the remain-
der of this paper we refer to a species S at location [ at time
t as SQI(t) [11]. Moreover, SQI,(¢) is used as a placeholder
for defining events that occur in all locations.

2.3 Wireless sensor networks

Nodes in WSNs are small, embedded, battery powered
devices with significant processing, bandwidth, radio and
energy constraints [1]. The radio range heavily depends on
the environment in which the network is deployed [26]. As
for bandwidth, nodes such as the MicaZ can transmit up
to 250 Kbps [1], although in many applications the actual
throughput is much lower because of channel contention and
other communication overheads. Since many types of nodes
are battery powered, energy has to be used efficiently. To
overcome these QoS related challenges a vast number of pro-
tocols have been suggested over the last decade [34], each of
which aims to optimally balance different QoS constraints.

Figure 1 gives a high-level overview over the basic software
architecture of wireless sensor applications. A more detailed
representation can be found in [33]. The Application layer
contains the logic required for data acquisition and data pro-
cessing. A simple application might measure quantities such
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Figure 1: A simple wireless sensor network protocol
stack [16].

as temperature, humidity or luminosity in regular intervals
and forward the data to a sink node. Other applications
might also process measured data, serve data requests or
send messages in response to external events. Moreover, ap-
plications need to decide which nodes to forward their data
to. This can either be specific nodes or a high-level desti-
nations such as data sinks. The Network layer [34] is re-
sponsible for ensuring that data from the application layer is
routed towards its destination. A common communication
pattern is convergecast, where all nodes in the network sam-
ple information and forward the data to dedicated sink nodes
via multi-hop routes. In multi-hop networks, routing pro-
tocols therefore need to relay incoming packets from other
nodes in addition to handling packets coming from their own
application layer. Network protocols are either centralised
or decentralised. A centralised routing protocol elects one
or several nodes which control the routing behaviour of the
network, whereas decentralised protocols let nodes decide
autonomously where to forward messages to. Protocols in
the latter category are sometimes referred to as swarm intel-
ligence based protocols [24]. MAC layer protocols on the
other hand, control the communication with actual neigh-
bouring nodes. Additionally, MAC-protocols are in charge
of managing the node’s duty-cycle behaviour. When duty-
cycled, nodes turn off their radio units according to a sleep
policy. As the name suggests this happens in a cyclic man-
ner such that over a period T" a node has its radio turned on
% of the time. The lower z, the longer the network lifetime
will be. There are two classes of MAC protocols, contention
based protocols and schedule based protocols. In contention
based protocols such as CSMA (Carrier Sense Multiple Ac-
cess), nodes can send messages at any time provided the
channel is clear. On the other hand schedule based proto-
cols like TDMA (Time Division Multiple Access) allocate a
specific time window to each node, during which it can trans-
mit messages [4]. Moreover, many hybrid protocols, which
use elements of both contention and schedule based MAC
protocols, have been suggested. Finally the Radio layer
controls nodes’ radio hardware and can be used to configure
signal modulation, frequency or transmission power.

3. ADYNAMIC WSN DATA FLOW MODEL

In the following we outline a failsafe WSN routing pro-
tocol, i.e. a protocol that can automatically detect failing
nodes and dynamically close gaps in multi-hop routes, simi-
lar to the ones described in [15, 16]. Our analysis focuses on
the data flow from source to sink nodes in different topolo-
gies. Figure 2 shows a simple example of a WSN. Each node
has up to four neighbours and communication is done in a



Figure 2: Node ‘s’ is the sink and has the highest
pheromone and buffer level. Both levels decrease
with increasing hop distance from the sink [16].

Manhattan style pattern, i.e. we assume a unit disk radio
model. Note that this is only for illustration purposes, in
practice we could incorporate less ideal radio assumptions.
We further assume that the grid setup is ad hoc, so that no
node knows its position in the network in advance. However,
some nodes are sink nodes to which all other nodes forward
messages, possibly via intermediate relay nodes. To allow
nodes to route messages towards the sink, each sink in the
network sends a beacon message in regular intervals contain-
ing a pheromone value. From zoology, pheromone is a hor-
mone laid down by colony-based insects, to indicate popular
routes to food sources or new nest sites. In a similar manner
pheromone gradients have been adapted in the WSN litera-
ture as an abstract means of studying the evolution of routes
from source to sink nodes [7]. Upon reception of a phero-
mone beacon, a node updates its own pheromone level and
broadcasts it. So long as the pheromone level update func-
tion generates levels that are strictly lower than the largest
level received through incoming beacons, a pheromone gra-
dient will emerge that is highest at sink nodes and lowest at
nodes that are farthest away from any sink. Each node can
subsequently relay messages to the sink via neighbours that
have higher pheromone levels than itself, knowing that the
message thereby travels closer to a sink. If nodes fail, they
will stop emitting pheromone beacons and neighbours will
hence learn to avoid them until they are back online.

While such self-organising routing protocols are preferred
over centralised protocols in failsafe WSNs, it can happen
that pheromone based routing decisions produce unwanted
congestion in the network. During our model analysis we
want to study the impact of the pheromone based routing
approach on the buffer level of different nodes in the net-
work. To do this we will measure the average buffer occu-
pancy at each node and find out whether dynamic phero-
mone based routing distributes load in a fair manner. Natu-
rally nodes closer to sink nodes usually have a higher buffer
occupancy than more distant nodes, since they need to re-
lay more messages to the adjacent sink. However, in large
WSNs with multiple sink nodes we would like to ensure that
all nodes that are at a certain distance from the sink will
experience similar message loads. If this is the case then
we can consider our network fair and well-structured. In
the next section we describe our Castalia implementation of
the failsafe WSN, followed by our corresponding PCTMC
model.
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3.1 Castalia protocol model

Our Castalia simulation consists of the following proto-
col stack. The application layer is a simple sensor appli-
cation which periodically generates sensor readings, say at
sampleRate samples per second and forwards them to a sink
node. Our routing layer is based on concepts similar to those
presented in [24], however, in our protocol the routing deci-
sions are probabilistic. For the MAC layer our network uses
CSMA. However, we assume that after having sent a mes-
sage, nodes wait for a fixed period of time before sending the
next message and listen for incoming messages in the mean-
time. Naturally, in a live application we would use a more
energy efficient MAC protocol. While beyond the scope of
this paper, one of our future research goals is the integra-
tion of realistic duty-cycle behaviour (cf. Section 2.3) into
our mathematical WSN models, possibly using deterministic
delays such as the ones suggested in [17].

Our pheromone network protocol implementation is as fol-
lows. At a regular time interval, every node broadcasts a
pheromone beacon to all its neighbours. A neighbour that
receives this message will store it in a neighbourhood table,
along with the id of the sending node. If the pheromone
level contained in the beacon is larger than the receiving
node’s current pheromone level, the receiver will update its
pheromone level. If node i receives a beacon from node j
and if the pheromone level of j is higher than that of node
i, then

phQl; = (ph@l; + ph@lj)/z (4)

where ph@Ql. are floating point values stored by each individ-
ual node?. To ensure that pheromone evaporates over time,
a non-sink node ¢ always decreases its pheromone level be-
fore broadcasting its own pheromone beacon

phQl; = phQl; — \/phQl; (5)

Sink nodes, however, being a source of pheromone, have con-
stant pheromone levels. Given its own pheromone level and
the levels of its neighbours, a node can make informed rout-
ing decisions for application layer packets. We assume that
in regular intervals of z milliseconds a node attempts to for-
ward a message from its buffer to the next link in the multi-
hop route. z is chosen so that 1000msec/x yields the desired
number of fwRate messages a node can send every second.
We assume that this number is much lower than the phys-
ical bandwidth of the communication channel such that no
message has to be discarded. Buffers contain both messages
from the node’s own application layer as well as messages
from other nodes that it needs to forward to the sink. To
decide which node to relay a message to, nodes use a prob-
abilistic routing approach. Let T; = {ph@l, ..., ph@l,,} be
the set of all pheromone levels ph@[; of neighbours of node
¢ such that ph@l; > phQl;, i.e. T; contains the pheromone
levels of all neighbouring nodes of i that are closer to a sink.
The probability that node ¢ routes a message via node k
then becomes

P(send msg to k) = phQly, / Z (phQl; — ph@l;) (6)
ph@IL; ET;

which is a discrete distribution we can easily sample from.
When simulating the protocol stack in Castalia we regularly
2These should not be confused with species labels PhQl;

used in Section 3.2, which are part of the PCTMC model
definition.




measure the number of messages in every node’s buffer. For
sink locations we assume that messages are processed im-
mediately and thus we are not concerned about their buffer
status. The source code of the resulting simulation as well as
detailed simulation parameter configurations can be found
on our website [14]. Later, when we discuss our Castalia
simulation results we will distinguish between collision free
communication and the more realistic collision model that
simulates channel interference [6]. Moreover, we assume a
sharp noise threshold for the radio reception as well as con-
stant radio signal strength to recreate the unit disk effect.

3.2 PCTMC protocol model

This section reviews the interference-free version of our
PCTMC model, which was taken from [16]. Our PCTMC
model has been implemented in a stochastic process alge-
bra that is part of the GPA-analyser tool [28]. For illus-
tration purposes, we will represent the core elements of the
model using reactions in the style of Eq. (1). In the follow-
ing we implicitly assume that random variables are time-
dependent and thus drop the (¢) parameter used in Eq. (1).
To avoid confusion between a species label and the random
variable that describes the population of a given species we
use StateQl; and #StateQl; respectively.

We will deal with 3 types of nodes: functioning sink and
non-sink nodes as well as broken nodes. Non-sink nodes
forward their data samples to sink nodes. When a node
stops communicating with other nodes it is considered bro-
ken. Each node is further assumed to have a finite buffer that
can hold up to m messages. The buffer holds a node’s own
samples as well as messages that it needs to relay. We start
by describing the PCTMC events for working sink nodes
and non-sink nodes. Clearly, broken nodes do not interact
with other nodes and thus we do not need to represent them
in the model. The reactions for the pheromone spread for
non-sink nodes are as follows

] — PhQl,
Ph@l, — 0

at pherolncRateQl,

at pheroDecRate@Ql, (7)

where pherolncRate@l, is the sum of the difference between
a node’s pheromone level and that of its neighbours. For
sink nodes the pheromone population level remains con-
stant, so no events need to be defined. Assuming we have a
neighbourhood structure as shown in Figure 2, we would ob-
tain the following reaction rates for the pheromone changing
events of the node at location 3

pherolncRate@lz = c1* [(max(0, # Ph@Qly — # PhQls)+
max(0, #PhQls — #Phals)]
(8)

where c; is a constant that regulates the rate at which phero-
mone levels change. In general pherolncRate@Ql, is defined

>

lj Eneighbours of Iy

1" max(0, # PhQl; — #PhQl,)  (9)

Moreover,

pheroDecRateQl, = co* min(0.1, # PhQl, — 2) (10)

describes the rate at which pheromone evaporates, i.e. the
PCTMC analogue of Eq. (5), with c2 being another constant
that is chosen so that the pheromone spread is quite linear.
The min term ensures that pheromone levels will remain
positive. Although this pheromone gradient only encodes a
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Figure 3: Pheromone distribution in the network
depicted in Figure 2.

node’s distance from the sink, it is generally possible to in-
corporate other neighbourhood information, such as buffer
levels or battery status, in the pheromone concentration in
case further QoS constraints have to be met by the proto-
col. Figure 3 illustrates the pheromone mean-field results
when applying the above reactions to the topology shown
in Figure 2 for a given initial pheromone population at sink
location ;.

Having described PCTMC events governing the dynamics
of pheromone agents PhQl., we now need to represent the
routing probability distribution used by the Castalia proto-
col stack (cf. Eq. (6)). To avoid reactions that have frac-
tions of populations in their reaction rates, we use a routing
species which can be used to infer routing probabilities from
pheromone levels. Take for instance the node at location g,
which can route up messages to location I5, route left to I3
and route right to lg. As in Eq. (6) we want nodes with
higher pheromone levels to be used more frequently. Hence,
we need to increase the proportion of messages sent to the
left, as the pheromone level of node 3 becomes larger than
that of nodes 5 and 9

RouteUQlg — RouteLQlg

at # RouteUQlg™ max(0, # PhQls — # PhQlg)
RouteRQlg — RouteLQlg

at # RouteRQlg* max(0, # PhQl3 — # PhQlg)

(11)

where max(0, # PhQl3 — # PhQlg) is the pheromone excess
of node 3 over 6. Clearly, if location 3 has a lower phero-
mone level than location 6, node 6 will not route messages
via node 3 since all transitions that increase # RouteLQlg
have a 0 reaction rate. If node 3 has a higher pheromone
level, the population # RouteL@Ig will be non-zero and thus
a proportion of messages from node 6 is relayed to the sink
via location 3. All reactions for RouteUQl,, RouteDQI,,
RouteLQl, and RouteRQl, follow the same pattern. We de-
fine the constant c¢3 to be a normalising constant that allows
us to compute the proportion of messages that are forwarded
to a particular neighbour

c3 = FRouteUQ,
# RouteLQl,

+ #RouteDQl, +

+  F#RouteRQl. (12)

We then use the resulting normalised distribution to model
a similar routing behaviour as described in Eq. (6). The
routing population reactions are the same for sink and non-



sink nodes and broken nodes are automatically avoided due
to their constant pheromone level of 0.

Routing probability for node 6

1 T T T
0.8 - 4
Z 0.6
z — P[Route UpQlg]
F P[RouteLeftQlg)
S 0.4 N
~
0.2 - .
0 | | | | |
0 10 20 30 40 50 60

Time, t

Figure 4: Routing distribution for node 6 in Fig-
ure 2.

To express the effects of dynamic routing in the message
exchange, we need to feed back the routing information into
the PCTMC events that describe message exchanges be-
tween nodes. For the message buffer we decided to represent
different buffer levels as individual states in our PCTMC. A
single node has buffer states { Buf,, ..., Buf,,}, so that if a
node is in state Buf; its buffer contains ¢ messages. In all
locations we chose m to be sufficiently high, so state Buf,,
would hardly ever be reached, i.e. we do not need to handle
buffer overflow scenarios. Buffers are affected by two differ-
ent types of reactions. The simpler one is the increase that
occurs when the sensor of a non-sink node generates a new
sample

Buf,@Ql. — Buf,,,Ql.  at #Buf,Ql."sampleRate (13)
Change also occurs due to message exchange with neigh-
bouring nodes. Take for example the message exchange be-

tween nodes 2 and 3

Buf;@lg + Bufj@lg — Bufi+1@lg +4 Bufj.,l@lg,
at # Buf,Ql>" # Buf;Ql5™
# RouteUQls /c3™ fwRate
Bufj@lg +4 Buf;@lg — Bufjfl@lz +4 Buf;+1@l3
at # Buf;Ql>" # Buf,Ql5™
# RouteDQls /c3™ fwRate

(14)

where 0 < i < m, 0 < j <m. fwRate represents the number
of packets that each node can forward per time unit. Similar
reactions can describe all other unicast message exchanges
in the network. Moreover, we have

iE[#Bufi@l*] =1

=0

(15)

In other words each node only has a single buffer instance.
‘While sink nodes receive messages like non-sink nodes, we
assume that they are connected to an uplink to which they
immediately forward incoming messages

Buf;Ql, — Buf; ,Ql. at #Buf;Ql. * 4" fuRate  (16)

For any node, the average number of elements in the buffer
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is given by

> i * E[#Buf,al.]

j=1

(17)

A complete implementation of the model can be found in
the model files provided on [14].

3.3 Modelling channel interference

It is not hard to see that the simple WSN model shown
in Section 3.2 is only accurate in the absence of channel in-
terference. By channel interference, we mean interference
that is caused by the hidden terminal problem. Imagine
two nodes A and C that have a common neighbour B with
which they can both communicate, while at the same time A
and C cannot directly communicate. Before sending a mes-
sage using CSMA, both nodes check whether the channel is
currently occupied. If it is free they send a message, oth-
erwise they try again later. The hidden terminal problem
occurs when C' assesses the channel while A is transmitting
a message to B. Since C' cannot sense A’s signal it assumes
that the channel is clear and sends data to B. However,
B now receives two signals simultaneously and can at best
demodulate one of them. This effect is generally unavoid-
able in WSNs. Unlike wired networks, WSNs share a limited
frequency band and hence no physically separated channel
can be guaranteed for any pair of senders and receivers. Al-
though newer protocols utilise multiple frequencies to reduce
the number of nodes sharing a particular frequency, mes-
sages sent over a particular frequency can still be received by
other nodes in hearing distance. As a consequence, unicast
and broadcast of small packets essentially work the same in
WSNs, the only difference being that in unicast mode nodes
discard messages that are not intended for them.

Modelling channel interference in PCTMCs is generally
nontrivial as it requires us to introduce further state vari-
ables in order to keep track of every node’s radio state. To
add these extra states to the model without increasing model
complexity unnecessarily, we found that further simplifying
independence assumptions were required. While it was pos-
sible to accurately reflect correlations between senders and
receivers in the PCTMC events for the idealised network
presented in Section 3.2, this becomes a lot harder as we in-
troduce interference effects. To faithfully represent interfer-
ence effects in a PCTMC model we need to incorporate the
state of all 1- and 2-hop neighbours of the receiver when ex-
pressing message exchange events like in Eq. (3.2). However,
this would result in an extremely large number of complex
reactions involving 10 or more species each. Fortunately, as
we only intend to use fast first-order mean-field approxima-
tion techniques to analyse the model, simplifying assump-
tions can be made, which allow us to incorporate channel
interference behaviour into our model without resorting to
complex and verbose model descriptions.

While mean-field analysis often outperforms simulation
even for moderate population sizes, it is important to bear
in mind that although the number of first-order ODEs grows
linearly in the number of PCTMC states, the number of
moments required to approximate higher-order moments in-
creases exponentially in the order of the highest moment
that we require [18]. In practice this limits mean-field anal-
ysis of large WSNs to first-order moment approximations.
However, depending on the nature of the reactions, we re-
quire both first- and higher-order moments just to obtain ac-



curate first-order mean-field results [9, 14]. Technically this
is the case whenever the PCTMC has reactions such as Eq.
(14) where rates are non-linear in population terms. In such
cases the only way to obtain a closed system of first-order
approximating mean-field ODEs is to assume statistical in-
dependence between populations. Although accurate cor-
relations are generally vital for models, empirical evidence
suggests that for many PCTMC models the independence
assumption required for first-order mean-field analysis often
has a limited effect on the accuracy of the mean approxima-
tion [7, 13]. In the following we will therefore describe inter-
ference dynamics in our PCTMC model assuming statistical
independence between populations. Naturally, the resulting
simplified PCTMC model can only be used for a first order
mean-field approximation of the semantically more accurate
PCTMC model whose reactions capture all correlations.

For our interference model we assume that a node’s radio
is either in RX, TX or Idle state. When a node is Idle it
can either receive a new message and switch to RX until the
exchange has completed or decide to send a message and
switch to TX for the duration of the transfer. Hence, a node
can only send a new message when it is in Idle state. As
we assumed the total bandwidth to be much larger than the
number of messages a node attempts to forward every second
(cf. Section 3.2), the introduction of the radio state will have
no visible impact on the rate of the event defined in Eq.
(3.2). The following reactions describe the local transition
of a node’s radio state

RXQl, — IdleQl,
TXQl, — IdleQl,

at #RXQl,*900

at # TX@L,*900 (18)

such that the transmission of a single messages takes about
1/900 seconds. Moreover, we need to have

#RXQL, + #TXQl, + #Idle@l, = 1 (19)

The following events describe state changes due to phero-
mone beacon broadcasts, assuming a single beacon is sent
every second

1dle@l,
1dle@l,

— RXQI,
— TXQl,

at >, cnay, FldleQl,

at #I1dleQl, (20)

where N@I, is the set of 1-hop neighbours of the node. Sim-
ilarly a node changes from Idle to RX when one of its neigh-
bours is transmitting a message and to 7X when sending a
message itself

IdleQl, — RXQI,

at #1dleQL" Y7 nvay, (1 — #BufyQl,)” fuRate
Idle@l, — TXQl,

at #I1dle@l,* (1 — # Buf,Ql.)" fuRate

(21)

Having defined these transitions we can now easily describe
interference as using the following reactions. The first one
describes interference of data message transfers caused by
pheromone beacons

Buf,@Ql, — Buf;_,Ql,
at Y, cnoar, FFRXQLSF Buf;Ql,

where 0 < j < m and N2QI, is the set of all 1-hop and 2-hop
neighbours of the receiving node. Although we assume that
we generally cannot receive messages from 2-hop neighbours,
transmission of messages by 2-hop neighbours can still cause
interference. Similarly to the pheromone messages above,

(22)
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data messages sent by the receiving node’s 1-hop and 2-hop
neighbours may also result in message loss

Buf;Ql, — Buf; _,Ql,

at #RXCLYS e (1 — #Bufy0l,)" fuRate (%)

Finally, we need to add one more interference event which
ensures that when 1-hop neighbours interfere with the node
that they want to send a message to, two messages are lost

Buf;Ql,. — Buf; ,Ql,
at #RXQL.” fwRate*
ZneN@l* (1 — #Buf,Ql,)"# Routel.Ql,, /c3

where # Routel,Ql,, /c3 is the routing probability from node
n to the node located at [,.

(24)

4. ANALYSIS

In this section we compare the normalised buffer levels of
nodes in a WSN running the failsafe application described
in Section 3. The aim of our analysis and the way it is pre-
sented is to show that there is good qualitative agreement
between the Castalia simulations results and their PCTMC
mean-field approximations, even when the number of mes-
sages sent per second is low. If we can show such agree-
ment with low-level WSN simulation results in a range of
scenarios, we will have gained a measure of belief in the
mean-field approach for spatial WSN analysis. To obtain
the buffer levels at steady-state from Castalia, we first al-
lowed the network a 60 second period to establish an initial
pheromone gradient and subsequently measured the average
buffer level at each node over a period of 240 seconds. For
each configuration we then took the average over 50 such
simulations to obtain the mean buffer level at each loca-
tion. The resulting 95% confidence intervals for the mean
buffer levels lay within < 3% for all locations. Similarly,
we evaluated the mean buffer level using mean-field ODEs
and subsequently took the average buffer occupancy at each
location in the network after 60 seconds. Throughout our
experiments we found that the absolute buffer levels pre-
dicted by the PCTMC and Castalia model were quite differ-
ent. Most likely this is due to the simplifying assumptions
that we made in order to create a PCTMC model that is
suitable for fast ODE solution techniques. While this error
is of interest for future work, in the following we only study
the normalised mean buffer levels at steady-state. By nor-
malised we mean that all locations are normalised by the
non-sink node with the highest buffer level, which is then
assumed to have a buffer level of 100%. We use the busiest
non-sink node rather than the busiest sink node as we do not
want to make additional assumptions about the uplink ca-
pacity of sink nodes. To visualise hot spots and idle locations
we use spatial heat maps. In these heat maps a node with a
relative buffer level of 2% is coloured black at % opacity.
Sink nodes are coloured at 100% opacity and are marked ‘s’,
whereas broken nodes are marked ‘x’ and coloured white.
In addition to these heat maps, we also deploy difference
maps to visualise relative errors between the PCTMC and
the Castalia models. To obtain these we simply subtract
normalised PCTMC buffer levels from normalised Castalia
ones for each location and divide by the normalised Castalia
buffer levels. In contrast to the mean buffer level heat maps
the difference maps show the resulting error in % for each
location. While the heat maps support our claim that the



PCTMC and the Castalia results match qualitatively, i.e.
relative differences between busy and idle locations are pre-
served, the difference plots capture the quantitative accu-
racy better. Unless stated otherwise we conduct the below
experiments with a forward rate of up to 20 messages per
second and message production rate of 1 message per second.

4.1 Ideal communication

First, we will investigate the Castalia and the PCTMC
predictions for the data flow assuming ideal communica-
tion, i.e. without interference or radio signal strength vari-
ation. Figure 5 shows the results for a network with 49

OINILOJ

RI[R)SL))

Figure 5: Data flow in a network with 49 nodes,
2 sinks, a forward rate of 20 messages per second
and a message production rate of 1 message per sec-
ond. The top diagram is based on the steady-state
PCTMC mean-field approximation, the bottom one
on the averaged Castalia simulation results under
ideal radio conditions.

nodes and 2 sinks. In both models the nodes under high
load are the same, despite the fact that the average absolute
buffer level in the Castalia level is roughly 50% higher than
in the PCTMC model. Note, however, that the Castalia
simulation heat map has a much higher contrast. In other
words the actual magnitude of the difference between busy
and idle locations approximated by the mean-field analy-
sis is lower than the Castalia simulation results suggest.

Our second example in Figure 6 illustrates the effect on nor-
malised buffer levels as we increase the message production
rate to 1.5 messages per second without changing the net-
work topology. The increase in contrast in the heat map
of the PCTMC model indicates that the relative difference
between the buffer level of the busiest node compared to the
other nodes has become larger. This is what we expected
to happen, as the busiest nodes will naturally experience
much higher buffer occupancy under load. In Section 4.2 we
will show that interference slows down this effect since bus-
ier nodes start to lose more packets. The difference plot in
Figure 6 shows that the results of the PCTMC mean-field
analysis and the Castalia simulation model are much bet-
ter in locations with high traffic than in areas of low traffic.
This is not surprising since mean-field analysis is generally
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Figure 6: Data flow in a network with 49 nodes and
2 sinks with ideal communication and 1.5x message
production rate.
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Figure 7: Data flow in a network with 49 nodes and
5 sinks with ideal communication.

most accurate when events rates, i.e. the message produc-
tion and forwarding rate in this example, are high. If our
PCTMC model truly represents the process described by the
Castalia model, the error should thus decrease as we scale
both message production and forwarding rate. To illustrate
this effect, our next example looks at the effect on the error
in a model with 49 nodes and 5 sinks as we scale the message
production rate of 1 message per second and the forwarding
rate of 20 messages per second (cf. Figure 7), by a factor
of 10 (cf. Figure 8). As can be seen in the difference plots,
the error between the PCTMC mean-field and the Castalia
simulation results decreases drastically as the rates are in-
creased. Therefore, in the ideal communication scenario the
normalised PCTMC mean-field buffer levels can be seen as
a limiting case for the network and the protocol when both
forward and sampling rate are extremely high.

In practice, individual WSN nodes fail eventually, requir-



OINLOJ

0 3 2 1 3 5 11
3 4 4 0 3 16 1 g
9 31 1 0 5 1 0o =
2 7 3 8 2 5 3 ®
7 0 0 0 8 6 15 ‘i
6 7 4 1 4 0 6
6 18 1 3 12 3 6

Figure 8: Data flow in a network with 49 nodes and
5 sinks with ideal communication, 10x forward and
message production rate.
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Figure 9: Data flow in a network with 49 nodes and 4
sinks and 5 broken nodes with ideal communication.

ing the network to reconfigure itself. In Figure 9, we can see
that even in presence of broken nodes, both models produce
qualitatively similar results. This confirms that the failsafe
aspects of the pheromone model are captured well in both
instances. Finally, in order to illustrate that our PCTMC
model is indeed scalable, we created a large model with 100
nodes, several sinks and broken nodes. The data flow cre-
ated during the subsequent analysis is shown in Figure 10.
As can be seen even in this large network the ODE approx-
imation produces useful data flow predictions.

4.2 Interference

Having compared at the Castalia simulation results with
PCTMC mean-field predictions for the data flow in an ide-
alised communication scenario, we now repeat the analysis
taking signal interference into account. Apart from this, no
changes were made with respect to the analysis. In particu-
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Figure 10: Data flow in a network with 100 nodes
several sinks and broken nodes with ideal communi-
cation.

lar we still assert fixed radio signal strength throughout our
experiments. The unit disk model has been configured such
that nodes can only detect a busy nodes if they are within
their transmission distance, i.e. 1-hop neighbours. However,
we assume that the signal strength of 2-hop neighbours is
strong enough to cause interference.

Interference is most likely to cause message loss in areas
of high traffic, i.e. among nodes close to a sink. As a conse-
quence we expect that under equal network load the relative
differences between buffer levels become less extreme than in
the examples shown in Section 4.1. Indeed, comparing the
interference-free results shown in Figures 5, 6 and 10 with
those in Figures 11, 12 and 13 we can see that the contrast of
the heat maps is visibly lower when we model interference.
In Figures 11, 12 and 13 it is also noticeable that the contrast
of the cells in the PCTMC heat maps are lower than in the
Castalia case, which implies that the channel interference
effect is less severe in the realistic low-level simulation. All
four examples with interference produce decent qualitative
results, although the relatively small message load causes
qualitative differences in some places. We further compared
the PCTMC mean-field without interference to the Castalia
results with interference for Figures 11, 12 and 13. When
comparing the resulting relative errors of the 5 busiest lo-
cations in both cases, it turns out that the maximum error
of our extended PCTMC model with interference (cf. Sec-
tion 3.3) produces between 3 to 10 times more accurate re-
sults than the simple PCTMC model without interference
(cf. Section 3.2).

Like the comparison between Figure 7 and Figure 8 in
the previous section, the difference between Figure 13 and
Figure 14 shows that also in the presence of interference our
extended PCTMC model approaches the Castalia model as
we scale the message forwarding and generation rate.

Most interestingly the quality of the prediction does not
visibly deteriorate as we add interference effects. This is es-
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Figure 11: Data flow in a network with 49 nodes, 2
sinks, a forward rate of 20 messages per second and
a message production rate of 1 message per second.
The heat map at the top is based on the PCTMC
mean-field approximation, the bottom one on the
Castalia simulation results. We assume communi-
cation with interference without variation in radio
signal strength.
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Figure 12: Data flow in a network with 49 nodes and
2 sinks with signal interference and 1.5x message
production rate.

pecially surprising since we compare a simple mathematical
PCTMC model to simulation results from a sophisticated
low-level packet collision model. However, we do need to
stress that we are just looking at first-order moments and
that in its current form our model cannot be used to ap-
proximate higher-order moments of the underlying stochas-
tic process.

4.3 Low-level Simulation vs high-level ODEs

One of our main arguments for the use of mean-field tech-
niques over discrete event simulation is that the computa-
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Figure 13: Data flow in a network with 100 nodes
several sinks and broken nodes in presence of inter-
ference.

tional burden of simulations increases drastically as we make
our model larger. The generation and the analysis of the
ODEs representing the first order moments of the PCTMC
models generally took 1 — 2 minutes for the 49/100 node
models respectively, while 50 Castalia simulation runs took
between 5— 15 minutes on a modern quad-core desktop com-
puter, depending on the message load and forwarding rate
used in a given scenario.

While it is not unlikely that the simulation time grows
linearly with the model size, it has to be taken into account
that different setups, for instance a higher message produc-
tion rate, slows down the simulation, whereas the evaluation
time of the ODEs is not affected by such parameter changes
unless the system becomes stiff®. However, for a fair compar-
ison between simulation and ODE analysis speed, we need
to take into account confidence intervals for the simulation
results of the buffer size in order to determine the optimal
length for each simulation run and the optimal number of
replications required in order to obtain good sample mean
estimates. Here, our decision compute the average buffer
levels using 50 simulation produced tight 95% confidence
intervals were (< 3% of the actual mean buffer size for all
locations). The reason we only need a small number of repe-
titions to obtain tight intervals is that the buffer level, com-
puted for each location in each simulation run, represents
a steady-state average over a period of 240 seconds rather
than a single measurement at the end of each simulation
run. Needless to say that for a WSN with a single busy
location we would thus require even less simulation runs
to identify the node with the highest load in the network.
However, the more marginal the differences between busy lo-
cations are, the more expensive the Castalia simulation will

3 A stiff system of ODEs can be solved using slower solvers,
which dynamically adapt the integration step size according
to the relative differences between gradients in order to avoid
large numerical errors.
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Figure 14: Same setup as in Figure 13 but with 2x
forward and message production rate.

become, since we need more repetitions in order to further
reduce the confidence interval width. This is especially the
case when optimising parameters in a protocol, as we have
to ensure that a change in parameter actually manifests in
a measurable statistical improvement.

Finally, in order to obtain a fair comparison between the
a simulation and a mean-field based evaluation approach
we would also need to take into account the framework
implementation. Our ODE analysis was conducted using
the GPA-analyser tool [28], which is implemented in Java,
whereas Castalia is implemented in C+4. As this discus-
sion illustrates, an accurate benchmark is itself a difficult
challenge and beyond the scope of this paper. However, it
is true to say that for the above data flow experiments, the
mean-field technique is a fast, scalable evaluation method.
Given that low-level WSN simulations are computationally
expensive, the mean-field method presents a very attrac-
tive approach, not as a replacement analysis technique but
rather in unison with simulation. This is particularly useful
when the mean-field technique is considered as a heuristic
methodology for reducing the design parameter search space
that can then be explored in more detail by simulation.

S. CONCLUSIONS

In this paper we have presented a PCTMC model for the
data flow analysis of large, distributed WSNs running a fail-
safe pheromone based routing protocol. The data flow re-
sults presented in Section 4, are the result of a large num-
ber of interacting processes including pheromone spread, dy-
namic routing decisions and buffer level estimation. More-
over, we illustrated that our model produces good quali-
tative results even in abundance of channel interference or
when message volumes are low. Furthermore, we showed
that as we scale up the number of messages sampled by
each node and the rate at which messages are forwarded,
the mean-field approximation becomes even more accurate.
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Despite encouraging results, further research is needed to
improve the representation of WSN features, such as inter-
ference and duty-cycle behaviour, in PCTMC models. The
availability of such key concepts is essential if PCTMC mod-
elling aims to become an established analysis tool for the
WSN community. While some aspects of WSN protocols
might be hard to represent using only exponential delays,
we further intend to study mean-field techniques for Gener-
alised Semi-Markov Processes (GSMPs) [17] which are likely
to work better under certain circumstances. However, given
the variety of tools for mean-field evaluation of PCTMC
models, it is worth trying to develop further PCTMC mod-
elling techniques for WSNss first.
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