
Introduction to Dynamic Program Analysis with DiSL

Lukáš Marek
Charles University

Prague, Czech Republic
lukas.marek@d3s.mff.cuni.cz

Yudi Zheng
University of Lugano
Lugano, Switzerland
first.last@usi.ch

Danilo Ansaloni
University of Lugano
Lugano, Switzerland
first.last@usi.ch

Lubomír Bulej
Charles University

Prague, Czech Republic
lubomir.bulej@d3s.mff.cuni.cz

Aibek Sarimbekov
University of Lugano
Lugano, Switzerland
first.last@usi.ch

Walter Binder
University of Lugano
Lugano, Switzerland
first.last@usi.ch

Zhengwei Qi
Shanghai Jiao Tong University

Shanghai, China
qizhwei@sjtu.edu.cn

ABSTRACT
DiSL is a new domain-specific language for bytecode instru-
mentation with complete bytecode coverage. It reconciles
expressiveness and efficiency of low-level bytecode manipu-
lation libraries with a convenient, high-level programming
model inspired by aspect-oriented programming. This paper
summarizes the language features of DiSL and gives a brief
overview of several dynamic program analysis tools that were
ported to DiSL. DiSL is available as open-source under the
Apache 2.0 license.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks

Keywords
Dynamic program analysis, bytecode instrumentation,
aspect-oriented programming, domain-specific languages,
Java Virtual Machine

1. INTRODUCTION
Dynamic program analysis (DPA) techniques enable essen-

tial software engineering tools, such as profilers, debuggers,
and testing tools. DPA tools often rely on code instrumenta-
tion, i.e., the insertion of analysis code at selected locations
in the analyzed program. As nowadays many programming
languages are compiled to bytecode for the Java Virtual
Machine (JVM), bytecode instrumentation has become a
common technique for building DPA tools for the JVM.
JVM bytecode instrumentation is supported by a variety

of bytecode engineering libraries, such as ASM, BCEL, Javas-
sist, or ShrikeBT, to mention some of them. Generally, these
tools offer a rather low level of abstraction, which results in
high development effort for building DPA tools; the sources of
such tools tend to be verbose and difficult to maintain and to
extend. On the other hand, bytecode manipulation libraries

Copyright is held by the author/owner(s).
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
ACM 978-1-4503-1636-1/13/04.

give the expert developer many opprtunities to optimize the
inserted code, enabling efficient DPA tools.
Some researchers have proposed the use of aspect-oriented

programming (AOP) for creating DPA tools. Thanks to
its pointcut/advice mechanism, AOP offers a high abstrac-
tion level that allows to concisely specify certain kinds of
instrumentations. Consequently, the use of AOP promises
to significantly reduce the development effort for building
DPA tools. Unfortunately, mainstream AOP languages such
as AspectJ lack join points at the level of e.g. basic blocks of
code or individual bytecodes that would be needed for cer-
tain DPA tools. In addition, aspect weavers often introduce
high overhead due to complex code transformations involved.
For example, in AspectJ, the access to dynamic reflective
join point information may involve object allocations and
iterations (e.g., to store the arguments of a method in an
array) that are not visible in the instrumentation code.
DiSL [1, 3, 2] is a new domain-specific language for JVM

bytecode instrumentation that combines the strengths of
low-level bytecode manipulation libraries (i.e., expressiveness
and efficiency) with the strength of AOP (i.e., high-level
programming abstractions). DPA tools written in DiSL tend
to be as concise as equivalent tools written in a mainstream
AOP language (if this is possible). However, in contrast to
prevailing AOP languages, DiSL features an open join point
model where any region of bytecodes in a program can be-
come a join point. Moreover, the DiSL weaver produces
efficient code that does not incur any unexpected costs; the
weaver introduces neither object allocations nor loops that
were not written by the programmer.

Below we give a brief summary of DiSL’s language features
and mention some DPA tools that we successfully ported to
DiSL.

2. LANGUAGE FEATURES
DiSL is a language hosted in Java and uses annotations

to direct the insertion of the code. The language follows
the Aspect-oriented paradigm, but is tailored specifically for
bytecode instrumentation. To the developer, DiSL provides
several key constructs that we now review in turn.
Marker is a DiSL construct responsible for capturing the

join points and defining a bytecode region where the selected

429

instrumentation will be applied. For common tasks, DiSL
provides a predefined set of markers that allow instrumenting
method body, basic blocks of code, method invocations, or
single bytecodes. However, a developer can take advantage
of the open join point model of DiSL and implement markers
that intercept arbitrary bytecode sequences.
To provide control over the selection of classes and methods

for instrumentation, DiSL supports coarse-grained join-point
filtering using a simplified scoping language, and fine-grained
filtering using guards. The guards are written in Java, en-
abling the developer to express complex join-point filtering
conditions evaluated at instrumentation time.
Another two constructs provide efficient data passing

among the instrumented locations. The first is called
Synthetic-local variable and allows passing data in the con-
text of the instrumented method. The second, called Thread-
local variable, provides thread local storage.
The mandatory feature of all instrumentation languages is

access to static and dynamic context information. In DiSL,
static context information is accessed through a library of
predefined static context classes. The classes provides various
information about the currently instrumented method or
class. This includes method name, method visibility, method
descriptor, class name, class signature or name of the super
class. The developer is free to define custom static context
classes, e.g., to provide access to the results of a custom
static analysis. The static context data is inserted directly
into the bytecode as a constants. This implies that static
context information can only come in form of Java basic
types or Strings.
DiSL also provides access to the dynamic context informa-

tion, which includes the this object, method arguments and
local variables, and operands on the stack.
DiSL is designed for application observation only. It ef-

fectively prevents the instrumentation from changing the
application control flow. Besides prohibiting the insertion
of the return or jump instructions, it also ensures that no
uncaught exception escapes the instrumentation.1
Finally, DiSL enables full bytecode coverage and avoids

disturbing the instrumented application. This is achieved by
instrumeting the application classes in a separate JVM.2

3. RECASTED TOOLS
Many dynamic program analysis tools for the JVM have

already been recasted in DiSL. We found that for tools
that were originally implemented with a low-level bytecode
manipulation library, the recasted tools were much more
concise than the original versions. Regarding startup perfor-
mance, the recasted tools were slightly slower, and concern-
ing steady-state performance, they reached the same level
of performance as the original versions. For tools that were
originally implemented in a mainstream AOP language, the
recasted tools were about the same size, but significantly
outperformed the original versions.
Amongst others, we recasted the following tools with DiSL:

Cobertura3 is a tool for Java code coverage analysis. At
runtime, Cobertura collects coverage information for every

1This feature can be deactivated if required.
2A native agent is used in the application JVM to exchange
data with the instrumentation JVM.
3http://cobertura.sourceforge.net/

line of source code and for every branch. EMMA4 is an-
other coverage analysis tool for Java. At runtime, EMMA
collects coverage information for every basic block of every
method in every class. HPROF is a heap and CPU profiler
for Java distributed with the HotSpot JVM. JCarder5 is a
tool for finding potential deadlocks in multi-threaded Java
applications. JP26 is a calling-context profiler for Java that
keeps the execution trace of the application in a calling-
context tree. JRat7 is a call graph profiler for Java. For
each method, JRat collects the execution time of each invoca-
tion, grouped by the caller. RacerAJ8 is a tool for finding
potential data races in Java applications. ReCrash9 is a
tool for reproducing software failures. TamiFlex10 is a tool
that helps other (static analysis) tools deal with reflection
and dynamically generated classes in Java.

4. CONCLUSION
DiSL is a domain-specific language for instrumentation-

based dynamic program analysis of applications running in
the JVM. It offers high-level language constructs tailored
for dynamic analysis tasks. The design of DiSL has been
inspired by AOP. However, in contrast to mainstream AOP
languages, DiSL features an open join point model where
any bytecode region can become a join point. DiSL builds
on top of the popular bytecode manipulation library ASM.
DiSL also offers interfaces for framework extensions based
on ASM. DiSL is available open-source under the Apache 2.0
license on OW2: http://disl.ow2.org/

Acknowledgements: The research presented in this paper
has been supported by the Swiss National Science Founda-
tion (project CRSII2_136225), by the Scientific Exchange Pro-
gramme NMS–CH (project code 11.109), by a Sino-Swiss Sci-
ence and Technology Cooperation (SSSTC) Exchange Grant
(project no. EG34–092011) and Institutional Partnership (project
IP04–092010), by the European Commission (Seventh Frame-
work Programme grant 287746), by the Czech Science Foundation
(project GACR P202/10/J042), and International Cooperation
Program of Shanghai (No.11530700500).

5. REFERENCES
[1] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder,

and Z. Qi. DiSL: A Domain-specific Language for Bytecode
Instrumentation. In Proc. 11th Intl. Conf. on Aspect-oriented
Software Development (AOSD’12), pages 239–250. ACM,
2012.

[2] L. Marek, Y. Zheng, D. Ansaloni, A. Sarimbekov, W. Binder,
P. Tůma, and Z. Qi. Java Bytecode Instrumentation Made
Easy: The Disl Framework for Dynamic Program Analysis.
In Proc. 10th Asian Symposium on Programming Languages
and Systems (APLAS 2012), pages 256–263. Springer, 2012.

[3] Y. Zheng, D. Ansaloni, L. Marek, A. Sewe, W. Binder,
A. Villazón, P. Tuma, Z. Qi, and M. Mezini. Turbo DiSL:
Partial Evaluation for High-Level Bytecode Instrumentation.
In Proc. 50th Intl. Conf. on Objects, Models, Components,
Patterns (TOOLS’12), volume 7304 of LNCS, pages 353–368.
Springer-Verlag, 2012.

4http://emma.sourceforge.net
5http://www.jcarder.org/
6https://code.google.com/p/jp2/
7http://jrat.sourceforge.net/
8http://www.bodden.de/tools/raceraj/
9http://groups.csail.mit.edu/pag/reCrash/

10https://code.google.com/p/tamiflex/

430

http://cobertura.sourceforge.net/
http://disl.ow2.org/
http://emma.sourceforge.net
http://www.jcarder.org/
https://code.google.com/p/jp2/
http://jrat.sourceforge.net/
http://www.bodden.de/tools/raceraj/
http://groups.csail.mit.edu/pag/reCrash/
https://code.google.com/p/tamiflex/

	Introduction
	Language Features
	Recasted Tools
	Conclusion
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130222152443
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130222152443
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 2
 1
 2

 1

 HistoryList_V1
 qi2base

