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ABSTRACT
In this poster paper, we study performance of systems mod-
eled by deterministic and stochastic Petri nets (DSPN). As
a performance measure, we consider long-run average time
spent in a set of markings. Even though this measure of-
ten appears in DSPN literature, its existence has never been
considered. We provide a DSPN model of a simple commu-
nication protocol in which the long-run average time spent in
a fixed marking is not well-defined due to a highly unstable
behavior of the model. Further, we introduce a syntactical
restriction on DSPN which preserves most of the modeling
power yet guarantees existence of the long-run average.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and
statistics—Stochastic processes
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Performance, Theory
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1. INTRODUCTION
Petri nets are widely used in modelling of concurrent sys-

tems, such as network components. A Petri net is specified
by a finite set of places, a finite set of transitions, and non-
negative numbers it,p and ot,p for each transition t and place
p. Configuration of a Petri net is called marking and assigns
to each place a non-negative number of tokens. A transition
t is enabled if every place p contains at least it,p tokens. Fir-
ing an enabled transition t consist of removing it,p tokens
from each place p, and adding ot,p tokens to each place p.
The net starts in an initial marking and changes its marking
by subsequent firing of enabled transitions.

For the sake of performance evaluation, Petri nets are
turned into a continuous-time model as follows. Whenever a
transition t becomes enabled, its time to fire is set to a real
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Figure 1: A DSPN example of an M/D/1/2 queue.

number. As long as t is enabled, its time to fire then de-
creases with the time flow until it reaches zero and the tran-
sition fires. If there are more transitions with zero time to
fire, the non-determinism is resolved according to fixed pri-
orities of transitions1. In deterministic and stochastic Petri
nets (DSPN) [3], there are transitions of three types with
time to fire set as follows. For an immediate transition, it is
set to 0; for a deterministic transition t, it is set to a constant
dt > 0; and for an exponential transition t, it is set randomly
according to the exponential distribution with rate rt > 0.

To illustrate the definitions, a model of an M/D/1/2 queue
with memoryless arrival of jobs, one deterministic server,
and capacity of the queue 2 is shown in Figure 1. Places are
drawn as circles; immediate, deterministic, and exponential
transitions are drawn as thin bars, thick black bars, and
thick void bars, respectively (with their dt = 6 or rt = 1).
Assume that the deterministic and the exponential transi-
tions are enabled with time to fire 6 and 5, respectively. The
exponential transition is fired first after 5 time units and the
deterministic transition has at that moment time to fire 1.

In this paper, we focus on the long-run average behavior
and discuss a crucial quantity, the time-average limit [2]

r(f) = lim
t→∞

1

t

∫ t

0

f(X(u))du,

of a function f that assigns a real number to each marking.
Here, X(u) denotes the marking of the net at time u ≥ 0.
Observe that in our example the utilization of the server can
be expressed as a time-average limit by setting f(m) = 1 if
the marking m has a token in P2 and f(m) = 0, otherwise.

The time-average limits in DSPN have been widely stud-
ied. Yet, no one has addressed the existence of the limit r(f).
If the limit does not exist, its approximation, e.g. using sim-
ulation, makes no sense. In this paper, we show a simple
example of a DSPN where the time-average limit r(f) does
not exist. We also provide a sufficient (but not necessary)
syntactical restriction on DSPN guaranteeing existence of
the limit r(f).

1The firing policy we consider is race with enabling memory.
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Figure 2: DSPN without the time-average limit.

2. INSTABILITY IN DSPN
In Figure 2, there is an example of a DSPN model with

unstable behavior in the long-run, not having a time-average
limit. It is a model of a simple producer-consumer system
operated by one exponential and three deterministic tran-
sitions using buffers Bt and Bc. In addition, on the right,
there is a controller with immediate transitions switching a
token between modes M1 and M2.

Let us explain the behaviour of the model. The transition
tp produces a token exactly every time unit and places it
to the transport buffer Bt. Due to the parallel competition
of an exponential and a deterministic transition, the token
is transported into the consumption buffer Bc in at most 1
time unit. The consumption of a token by the transition tc
takes again exactly 1 time unit. The consumption buffer Bc

can hold at most two tokens. When a third token appears
in the buffer, all three tokens are removed by switching the
modes. The subsequent immediate transition returns two
tokens back, re-enabling tc.

The question to be analyzed is what is the average time
spent in the mode M1, i.e. the limit r(f) where f equals 1 if
there is a token in M1 and 0, otherwise. This time-average
limit r(f) does not exist (for most runs). Let us explain the
behavior on the following figure.

times when production and transport is fired
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At the top, there is a time axis with thick and thin marks
showing when the production and transport transitions are
fired, respectively. The time spent transporting is written
above (and also indicated by crosses). In the middle, the
value of time to fire of the consumption transition tc is plot-
ted. Note that tc is fired only when the graph reaches zero
level. The bullets on the zero level mark re-enabling of tc
due to a switch of modes (caused by a third token being
transported into Bc). Observe that the modes are switched
whenever the current transport takes less time than it has
ever taken. The lower the current minimal transport time
is, the more time it takes to set a new minimum. Hence,
the stays in a single mode get longer and longer. Due to
this fact, the partial time-averages oscillate and never reach
a limit (as indicated in the plot at the bottom).

Formal proof of the non-existence of the time-average limit
follows from [1]. Intuitively, it stems from the absolute preci-
sion of the deterministic transitions causing that along each
run of the model the beginning of the n-th consumption gets
closer and closer to the end of the n-th production but never
overtakes it. Since this behavior is rarely to be expected in
reality, the validity of such a model is at least questionable.
However, we can restrict DSPN in such a way that this form
of instability does not appear.

3. CONDITIONS ON STABILITY
We say that a transition t initiates a transition u if there is

a reachable marking m such that t is enabled in m and firing
t in m (potentially followed by firing a sequence of immediate
transitions) leads to a marking where u is enabled and either
u = t or u was not enabled in m (or in markings passed by
the immediate transitions). For example, t3 initiates t3 in
Figure 1, as from the marking with one token in both P1

and P2 we reach by firing t3 and immediately t2 the marking
with one token in both P0 and P2 where t3 is still enabled.

We say that a DSPN initiates increasingly if there is a
function f assigning to each deterministic transition its level
l ∈ N0 such that there is at most one deterministic transition
with level 0 (that can initiate other transitions arbitrarily)
and all other deterministic transitions with positive levels
can initiate only deterministic transitions of strictly higher
levels. Note that the DSPN of Figure 2 does not initiates
increasingly as both tp and tc initiate themself.

Theorem 3.1. For a DSPN with finitely many reachable
markings that initiates increasingly, the time-average limit
r(f) almost surely exist for any function f .

The proof can be obtained as a straightforward modifica-
tion of the proof of Theorem 4 in [1]. The markings and their
enabled transitions correspond to states and their sheduled
events in Generalized semi-Markov processes in [1], resp.

4. CONCLUSIONS
We show that a widely studied formalism of DSPN does

not necessarily have a basic time-average limits which is
caused by its unrealistic behavior. We provide syntactical
restrictions on DSPN upon which this unrealistic behavior
disappears and the time-average limits almost surely exist.
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