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ABSTRACT 
Most performance evaluation studies of database systems are high 
level studies limited by the expressiveness of their modelling 
formalisms. In this paper, we illustrate the potential of Queueing 
Petri Nets as a successor of traditionally-adopted modelling 
formalisms in evaluating the complexities of database systems. 
This is demonstrated through the construction and analysis of a 
Queueing Petri Net model of table-level database locking. We 
show that this model predicts mean response times better than a 
corresponding Petri net model. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Modelling techniques.  

General Terms 
Performance 

Keywords 
Queueing Petri nets, performance modelling, database locking. 

1. INTRODUCTION 
The data landscape has changed dramatically in size and 
complexity in the past decade. The Internet, ubiquitous 
communication, cloud services and e-Science applications have 
led to an explosion in data generation and storage. A large 
proportion of this data is stored and managed in databases. Market 
growth for relational database management systems is expected to 
double by 2016 [11], making performance of these large DBMSs 
a critical issue for users and vendors alike.  

Database system performance is influenced by complex and 
interdependent functionalities (e.g. transaction usage scenarios, 
database cache management, disk contention, concurrency and 
lock contention and the implementation of logical and physical 
structures in DBMS). In the performance evaluation literature 
there have been many performance studies of different 
components of database systems and many methodologies 
developed for their performance evaluation [14]. However, the 
impact of these studies on industry has been limited. One of the 
reasons is the lack of detailed modelling needed to represent 
production-grade database systems. A main cause is the 

interaction of physical and logical resources within database 
systems, which is difficult to represent using traditional modelling 
formalisms. In this work, we return to the issue of modelling 
database systems by modelling table level Two Phase Locking 
using queueing Petri nets and illustrate the potential that this new 
approach has in performance modelling of database systems. 

Queueing Petri Nets (QPNs) [1] extend coloured stochastic Petri 
nets by incorporating queues and scheduling strategies into places 
forming queueing places, thus producing a very powerful 
modelling formalism that has the synchronization capabilities of 
Petri nets (PNs) while also being capable of modelling queueing 
behaviours. These queueing places consist of two components: 
the queue, and the depository where serviced tokens (customers) 
are placed. Tokens enter the queueing place through the firing of 
input transitions, as in other Petri nets; however, as the entry 
place is a queue they are placed in the queue according to the 
scheduling strategy of the queue’s server. Once a token has been 
serviced it is deposited in the depository where it can be used in 
further transitions. Queueing places can have variable scheduling 
strategies and service distributions; these are known as timed 
queueing places. Immediate queueing places impose a scheduling 
discipline on arriving tokens without a delay.  

Queueing Petri nets have been recently applied in the 
performance evaluation of component-based distributed systems 
[4, 5] and grid environments [10]. In this paper, we apply QPN in 
modelling locking contention in database systems. We have 
chosen QPN as the modelling formalism over other variations of 
Petri nets, as the queueing places allow for the representation of 
lock scheduling in database systems, while the places and 
transitions naturally represent the flow of execution of a 
transaction in the system. Even though queueing network models 
(QNMs) are currently the prevailing formalism for performance 
modelling of database systems, QPNs are more expressive when 
representing simultaneous resource possession and blocking. 

The rest of this paper is organized as follows. Section 2 overviews 
related work. Section 3 details the QPN model for a particular 
measured system. Section 4 analyzes the results and Section 5 
concludes the paper. 

2. RELATED WORK 
2.1 Queueing Network Models 
Osman and Knottenbelt [14] surveyed queueing network 
performance models of database systems.  They found that the 
majority of studies that model concurrency control in database 
systems assume a uniform distribution of the locks over the total 
number of data items, in addition to representing update only 
transactions in the models. While these assumptions produce 
tractable models, they neglect hot-spots and do not represent the 
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effect of read transactions holding shared locks on the execution 
of update transactions that hold conflicting locks. Moreover, these 
models assess the performance of the transaction at the physical 
hardware level; therefore they are incapable of representing the 
effect of lock conflicts at the table or row level, which is more 
beneficial to database performance tuning. 

2.2 Petri Nets   
There is a paucity of studies that apply Petri nets to database 
systems in comparison to the available research that applies 
queueing network models. Of the studies that do exist, Chen [2] 
analyzes deadlock detection scheduling in centralized databases 
using stochastic Petri nets. The places in the model represent 
transaction execution states, i.e., waiting for a lock, locking an 
item, CPU processing, etc. Firing of the timed transitions 
represents the delay in moving from one state to the next. 

For parallel databases, Mikkilineni et al. [9] use a Petri net to 
model concurrent parallel query execution plans in a distributed 
database. In the PN model, the transitions represent query 
operations and the places represent data blocks. The firing of a 
transition represents data communications. Jenq et al. [3] analyze 
two-phase locking in a parallel database machine using a two-
layered model. The higher-layer model is a Petri net representing 
the parallel and synchronized execution of the relational 
operations of a transaction.  The lower-level model is a QNM that 
represents the hardware resources and lock waiting queues. 

The modelling approach presented in this paper differs from that 
of previous work in that we do not model the synchronization of 
query execution plans. Instead, we borrow the concept of 
modelling the execution of the transaction at the database table 
level from previous work in modelling database systems using 
queuing networks [13]. This work is an improvement over 
previous models of database systems in that we are able to 
represent locking contention between read and write transactions 
in a way similar to that of actual systems. Moreover, our QPN 
models have a more intuitive structure that maps the transaction 
and database design to the QPN model. This makes the model 
easier to comprehend by database developers and administrators.       

3. Queueing Petri Net Model 
3.1 Measured System 
DBMSs implement concurrency control through locking 
protocols. The most widely used protocol is Strict Two Phase 
Locking (Strict 2PL) [15]. Strict 2PL forces transactions to hold 
exclusive locks to modify data and shared locks to read data. For a 
transaction to acquire an exclusive lock on a data object, no other 
transaction should hold a shared or exclusive lock on that object. 
Transactions can acquire shared locks on data objects only if no 
transaction has an exclusive lock on the objects.  In our case 
study, we model Strict 2PL at the table level. A version of table 
level Strict 2PL is the default locking method implemented in the 
MySQL default storage engine [12]. In our experiments we use 
the PostgreSQL 9.1 [16] DBMS. In order to mimic table level 
Strict 2PL we explicitly lock the table within the transactions. 

The measured system has two types of transactions: shared and 
exclusive that compete to access Table A (100,000 rows). Both 
transactions explicitly lock the table in the appropriate lock mode 
(shared or exclusive) and read or modify 1% of the table rows. 
Access to the table is achieved through a full table scan, i.e. no 
index is utilized by either transaction. The structure of the 

transactions is shown in Figure 1. In order to simulate a TPC-W-
like workload in which update transactions are longer than read 
transactions [17], the execution time of the exclusive transaction 
is artificially lengthened by 40ms. Clients submit transactions to 
the DB server with exponentially distributed think times with 
mean 500ms. The mean response time of each transaction type is 
measured and compared to that emerging from the QPN model for 
different transaction mixes. The measured system was run on an 
Intel(R) Core(TM) i7-2600 CPU@3.40GHz box running Ubuntu 
12.10 64-bit and PostgreSQL 9.1. 

 
shared 
transaction 

 
BEGIN; 
   LOCK TABLE Table A in  
                                 ACCESS SHARE MODE; 
   SELECT count(*) FROM Table A  
                                 WHERE id > value; 
END; 
 

exclusive 
transaction 

BEGIN; 
   LOCK TABLE Table A in  
                                  ACCESS EXCLUSIVE MODE; 
   UPDATE Table A SET other-id = other-value 
                WHERE id > value; 
    SELECT pg_sleep(0.04); 
END; 
 

  

Figure 1. Structure of shared and exclusive transactions. 

3.2 QPN Model of Table Level Locking 
The QPN model for the measured system was developed using 
QPME2.0 [6, 7]; it is detailed in Figure 2. The clients are 
represented by a timed queueing place with an infinite-server 
queue. The tokens in the client place have two colors; each color 
represents a client of one transaction type. Clients submit 
transaction jobs to the database server after an exponentially 
distributed think time.  Then, transactions enter the lock waiting 
place where they wait for the lock on the table to be free. The 
lock waiting place is an immediate queueing place with FIFO 
departure discipline which ensures that the transactions are 
serviced in order of arrival. 

The table-level locking mechanism is represented using a lock 
repository place, which is an ordinary place containing lock 
tokens. A share transaction will require one lock token and an 
exclusive transaction will require the maximum number of tokens 
defined for the lock repository place. By setting the number of 
lock tokens within the lock repository place to be equal to the 
maximum number of share transactions, all share transactions will 
be able to run simultaneously and an exclusive transaction will be 
forced to wait if there is a least one share transaction accessing 
the table. Any transaction entering the database queues behind 
any waiting transaction. Once a transaction has acquired a lock it 
will access Table A. Table A is represented by a timed queuing 
place with an infinite server queue which models transaction 
execution. Each type of transaction is treated as having an 
exponentially distributed service time that models the entire 
execution of the transaction. When a transaction has been 
serviced it will be passed back into the client place to repeat the 
process. 

In our QPN model, we are assuming logical resources are the 
bottleneck, not physical resources. Therefore, the model does not 
directly capture disk and CPU contention and performance. 
However, the effects of processing are partially reflected in the 
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G/M/∞-IS queueing place representing Table A. Infinite server 
scheduling models the forking of PostgreSQL processes for each 
database connection. To minimize the effect of DBMS automated 
disk access, the default PostgreSQL configuration has been 
modified1. This modified configuration will not eliminate disk 
access but configures the DBMS for performance instead of 
durability [16]. 

 

Figure 2. Queueing Petri net model of table level locking.  

4. RESULTS 
The experiment was based on the workloads of the TPC-W 
benchmark. The TPC-W benchmark is an e-commerce benchmark 
implementing an on-line bookstore. It has three workload mixes 
[8]: the browsing mix has 95% reads and 5% updates, the 
shopping mix has 80% reads and 20% updates, and the ordering 
mix has 50% reads and 50% updates.  

Each transaction type was executed in isolation, i.e. without any 
locking contention, and the mean response time calculated. The 
measured mean response time for the shared transaction was 
18.8ms and for the exclusive transaction 60.4ms.  

We compare the measured system with our QPN model and an 
equivalent PN model. The PN model is the same as the QPN 
model in Figure 2 except that the lock waiting place is an ordinary 
place2. We have not compared to a QNM, as this type of 
simultaneous resource possession and blocking is difficult to 
express using QNMs. 

The results for the browsing, shopping and ordering workloads 
are presented in Figure 3. First, we will discuss the performance 
of the actual system. For the browsing workload (Figure 3(a)) the 
share transactions dominate the traffic and their performance is 
minimally affected by the increase in exclusive transactions. The 
step-like trend for both transactions is caused by the constant 
number of exclusive transactions for the corresponding number of 

                                                                 
1 The modified server configuration parameters are: fsync=off, 

synchronous_commit=off and checkpoint_segments =600. The 
reader is referred to [16] for a definition of these parameters. 

2 Access to Table A should have been modelled as a timed 
transition with infinite service. However, QMPE2.0 does not 
support timed transitions [6], so this was approximated by a 
serial network consisting of an immediate transition, a timed 
queueing place and a second immediate transition similar to the 
QPN model. 

clients. For the shopping mix (Figure 3(b)) the increased number 
of exclusive transactions has affected the performance of both 
types of transactions, i.e. lock waiting time has increased in 
comparison to transaction execution time. This is especially 
evident for the shared transactions where we notice a sharp 
increase in the mean response time for large number of clients. 
For the ordering workload (Figure 3(c)) in which the number of 
shared and exclusive transactions are equal, lock waiting time 
dominants transaction execution which is evident in the 
performance degradation of the shared transactions, leading to 
approximately the same response times for both transaction types 
at high client numbers. 

The PN model severely underestimates the performance of the 
exclusive transactions for the browsing workload with an error of 
97% at 60 clients. However, it overestimates the performance of 
the shared transactions, with an error of 13% at 60 clients. This is 
due to the fact that in the PN model the transactions do not queue 
for locking, as in the real system; and therefore the exclusive 
transactions are starved. This trend continues as the percentage of 
exclusive transactions increases in the shopping and ordering 
workloads. From Figures 3(b) and 3(c), the PN model 
overestimates the performance of the shared transaction by 83% 
and 94%, and underestimates the performance of the exclusive 
transactions by 43% and 17% at 60 clients for the shopping and 
ordering workloads respectively. The increase in exclusive 
transactions in the workloads increases their probability of 
holding the lock token, thus the accuracy of the PN increases as 
the number of exclusive transactions increase. However, the 
opposite effect is seen on the shared transactions as without a 
scheduling discipline they are able to skip ahead of the exclusive 
transactions whenever a lock token is held by at least one share 
transaction. 

The QPN model underestimates the performance of both 
transactions for the browsing workload with an error of 32% at 60 
clients. The accuracy of the QPN model increases as the number 
of exclusive transactions increase in the system, i.e. when the lock 
waiting times dominate the response times. For the shopping 
workload the QPN underestimates the performance of both 
transactions with an error of 10% for the shared transaction and 
13% for the exclusive transaction at 60 clients. The QPN model 
overestimation is possibly due to the unaccounted multi-core 
processing. For the ordering workload, the QPN correctly predicts 
that both share and exclusive transactions have approximately the 
same response times. Unlike the previous workloads, the QPN 
model underestimates the performance of both transaction types 
when the number of clients is less than 20, with an average error 
of 6%. When the number of clients is 20 or more, the QPN model 
overestimates the performance of both transaction types with an 
average error of 8% at 60 clients. The overestimate is due to the 
high updates that cause more disk access which, in turn, affects 
the response times of both transaction types. This is not accounted 
for in the QPN model. Nonetheless, the QPN model is able to 
follow the performance trend for both transactions for all 
workloads, especially the share transaction in comparison to the 
PN model.   
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(a) browsing (95% shares and 5% exclusives) (b) shopping (80% shares and 20% exclusive) (c) ordering (50% shares and 50% exclusive) 

Figure 3. Mean response time for TPC-W workload. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated the potential in modelling 
relational database systems using Queueing Petri Nets, thus 
overcoming some of the limitations of queueing network models 
and Petri nets which are currently the main modelling 
formalisms used to represent database systems.  

We have presented a QPN model of two-phase table-level 
locking. The QPN model was able to approximate the queueing 
of the lock requests to the table for varying workloads, in 
contrast to an equivalent Petri net model.  

This paper is a starting point for further investigations, which 
will include the extension of the QPN model to incorporate the 
effect of hardware contention on the system. This will lead to 
modelling of more representative database systems with more 
realistic workloads. Furthermore, for this approach to be 
feasible and applicable, an automated mapping tool will be 
developed. We will also investigate emerging paradigms, e.g. 
NoSQL databases, although the diversity of their data models 
and implementations will likely mean a generic modelling 
framework will be infeasible. 
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