
Performance Modelling of Database Contention
using Queueing Petri Nets

 David Coulden Rasha Osman William J. Knottenbelt
Department of Computing
Imperial College London
London SW7 2AZ, UK

{drc09, rosman, wjk}@imperial.ac.uk

ABSTRACT
Most performance evaluation studies of database systems are high
level studies limited by the expressiveness of their modelling
formalisms. In this paper, we illustrate the potential of Queueing
Petri Nets as a successor of traditionally-adopted modelling
formalisms in evaluating the complexities of database systems.
This is demonstrated through the construction and analysis of a
Queueing Petri Net model of table-level database locking. We
show that this model predicts mean response times better than a
corresponding Petri net model.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modelling techniques.

General Terms
Performance

Keywords
Queueing Petri nets, performance modelling, database locking.

1. INTRODUCTION
The data landscape has changed dramatically in size and
complexity in the past decade. The Internet, ubiquitous
communication, cloud services and e-Science applications have
led to an explosion in data generation and storage. A large
proportion of this data is stored and managed in databases. Market
growth for relational database management systems is expected to
double by 2016 [11], making performance of these large DBMSs
a critical issue for users and vendors alike.

Database system performance is influenced by complex and
interdependent functionalities (e.g. transaction usage scenarios,
database cache management, disk contention, concurrency and
lock contention and the implementation of logical and physical
structures in DBMS). In the performance evaluation literature
there have been many performance studies of different
components of database systems and many methodologies
developed for their performance evaluation [14]. However, the
impact of these studies on industry has been limited. One of the
reasons is the lack of detailed modelling needed to represent
production-grade database systems. A main cause is the

interaction of physical and logical resources within database
systems, which is difficult to represent using traditional modelling
formalisms. In this work, we return to the issue of modelling
database systems by modelling table level Two Phase Locking
using queueing Petri nets and illustrate the potential that this new
approach has in performance modelling of database systems.

Queueing Petri Nets (QPNs) [1] extend coloured stochastic Petri
nets by incorporating queues and scheduling strategies into places
forming queueing places, thus producing a very powerful
modelling formalism that has the synchronization capabilities of
Petri nets (PNs) while also being capable of modelling queueing
behaviours. These queueing places consist of two components:
the queue, and the depository where serviced tokens (customers)
are placed. Tokens enter the queueing place through the firing of
input transitions, as in other Petri nets; however, as the entry
place is a queue they are placed in the queue according to the
scheduling strategy of the queue’s server. Once a token has been
serviced it is deposited in the depository where it can be used in
further transitions. Queueing places can have variable scheduling
strategies and service distributions; these are known as timed
queueing places. Immediate queueing places impose a scheduling
discipline on arriving tokens without a delay.

Queueing Petri nets have been recently applied in the
performance evaluation of component-based distributed systems
[4, 5] and grid environments [10]. In this paper, we apply QPN in
modelling locking contention in database systems. We have
chosen QPN as the modelling formalism over other variations of
Petri nets, as the queueing places allow for the representation of
lock scheduling in database systems, while the places and
transitions naturally represent the flow of execution of a
transaction in the system. Even though queueing network models
(QNMs) are currently the prevailing formalism for performance
modelling of database systems, QPNs are more expressive when
representing simultaneous resource possession and blocking.

The rest of this paper is organized as follows. Section 2 overviews
related work. Section 3 details the QPN model for a particular
measured system. Section 4 analyzes the results and Section 5
concludes the paper.

2. RELATED WORK
2.1 Queueing Network Models
Osman and Knottenbelt [14] surveyed queueing network
performance models of database systems. They found that the
majority of studies that model concurrency control in database
systems assume a uniform distribution of the locks over the total
number of data items, in addition to representing update only
transactions in the models. While these assumptions produce
tractable models, they neglect hot-spots and do not represent the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04…$15.00.

331

effect of read transactions holding shared locks on the execution
of update transactions that hold conflicting locks. Moreover, these
models assess the performance of the transaction at the physical
hardware level; therefore they are incapable of representing the
effect of lock conflicts at the table or row level, which is more
beneficial to database performance tuning.

2.2 Petri Nets
There is a paucity of studies that apply Petri nets to database
systems in comparison to the available research that applies
queueing network models. Of the studies that do exist, Chen [2]
analyzes deadlock detection scheduling in centralized databases
using stochastic Petri nets. The places in the model represent
transaction execution states, i.e., waiting for a lock, locking an
item, CPU processing, etc. Firing of the timed transitions
represents the delay in moving from one state to the next.

For parallel databases, Mikkilineni et al. [9] use a Petri net to
model concurrent parallel query execution plans in a distributed
database. In the PN model, the transitions represent query
operations and the places represent data blocks. The firing of a
transition represents data communications. Jenq et al. [3] analyze
two-phase locking in a parallel database machine using a two-
layered model. The higher-layer model is a Petri net representing
the parallel and synchronized execution of the relational
operations of a transaction. The lower-level model is a QNM that
represents the hardware resources and lock waiting queues.

The modelling approach presented in this paper differs from that
of previous work in that we do not model the synchronization of
query execution plans. Instead, we borrow the concept of
modelling the execution of the transaction at the database table
level from previous work in modelling database systems using
queuing networks [13]. This work is an improvement over
previous models of database systems in that we are able to
represent locking contention between read and write transactions
in a way similar to that of actual systems. Moreover, our QPN
models have a more intuitive structure that maps the transaction
and database design to the QPN model. This makes the model
easier to comprehend by database developers and administrators.

3. Queueing Petri Net Model
3.1 Measured System
DBMSs implement concurrency control through locking
protocols. The most widely used protocol is Strict Two Phase
Locking (Strict 2PL) [15]. Strict 2PL forces transactions to hold
exclusive locks to modify data and shared locks to read data. For a
transaction to acquire an exclusive lock on a data object, no other
transaction should hold a shared or exclusive lock on that object.
Transactions can acquire shared locks on data objects only if no
transaction has an exclusive lock on the objects. In our case
study, we model Strict 2PL at the table level. A version of table
level Strict 2PL is the default locking method implemented in the
MySQL default storage engine [12]. In our experiments we use
the PostgreSQL 9.1 [16] DBMS. In order to mimic table level
Strict 2PL we explicitly lock the table within the transactions.

The measured system has two types of transactions: shared and
exclusive that compete to access Table A (100,000 rows). Both
transactions explicitly lock the table in the appropriate lock mode
(shared or exclusive) and read or modify 1% of the table rows.
Access to the table is achieved through a full table scan, i.e. no
index is utilized by either transaction. The structure of the

transactions is shown in Figure 1. In order to simulate a TPC-W-
like workload in which update transactions are longer than read
transactions [17], the execution time of the exclusive transaction
is artificially lengthened by 40ms. Clients submit transactions to
the DB server with exponentially distributed think times with
mean 500ms. The mean response time of each transaction type is
measured and compared to that emerging from the QPN model for
different transaction mixes. The measured system was run on an
Intel(R) Core(TM) i7-2600 CPU@3.40GHz box running Ubuntu
12.10 64-bit and PostgreSQL 9.1.

shared
transaction

BEGIN;
 LOCK TABLE Table A in
 ACCESS SHARE MODE;
 SELECT count(*) FROM Table A
 WHERE id > value;
END;

exclusive
transaction

BEGIN;
 LOCK TABLE Table A in
 ACCESS EXCLUSIVE MODE;
 UPDATE Table A SET other-id = other-value
 WHERE id > value;
 SELECT pg_sleep(0.04);
END;

Figure 1. Structure of shared and exclusive transactions.

3.2 QPN Model of Table Level Locking
The QPN model for the measured system was developed using
QPME2.0 [6, 7]; it is detailed in Figure 2. The clients are
represented by a timed queueing place with an infinite-server
queue. The tokens in the client place have two colors; each color
represents a client of one transaction type. Clients submit
transaction jobs to the database server after an exponentially
distributed think time. Then, transactions enter the lock waiting
place where they wait for the lock on the table to be free. The
lock waiting place is an immediate queueing place with FIFO
departure discipline which ensures that the transactions are
serviced in order of arrival.

The table-level locking mechanism is represented using a lock
repository place, which is an ordinary place containing lock
tokens. A share transaction will require one lock token and an
exclusive transaction will require the maximum number of tokens
defined for the lock repository place. By setting the number of
lock tokens within the lock repository place to be equal to the
maximum number of share transactions, all share transactions will
be able to run simultaneously and an exclusive transaction will be
forced to wait if there is a least one share transaction accessing
the table. Any transaction entering the database queues behind
any waiting transaction. Once a transaction has acquired a lock it
will access Table A. Table A is represented by a timed queuing
place with an infinite server queue which models transaction
execution. Each type of transaction is treated as having an
exponentially distributed service time that models the entire
execution of the transaction. When a transaction has been
serviced it will be passed back into the client place to repeat the
process.

In our QPN model, we are assuming logical resources are the
bottleneck, not physical resources. Therefore, the model does not
directly capture disk and CPU contention and performance.
However, the effects of processing are partially reflected in the

332

G/M/∞-IS queueing place representing Table A. Infinite server
scheduling models the forking of PostgreSQL processes for each
database connection. To minimize the effect of DBMS automated
disk access, the default PostgreSQL configuration has been
modified1. This modified configuration will not eliminate disk
access but configures the DBMS for performance instead of
durability [16].

Figure 2. Queueing Petri net model of table level locking.

4. RESULTS
The experiment was based on the workloads of the TPC-W
benchmark. The TPC-W benchmark is an e-commerce benchmark
implementing an on-line bookstore. It has three workload mixes
[8]: the browsing mix has 95% reads and 5% updates, the
shopping mix has 80% reads and 20% updates, and the ordering
mix has 50% reads and 50% updates.

Each transaction type was executed in isolation, i.e. without any
locking contention, and the mean response time calculated. The
measured mean response time for the shared transaction was
18.8ms and for the exclusive transaction 60.4ms.

We compare the measured system with our QPN model and an
equivalent PN model. The PN model is the same as the QPN
model in Figure 2 except that the lock waiting place is an ordinary
place2. We have not compared to a QNM, as this type of
simultaneous resource possession and blocking is difficult to
express using QNMs.

The results for the browsing, shopping and ordering workloads
are presented in Figure 3. First, we will discuss the performance
of the actual system. For the browsing workload (Figure 3(a)) the
share transactions dominate the traffic and their performance is
minimally affected by the increase in exclusive transactions. The
step-like trend for both transactions is caused by the constant
number of exclusive transactions for the corresponding number of

1 The modified server configuration parameters are: fsync=off,

synchronous_commit=off and checkpoint_segments =600. The
reader is referred to [16] for a definition of these parameters.

2 Access to Table A should have been modelled as a timed
transition with infinite service. However, QMPE2.0 does not
support timed transitions [6], so this was approximated by a
serial network consisting of an immediate transition, a timed
queueing place and a second immediate transition similar to the
QPN model.

clients. For the shopping mix (Figure 3(b)) the increased number
of exclusive transactions has affected the performance of both
types of transactions, i.e. lock waiting time has increased in
comparison to transaction execution time. This is especially
evident for the shared transactions where we notice a sharp
increase in the mean response time for large number of clients.
For the ordering workload (Figure 3(c)) in which the number of
shared and exclusive transactions are equal, lock waiting time
dominants transaction execution which is evident in the
performance degradation of the shared transactions, leading to
approximately the same response times for both transaction types
at high client numbers.

The PN model severely underestimates the performance of the
exclusive transactions for the browsing workload with an error of
97% at 60 clients. However, it overestimates the performance of
the shared transactions, with an error of 13% at 60 clients. This is
due to the fact that in the PN model the transactions do not queue
for locking, as in the real system; and therefore the exclusive
transactions are starved. This trend continues as the percentage of
exclusive transactions increases in the shopping and ordering
workloads. From Figures 3(b) and 3(c), the PN model
overestimates the performance of the shared transaction by 83%
and 94%, and underestimates the performance of the exclusive
transactions by 43% and 17% at 60 clients for the shopping and
ordering workloads respectively. The increase in exclusive
transactions in the workloads increases their probability of
holding the lock token, thus the accuracy of the PN increases as
the number of exclusive transactions increase. However, the
opposite effect is seen on the shared transactions as without a
scheduling discipline they are able to skip ahead of the exclusive
transactions whenever a lock token is held by at least one share
transaction.

The QPN model underestimates the performance of both
transactions for the browsing workload with an error of 32% at 60
clients. The accuracy of the QPN model increases as the number
of exclusive transactions increase in the system, i.e. when the lock
waiting times dominate the response times. For the shopping
workload the QPN underestimates the performance of both
transactions with an error of 10% for the shared transaction and
13% for the exclusive transaction at 60 clients. The QPN model
overestimation is possibly due to the unaccounted multi-core
processing. For the ordering workload, the QPN correctly predicts
that both share and exclusive transactions have approximately the
same response times. Unlike the previous workloads, the QPN
model underestimates the performance of both transaction types
when the number of clients is less than 20, with an average error
of 6%. When the number of clients is 20 or more, the QPN model
overestimates the performance of both transaction types with an
average error of 8% at 60 clients. The overestimate is due to the
high updates that cause more disk access which, in turn, affects
the response times of both transaction types. This is not accounted
for in the QPN model. Nonetheless, the QPN model is able to
follow the performance trend for both transactions for all
workloads, especially the share transaction in comparison to the
PN model.

333

(a) browsing (95% shares and 5% exclusives) (b) shopping (80% shares and 20% exclusive) (c) ordering (50% shares and 50% exclusive)

Figure 3. Mean response time for TPC-W workload.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated the potential in modelling
relational database systems using Queueing Petri Nets, thus
overcoming some of the limitations of queueing network models
and Petri nets which are currently the main modelling
formalisms used to represent database systems.

We have presented a QPN model of two-phase table-level
locking. The QPN model was able to approximate the queueing
of the lock requests to the table for varying workloads, in
contrast to an equivalent Petri net model.

This paper is a starting point for further investigations, which
will include the extension of the QPN model to incorporate the
effect of hardware contention on the system. This will lead to
modelling of more representative database systems with more
realistic workloads. Furthermore, for this approach to be
feasible and applicable, an automated mapping tool will be
developed. We will also investigate emerging paradigms, e.g.
NoSQL databases, although the diversity of their data models
and implementations will likely mean a generic modelling
framework will be infeasible.

6. REFERENCES
[1] Bause, F. 1993. Queueing Petri Nets—A Formalism for the

Combined Qualitative and Quantitative Analysis of Systems.
In Proc. 5th Int’l Workshop Petri Nets and Performance
Models (Oct 19-22, 1993), 14-23.

[2] Chen, I.-R. 1995. Stochastic Petri Net Analysis of Deadlock
Detection Algorithms in Transaction Database Systems with
Dynamic Locking. The Computer Journal, 38, 9 (1995), 717-
733. DOI: 10.1093/comjnl/38.9.717

[3] Jenq, B.-C., Twichell, B.C.; Keller, T.W. 1989. Locking
performance in a shared nothing parallel database machine.
IEEE Transactions on Knowledge and Data Engineering, 1, 4
(Dec 1989), 530-543.DOI: 10.1109/69.43427

[4] Kounev, S. 2006. Performance modeling and evaluation of
distributed component-based systems using queueing Petri
nets. IEEE Trans. Software Engineering, 32, 7 (July 2006),
486-502.

[5] Kounev, S. and Buchmann, A. 2003. Performance modelling
of distributed e-business applications using queuing petri nets.
In Proc. IEEE International Symposium on Performance
Analysis of Systems and Software (Mar 2003), 143-155.

[6] Kounev, S. and Spinner, S. 2011. QPME 2.0 User's Guide.
(May 2011) Karlsruhe Institute of Technology, Germany.
http://descartes.ipd.kit.edu/fileadmin/user_upload/descartes/QP
ME/QPME-UsersGuide.pdf

[7] Kounev, S., Spinner, S. and Meier, P. 2010. QPME 2.0-A Tool
for Stochastic Modeling and Analysis Using Queueing Petri
Nets. In From Active Data Management to Event-Based
Systems and More, LNCS vol 6462, 293-311.

[8] Menasce, D. A. 2002. TPC-W: a benchmark for e-commerce.
IEEE Internet Computing, 6, 3 (May/June 2002), 83-87. DOI:
10.1109/MIC.2002.1003136

[9] Mikkilineni, K. P., Chow, Y.-C. and Su, S. Y. W. 1988. Petri-
net-based modeling and evaluation of pipelined processing of
concurrent database queries. IEEE Trans. Software
Engineering, 14, 11 (Nov 1988), 1656-1667. DOI:
10.1109/32.9053

[10] Nou, R., Kounev, S., Julia, F. and Torres, J. 2009. Autonomic
QoS control in enterprise Grid environments using online
simulation. Journal of Systems and Software, 82, 3 (March
2009), 486-502.

[11] Olofson, C. W. 2012. Worldwide Relational Database
Management Systems 2012–2016 Forecast. International Data
Corporation (August 2012), Doc # 236273. www.idc.com

[12] Oracle Corporation 2013. MySQL 5.6 Reference Manual.
Internal Locking Methods,
http://dev.mysql.com/doc/refman/5.6/en/internal-locking.html

[13] Osman, R., Awan, I. and Woodward, M. E. 2011. QuePED:
Revisiting Queueing Networks for the Performance Evaluation
of Database Designs. Simulation Modelling Practice and
Theory, 19, 1 (Jan 2011), 251-270.

[14] Osman, R. and Knottenbelt, W. J. 2012. Database System
Performance Evaluation Models: A Survey. Performance
Evaluation, 69, 10 (Oct 2012), 471–493.
DOI=10.1016/j.peva.2012.05.006

[15] Ramakrishnan, R. and Gehrke, J. 2003. Database management
systems. McGraw-Hill, Boston, Mass.

[16] The PostgreSQL Global Development Group 2012.
PostgreSQL 9.1.7 Documentation.
http://www.postgresql.org/docs/9.1/static/index.html.

[17] The Transaction Processing Performance Council 2003. TPC-
W Benchmark version 2. http://www.tpc.org/tpcw/

334

