
Predictive Performance Modeling of
Virtualized Storage Systems using

Optimized Statistical Regression Techniques

Qais Noorshams, Dominik Bruhn, Samuel Kounev, Ralf Reussner
Chair for Software Design and Quality

Karlsruhe Institute of Technology
Karlsruhe, Germany

{noorshams, kounev, reussner}@kit.edu,
dominik.bruhn@student.kit.edu

ABSTRACT
Modern virtualized environments are key for reducing the
operating costs of data centers. By enabling the sharing of
physical resources, virtualization promises increased resource
efficiency with decreased administration costs. With the
increasing popularity of I/O-intensive applications, however,
the virtualized storage used in such environments can quickly
become a bottleneck and lead to performance and scalabili-
ty issues. Performance modeling and evaluation techniques
applied prior to system deployment help to avoid such is-
sues. In current practice, however, virtualized storage and
its performance-influencing factors are often neglected or
treated as a black-box. In this paper, we present a measure-
ment-based performance prediction approach for virtualized
storage systems based on optimized statistical regression tech-
niques. We first propose a general heuristic search algorithm
to optimize the parameters of regression techniques. Then,
we apply our optimization approach and create performance
models using four regression techniques. Finally, we present
an in-depth evaluation of our approach in a real-world rep-
resentative environment based on IBM System z and IBM
DS8700 server hardware. Using our optimized techniques,
we effectively create performance models with less than 7%
prediction error in the most typical scenario. Furthermore,
our optimization approach reduces the prediction error by
up to 74%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Per-
formance attributes; G.1.6 [Numerical Analysis]: Opti-
mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic methods

Keywords
I/O, Storage, Performance, Prediction, Virtualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, March 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

1. INTRODUCTION
The high growth rate of modern IT systems and services
demands a powerful yet flexible and cost-efficient data center
landscape. Server virtualization is a key technology used in
modern data centers to address this challenge. By enabling
the shared resource usage by multiple virtual systems, virtu-
alization promises increased resource efficiency and flexibility
with decreased administration costs. Furthermore, modern
cloud environments enable new pay-per-use cost models cou-
pled with flexible on-demand resource provisioning.

Modern cloud applications increasingly have I/O-intensive
workload profiles (cf. [2]), e.g., mail or file server applica-
tions are often deployed in virtualized environments. With
the increasing popularity of such applications, however, the
virtualized storage of shared environments can quickly be-
come a bottleneck and lead to unforeseen performance and
scalability issues. Performance modeling and evaluation tech-
niques applied prior to system deployment help to avoid such
issues and ensure that systems meet their quality-of-service
requirements.

In current practice, however, virtualized storage and its
performance-influencing factors are often neglected or treated
as a black-box due to their complexity. Several modeling
approaches considering I/O-intensive applications in virtual-
ized environments have been proposed, e.g., [1, 17], however,
without explicitly considering storage configuration aspects
and their influences on the overall system performance. More-
over, the increasing complexity of modern virtualized storage
systems poses challenges for classical performance modeling
approaches.

In this paper, we present a measurement-based perfor-
mance prediction approach for virtualized storage systems.
We derive optimized performance models based on statistical
regression techniques capturing the complex behaviour of
the virtualized storage system. Furthermore, the models
explicitly consider the influences of workload profiles and
storage configuration parameters. More specifically, we first
propose a general heuristic search algorithm to optimize the
parameters of regression techniques. This algorithm is not
limited to a certain domain and can be used as a general
regression optimization method. Then, we apply our opti-
mization approach and create performance models based on
systematic measurements using four regression techniques.
Finally, we evaluate the models in different scenarios to assess
their prediction accuracy and the improvement achieved by

283

our optimization approach. The scenarios comprise interpo-
lation and extrapolation scenarios as well as scenarios when
the workload is distributed on multiple virtual machines. We
evaluate our approach in a real-world environment based
on IBM System z and IBM DS8700 server hardware. Using
our optimized techniques, we effectively create performance
models with less than 7% prediction error in the most typ-
ical interpolation scenario. Furthermore, our optimization
approach reduces the prediction error by up to 74% with
statistical significance.

In summary, the contribution of this paper is multifold:
i) We present a measurement-based performance modeling
approach for virtualized storage systems based on four statis-
tical regression techniques. ii) We propose a general heuristic
optimization method to maximize the predictive power of sta-
tistical regression techniques. To the best of our knowledge,
this is the first automated regression optimization method ap-
plied for performance modeling of virtualized storage systems.
iii) We validate our approach in a real-world environment
based on the state-of-the-art server technology of the IBM
System z and IBM DS8700. iv) We comprehensively evaluate
our approach in multiple aspects including interpolation and
extrapolation scenarios, scenarios with multiple virtual ma-
chines, and the improvement achieved by our optimization
approach.

The remainder of this paper is organized as follows: Sec-
tion 2 further motivates our approach. Section 3 discusses
the regression techniques we considered for performance mod-
eling. In Section 4, we introduce our system environment
and methodology. Section 5 presents our heuristic optimiza-
tion algorithm. In Section 6, we extensively evaluate our
performance models and optimization approach. Finally,
Section 7 presents related work, while Section 8 summarizes
and concludes with the lessons learned.

2. MOTIVATION
The use of virtualization technology has significant impli-
cations on the landscape of modern data centers. By con-
solidating multiple systems to increase resource efficiency,
virtualization presents today’s systems with increasing chal-
lenges to meet the non-functional requirements. Especially
for virtualized storage systems, this trend is evident. At the
cost of highly increased complexity, storage systems have
evolved significantly from simple disks to sophisticated sys-
tems with multiple caching and virtualization layers. Further-
more, modern virtualized storage systems feature intricate
scheduling and optimization strategies.

Without any doubt, there are a variety of performance
influences of virtualized storage systems (cf. [23]), e.g., the
architecture of the virtualization platform and the implica-
tions of workload consolidation. Moreover, the many logical
layers between the application and the physical storage lead
to complex effects and interdependencies of influencing fac-
tors, which are more and more difficult to quantify. The
effect of a few simple influencing factors alone leads to a wide
range of performance characteristics. Illustrated in Figure 1a
for instance, the response time of an application spreads by
more than the factor of 35 when varying five factors, e.g.,
the request size or the I/O scheduler. Moreover, Figure 1b
exemplifies a shift in the influencing factors. The CFQ sched-
uler, which is the standard I/O scheduler since many years,
impairs performance drastically for certain configurations.
Consequently, the performance traits of an application de-

0

20

40

60

R
es

p
o
n
se

T
im

e
(m

s)

(a) Distribution

0

20

40

60

Request Size,

I/O Scheduler

Small, CFQ

Small, NOOP

Large, CFQ

Large, NOOP

(b) Examples

Figure 1: Response Time Depending on Influencing Factors

ployed in such an environment are highly unclear and might
be also subject to change.

This development is the motivation for our approach. The
increasing complexity of modern virtualized storage systems
poses challenges for classical performance modeling approach-
es to manually create, calibrate, and validate explicit perfor-
mance models within a limited time period. The effects and
interdependencies of the influencing factors are more and
more complex, which needs to be accounted for and quanti-
fied. Furthermore, the effects are subject to change and need
to be captured flexibly as the systems keep evolving. There-
fore, we target at an automated measurement-based approach
to virtualized storage performance modeling based on regres-
sion techniques. Our goal is to create practical performance
models while lifting the burden for performance engineers to
manually develop them. Building a regression-based perfor-
mance model, however, is also not straightforward due to the
many techniques and their parameters. To briefly introduce
the techniques we considered, the following section analyzes
multiple regression techniques and their parameters.

3. REGRESSION TECHNIQUES
Regression techniques are used to model the effect of indepen-
dent variables on dependent variables, e.g., the effect of I/O
request sizes on the request response time. In this section, we
introduce and analyze the regression techniques we applied
for modeling the performance of virtualized storage systems
and discuss their parameters. Furthermore, we highlight the
relationships between the considered techniques.

3.1 Linear Regression Models
One of the most popular techniques is based on linear regres-
sion models (LRM) [12] which assume a linear relationship
between the dependent variable and the independent vari-
ables. Thus, the dependent variable is represented as a linear
combination of the independent variables with an added
constant intercept. More formally, for a vector of indepen-
dent variables ~x := (x1, . . . , xn) a model f with coefficients
β0, . . . , βn is created of the form

f(~x) = β0 +
∑n
i=1 βixi.

The model f , however, does not necessarily have to be
linear in the independent variables xi. The independent
variables can be derived, e.g., x2 = x2

1 or x3 = x1x2. For
the sake of clarity, we explicitly exclude such definitions and
specifically consider two forms: The linear regression models
are explicitly linear in the independent variables as well. The
linear regression models with interaction can include terms

284

expressing the interaction between variables, e.g., x1x2. This
model is of maximum degree n in the independent variables
xi, however, the effects of the independent variables remain
linear in the model. When creating a model based on a set
of training data, the coefficients of the model are determined
to minimize the error between the model and the training
data.

Model Derivation. The most popular approach to create a
model is the method of least squares. For a set of training
data {(~x1, y1), . . . , (~xN , yN)} where ∀i: ~xi := (xi1, . . . , xin),

this method finds the coefficients ~β := (β0, . . . , βn) such that

the residual sum of squares defined as RSS(~β) :=
∑N
i=1(yi −

f(~xi))
2 is minimized. To find the minimum, the derivative

of RSS is set to zero and solved for ~β. As RSS is a quadratic
function, the minimum is guaranteed to always exist.

Parameters.
− None.

3.2 Multivariate Adaptive Regression Splines
Multivariate Adaptive Regressions Splines (MARS) [9] con-
sist of piecewise linear functions (so-called hinge functions).
Formally, these functions with so-called knot t are defined as
(x− t)+ := max{0, x− t} and (t− x)+ := max{0, t− x}. Let
~x = (x1, . . . , xn) be the vector of independent variables as
above, H := {(xi − t)+, (t− xi)+}i=1,...,n and t ∈ T , where
T is the set of observed values of each independent variable.
Then, MARS constructs a model f of the form

f(~x) = β0 +
∑n
i=1 βi hi(~x)

with hi ∈ H and coefficients β0, . . . , βn. Similar to the linear
regression models, we explicitly distinguish between MARS
and MARS with interactions. The latter also includes hinge
functions that are a product of one or more functions in H.

Model Derivation. The parameters βi are estimated by the
method of least squares as for the linear regression model.
The model is constructed iteratively in a forward step. Start-
ing from a constant function, the algorithm adds the hinge
functions in H that result in the maximum reduction of
the residual squared error. If interactions are permitted,
the algorithm can also choose a hinge function as a factor.
However, each variable can only appear once in a term, i.e.,
higher-order powers of a variable are excluded. This step
stops if a predefined number of maximum terms is reached
or if the residual error falls below a predefined threshold.
Finally, the model is pruned to avoid overfitting. The terms
that produce the smallest increase in residual squared error
are removed iteratively until a predefined number of terms
is reached. Frequently, the pruning step also considers the
model complexity combined with the residual squared error.
This results in a trade-off between accuracy and complexity
of the model.
Parameters.
− nnodes: Maximum number of terms in the forward step.
− threshold: Maximum acceptable residual error.
− nprune: Maximum number of terms after pruning.

3.3 Classification and Regression Trees
Classification and Regression Trees (CART) [5] are a group
of algorithms that model data in a tree-based representa-
tion. CART models are binary trees with conditions in their
non-leaf nodes and constant values in their leaf nodes. To
determine the value of the dependant variable corresponding
to a set of values of the independent variables, the evaluation

starts at the root and the condition in this node is checked.
If the condition is true, the left edge is followed, otherwise
the right edge. This is repeated until a leaf is reached.

Model Derivation. Similar to MARS, the algorithm com-
prises a forward and a pruning step. In the forward step, an
initial tree with a single node is created. The leafs in the
tree are split iteratively at a certain splitting variable and a
splitting point. The splitting point is determined such that
the residual squared error is minimized. The algorithm splits
a leaf until it contains less samples than a predefined value.
The algorithm stops if no leaf can be split any further. In
the pruning step, the tree is reduced using cost-complexity
pruning (cf. [12]). Let m be the m-th leaf, Rm be the region
specified by the conditions to the m-th leaf, and l(T) be
the number of leaves in the tree T . Furthermore, for the
training data {(~xi, yi)}i, let the number of observations in
a region nm := |{~xi | ~xi ∈ Rm}|, the mean of the observa-
tions values ĉm := n−1

m

∑
~xi∈Rm

yi, and the mean squared
difference between each observed value and the mean of the
observations values qm(T) := n−1

m

∑
xi∈Rm

(yi − ĉm)2. Then,
the cost complexity criterion with parameter α is defined as

cα(T) :=
∑l(T)
m=1 nmqm(T) + α l(T)

that is to be minimized. The parameter α is a trade-off
between complexity and goodness-of-fit to the training data.
It is determined according to the residual sum of squares
with cross-validation. This splits the training data into two
partitions consisting of model creation and model testing
data. For a given α, the tree is greedily pruned using weakest
link pruning. Iteratively, the node with the smallest per-node

increase in
∑l(T)
m=1 nmqm(T) is collapsed.

Parameters.
− minsplit: Minimum number of samples to split a leaf.
− cp: Maximum acceptable tree complexity after pruning.

3.4 M5 Trees
M5 trees [25] are – figuratively speaking – a combination of
linear regression models and CART trees. Similar to CART
trees, M5 models are binary decision trees with conditions in
their non-leaf nodes. The leaf nodes, however, contain linear
regression models instead of the constant values as in CART
trees. For the prediction of a value, starting in the root node,
the conditions are evaluated until a linear regression model
in a leaf is reached. Then, the model is used as the predictor.

Model Derivation. Similar to MARS and CART, the tree
is first built in a forward step and pruned in the next step.
To build a M5 tree, the initial model consists of a one-node
tree T . The tree is split iteratively into subtrees Ti until
a predefined maximum number of splits is reached. M5
splits the tree at the condition that maximizes the expected
reduction in error ∆e with

∆e := σ(T)−
∑
i
|Ti|
|T | σ(Ti),

where σ is the standard deviation. For each leaf, a linear
regression model is created. Finally, the M5 model f is
greedily simplified to decrease the complexity c with

c(T) := n−1 ∑
i |yi − f(~xi)| · n+pn−p ,

where {(~xi, yi)}i is the training data, n is the number of
training data and p is the number of parameters in the
model. The term n+p

n−p allows an increase in error if the
complexity is decreased. For each leaf node, parameters of
the linear model are removed, whereas for every non-leaf
node, the node is collapsed if this reduces c(T).
Parameters.
− nsplits: Maximum number of splits in the forward step.

285

LRM

MARS

CART

M5

Cubist

Piecewise
linearity

Tree structure
Step function

Combination
Boosting

Inst.-based

Figure 2: Relation between the Regression Techniques

3.5 Cubist Forests
Cubist forests [26, 18] are an extension of M5 trees. Thus,
Cubist forests are rule-based model trees with linear models
in the leaves. Compared to M5, Cubist introduces two
extensions. First, it follows a boosting-like approach, i.e.,
it creates a set of trees instead of a single tree. To obtain
a single value, the tree predictions are aggregated using
their arithmetic mean. Second, it combines model-based
and instance-based learning (cf. [24]), i.e., it can adjust the
prediction of unseen points by the values of their nearest
training points.

Model Derivation. Initially, the maximum number of trees
in Cubist is defined to construct a forest. The first tree is
created using the M5 algorithm. The following trees are
created to correct the predictions of the training points by
the previous tree ft(~x). Each value of a training point yi is
modified by y′i := 2 yi − ft(~x) to compensate for over- and
under-estimations. Then, the tree creation is repeated. In
contrast to, e.g., Random Forests [4] combining the prediction
trees with the mode operator, Cubist aggregates the values
predicted by each tree using arithmetic mean. Finally, the
prediction of unseen points can be adjusted by the values of
a possibly dynamically determined number of training points
(so-called instance-based correction), cf. [24]. The prediction
of a new point ~x is adjusted by the weighted mean of the
nearest training points (so-called neighbors) with weight
wn := 1/(m(~x, ~n) + 0.5) for every neighbor ~n, where m(~x, ~n)
is the Manhatten distance of ~x and ~n. M5 is a special case
of Cubist with one tree and no instance-based correction.

Parameters.

− nsplits: Maximum number of splits in the forward step.

− ntrees : Number of trees.

− ninstances : Size of instance-based correction.

3.6 Summary
Figure 2 shows an overview of the considered regression
techniques illustrating the relationships among them. As
described above, the MARS algorithm can be seen as an
extension of LRM by allowing piecewise linear models. How-
ever, MARS regulates the number of linear terms. While
MARS and CART seem relatively different, the forward step
of MARS can be transformed into the one of CART by using
a tree-based structure with step functions, cf. [12]. M5 in
turn can be seen as a combination of LRM and CART. How-
ever, M5 differs from CART in the complexity criterion and
the pruning procedure. Finally, Cubist extends M5 by intro-
ducing a boosting like scheme creating several trees that are
aggregated by their mean. Furthermore, Cubist introduces
an instance-based correction to include the training data in
the prediction of unseen data.

IBM System z

IBM DS8700

CPU, RAM

Processors,
Memory

PR/SM (Hypervisor)

z/VM (Hypervisor)

z/Linuxz/OS

z/Linux

LPAR1 LPAR2

RAID Arrays SSD/
HDD

Storage Server
VC

NVC

Fibre
Channel

Switched
Fibre Channel

Figure 3: IBM System z and IBM DS8700

4. METHODOLOGY
In our approach, we apply statistical regression techniques
to create performance models based on systematic measure-
ments. In this section, we present our experimental environ-
ment and setup as well as our measurement methodology
and performance modeling approach.

4.1 System Under Study
A typical virtualized environment in a data center consists
of servers providing computational resources connected to
a set of storage systems. Such storage systems typically
differ significantly from traditional hard disks and native
storage systems due to the complexity of modern storage
virtualization platforms.

In this paper, we consider a representative virtualized en-
vironment based on the IBM mainframe System z and the
storage system DS8700. They are state-of-the-art high-perfor-
mance virtualized systems with redundant or hot swappable
resources for high availability. The System z combined with
the DS8700 represent a typical virtualized environment that
can be used as a building block of cloud computing infrastruc-
tures. It supports on-demand elasticity of pooled resources
with a pay-per-use accounting system (cf. [22]). The Sys-
tem z provides processors and memory, whereas the DS8700
provides storage space. The structure of this environment is
illustrated in Figure 3.

The Processor Resource/System Manager (PR/SM) is a
hypervisor managing logical partitions (LPARs) of the ma-
chine and enabling CPU and storage virtualization. For
memory virtualization and administration purposes, IBM
introduces another hypervisor, z/VM. The System z supports
the classical mainframe operating system z/OS and special
Linux ports for System z commonly denoted as z/Linux.
The System z is connected to the DS8700 via fibre channel.
Storage requests are handled by a storage server having a
volatile cache (VC) and a non-volatile cache (NVC). The
storage server is connected via switched fibre channel with
SSD or HDD RAID arrays. As explained in [8], the storage
server applies several pre-fetching and destaging algorithms
for optimal performance. When possible, read-requests are
served from the volatile cache, otherwise they are served
from the RAID arrays and stored in the volatile cache for
future requests. Write-requests are written to the volatile as
well as the non-volatile cache, but they are destaged to the
RAID arrays asynchronously.

In such a virtualized storage environment, a wide vari-
ety of heterogeneous performance-influencing factors exists,
cf. [23]. In many cases, the factors have a significantly differ-
ent effect compared to traditional native storage systems. As
Figure 1b illustrates, e.g., the standard Linux I/O scheduler
CFQ performs significantly worse than the NOOP scheduler

286

Storage-Performance-Influencing Factors

Workload

Requests

Size Mix Pattern

Locality

System

Operating System

Filesystem I/O Scheduler

Hardware

Figure 4: Performance Influences (derived from [23])

for certain configurations. Figure 4 gives an overview of
the major storage-performance-influencing factors used as
basis for our analysis. In general, we distinguish between
workload and system factors. Workload factors comprise av-
erage request size, read/write mix and random or sequential
access pattern. Furthermore, the locality of requests affects
the storage cache effectiveness. System factors comprise
operating system and hardware configurations. The major
factors of the operating system are the file system and the
I/O scheduler. Hardware factors can be analyzed on different
abstraction levels, but are often system specific.

4.2 Experimental Setup
In our experimental environment, the DS8700 contains 2 GB
NVC and 50 GB VC with a RAID5 array containing seven
HDDs. Measurements are obtained in a z/Linux virtual
machine (VM) with 2 IFLs (cores) and 4 GB of memory.
Using the O_DIRECT POSIX flag, we isolate the effects of
operating system caching in order to focus our measurements
on the storage performance. However, we explicitly take
into account the cache of the storage system by varying the
overall size of data accessed in our workloads. As a basis for
our experimental analysis, we used the open source Flexi-
ble File System Benchmark1 (FFSB) due to its fine-grained
configuration possibilities. FFSB runs at the application
layer and measures the end-to-end response time covering all
system layers from the application all the way down to the
physical storage. The system and workload parameters for
the measurements match the factors described in Section 4.1
and illustrated in Figure 4. The locality of the workload can
be deduced from the overall size of the set of files accessed in
the workload since FFSB requests are randomly distributed
among the files. The considered parameter values are sum-
marized in Table 1. The parameter space is fully explored
leading to a total of 1120 measurement configurations.

4.3 Experimental Methodology
For a given configuration of a benchmark run, the measure-
ments run in three phases: First, a set of 16 MB files is
created. Second, the target number of workload threads are
started and they start reading from and writing into the
initial file set. After an initial warm up phase, the measure-
ment phase starts and the benchmark begins obtaining read
and write performance data. For each workload thread, the
read and write operations consist of 256 sub-requests of the
specified size directed to a randomly chosen file from the
file set. If the access pattern is sequential, the sub-requests
access subsequent blocks within the file. Each thread issues
a request as soon as the previous one is completed.

For each of the 1120 configurations, we configured a one
minute warm up phase and a five minute measurement phase.

1
http://github.com/FFSB-prime (extending http://ffsb.sf.net)

Table 1: Experimental Setup Configuration

System Parameters

File system ext4
I/O scheduler CFQ, NOOP

Workload Parameters

Threads 100
File set size 1 GB, 25 GB, 50 GB, 75 GB, 100 GB
Request size 4 KB, 8 KB, 12 KB, 16 KB, 20 KB, 24 KB,

28 KB, 32 KB
Access pattern random, sequential
Read percentage 0%, 25%, 30%, 50%, 70%, 75%, 100%

The measurement phase consists of five intervals of one mi-
nute length each. In one minute, the benchmark obtains
between approximately 90 000 and 2 800 000 measurement
samples depending on the configuration and approximately
575 000 measurement samples on average. Furthermore, we
analyzed the measurement intervals to ensure stable and
meaningful results. Illustrated in Figure 5, we evaluated the
relative standard error (RSE) of the response time means for
each configuration over the five intervals. For read requests,
the 90th percentile of the RSE is 8.45% and the mean RSE
is 3.35%. For write requests, the 90th percentile of the RSE
is 5.35% and the mean RSE is 2.10%. Thus, we conclude
that the measurement samples are sufficiently large and the
measurements are sufficiently stable. This is important since
our goal was to keep the measurement length limited.

Since a manual measurement and evaluation approach is
highly tedious and error prone, we automated the process
as part of a new tool we developed called SPA (Storage
Performance Analyzer)2. Illustrated in Figure 6, our tool
basically consists of a benchmark harness that coordinates
and controls the execution of the FFSB benchmark and a
tailored analysis library used to process and evaluate the
collected measurements. The benchmark harness component
runs on a controller machine managing the measurement
process. Using SSH connections, the benchmark controller
first configures the benchmark, then it executes the target
workload, and it finally collects the results into an SQLite
database. Furthermore, the benchmark controller guarantees
a synchronized execution of experiments on multiple targets,
i.e., on multiple VMs that can be deployed on the same
system. The evaluation is automated using tailored analysis
functions implemented using the open source statistics tool
R [27]. The analysis library comprises the analysis, opti-
mization and regression functions we created and applied
for regression optimization and performance model creation.
For more information on the technical realization, we refer
the reader to [6].

4.4 Performance Modeling Methodology
We employ the regression techniques presented in Section 3.
As independent variables, we used the system and the work-
load parameters listed in Table 1. As dependent variables,
we used the system response time and throughput. For each
regression technique, we first optimize the parameters to cre-
ate effective models as explained in detail in the next section.
We then create dedicated models for read and write requests
as well as for response time and throughput predictions.
Due to the structure of the independent variables, the LRM
and MARS models without interaction perform significantly
worse than all the other techniques. Therefore, we explicitly

2
http://sdqweb.ipd.kit.edu/wiki/SPA

287

0.00

0.25

0.50

0.75

1.00

0 10 20

Relative Standard Error (%)

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

F
u
n
ct

io
n

Operation

read

write

Figure 5: Distribution of the Relative Standard Error

Controller Machine

Benchmark Harness

Benchmark
Controller

Benchmark Driver
for FFSB

SQLite Database

R – Statistics Tool

Analysis
Library

Analysis, Optimiza-
tion & Regression
Functions

VM 2

FFSB
Benchmark

VM 1

FFSB
Benchmark

SSH

Figure 6: Overview of our Automated Methodology

exclude LRM and MARS models without interactions from
consideration. Furthermore, Cubist stems from M5 both
algorithmically and in terms of implementation and they are
identical for Cubist’s standard parameter values. Therefore,
in the following, we do not explicitly distinguish between the
two. Thus, having four models for each regression technique,
we create a total of 16 performance models evaluated in
detail in Section 6.

5. REGRESSION OPTIMIZATION
Regression techniques often have parameters, which influence
the effectiveness of the technique in a certain application
scenario. Usually, the parameters are left to their standard
values or chosen based on an educated guess. However, both
approaches are insufficient to systematically create powerful
models.

To create effective performance models, we search for op-
timal parameters for each of our considered techniques3, cf.
Table 2. A full factorial search would take weeks due to the
high computational costs of creating millions of regression
models. Therefore, we propose a heuristic iterative search
algorithm shown in Algorithm 1 and illustrated in Figure 7.
In a nutshell, we split the parameter space into multiple sub-
spaces and iteratively refine the search in the most promising
regions.

3
Note that there can be more input parameters than the ones consid-

ered here depending on the implementation of the technique. In this
paper, we use the implementation in the statistics tool R [27].

Algorithm 1 Iterative Parameter Optimization

Configuration:

k ← Number of splits
n← Number of explorations
S // Stopping criterion

5: Definitions:

~p := (p1, . . . , pl), L := {1, . . . , l} // l parameters
pi ∈ [ai, bi], ∀i ∈ L // Ranges of parameters
c(~p) := Mean RMSE in cross-validation of parameters

Init:

10: E ← {(~a := (a1, . . . , al), c(~a))}
// Evaluate first border parameters

M ← E // M : Set of best parameters

Algorithm:

while S does not apply do
15: j-th Iteration:

for all (~ν j(h), ·) ∈M do // h-th pivot

for all i ∈ L do
Ai ← {pi | (pi, ·) ∈ E ∧ pi < ν j(h)i}
if Ai 6= ∅ then a∗i ← maxAi

20: else a∗i ← ai
Bi ← {pi | (pi, ·) ∈ E ∧ pi > ν j(h)i}
if Bi 6= ∅ then b∗i ← minBi

else b∗i ← bi

s∗i ←
b∗i−a

∗
i

k+1
,∀i ∈ L // Step width

25: S∗i ← {a∗i , a∗i + s∗i , . . . , a
∗
i + k s∗i , b

∗
i }

for all s ∈ S∗i do
if s invalid then round s to next valid value

end for
end for

30: Ej(h) ← {(~x, c(~x)) | ~x ∈ S∗1 × . . .× S∗l }
// Evaluate parameters if not evaluated yet

end for
E ← E ∪

⋃
hE

j
(h) // Save all evaluated parameters

M ← Find n best tuples in E (w.r.t. c)
35: end while

Algorithm. The algorithm’s configuration parameters are
the number of splits (i.e., splitting points) in each iteration
and the number of subspace explorations in the next iteration.
The number of splits configures the sampling frequency of
the search space and should be higher if multiple high but
narrow optima can be assumed. The number of explorations
configures how many local optima are analyzed in their
adjacent area and should be higher if many local optima
can be assumed. The algorithm can be configured with an
arbitrary stopping criterion, e.g., when the improvement
between iterations falls below a given threshold or when a
specified maximum number of iterations is reached. For each
of the given parameters ~p := (p1, ..., pl), a reasonable range
pi ∈ [ai, bi] needs to be defined to limit the search space.
The lower bound usually exists for most parameters and
the upper bound can be derived based on the used training
data. For a given set of parameter values, we evaluate the
model using the mean root mean square error (RMSE) of a
10-fold cross-validation, denoted as c(~p). This means that
the measurement data is separated into 10 groups and each
group is used once as a prediction set while the rest of the
data is used for model building. This evaluation approach is
key to prevent overfitting of the prediction models.

288

~ν 1
(1)

~ν 2
(1) ~ν 2

(2)

~ν 3
(1)

~ν 3
(2)

Iteration 1

Iteration 2

Iteration 3

k = 3, n = 2

Figure 7: First Iterations of the Parameter Optimization

The algorithm begins with the evaluation of one corner
point in the parameter space, cf. Figure 7. As initially this
is the only evaluated point, it is the only point saved in a set
M for exploration in the next iteration.

In each iteration, we explore every point ~x in the set M
containing the points corresponding to the best parameter
value assignments. The unevaluated space around ~x is split
into (k+ 1)l subspaces. Initially, this is the whole parameter
space. Each corner point of the subspaces is then evaluated
and the best n found so far are saved in M for the next
iteration. To save computation time, we maintain a set E of
already evaluated parameter values. The algorithm repeats
each iteration until the stopping criterion is fulfilled.

Example. In Figure 7, the first three iterations of the
algorithm with k = 3 and n = 2 are illustrated. Initially,
one corner point is evaluated. This pivot ~ν 1

(1) is explored in
the first iteration. Since there are no other evaluated points,
the whole parameter space is cut with k = 3 splits for each
parameter indicated by the grid lines (at the Iteration 1 level).
Each of the intersection points depicted as small gray points
(at the Iteration 2 level) is evaluated. After the best n = 2
evaluated points are found, they become the next pivots ~ν 2

(1)

and ~ν 2
(2). Now, when ~ν 2

(1) is explored, the space around it
limited by the neighbouring evaluated points is explored, cf.
dashed lines between Iteration 2 and Iteration 3. The same
is done for the second pivot ~ν 2

(2). This process is repeated
in the next iterations and the best parameters are used for
model building. Note that the space does not necessarily
have to be split equidistantly for all parameters, cf. ~ν 3

(1).
That is why the complexity evaluation is independent from
the exact values the algorithm explores.

Complexity. In our implementation of the algorithm, we
used indexed data structures to realize the logic. Thus, the
regression model building by means of the cross-validation
evaluation represents by far the most computationally ex-
pensive part of the algorithm. Therefore, we evaluate the
complexity of the cross-validation evaluation. In the worst
case, in every iteration we evaluate every new set of parame-

Table 2: Parameters of the Regression Techniques

Parameter Standard Valid/Used Best ~p (RTr,
Range RTw, TPr, TPw)

MARS4 nnodes 21 (der.)5 [3,∞)/[3, 800] 255, 353, 131, 523

threshold 0.001 [0, 1)/[0, 0.999] 5.01e−6, 3.07e−7,
5.05e−5, 2.66e−5

nprune nnodes [2,∞)/[2, 800] 98, 134, 99, 141

CART minsplit 20 [2,∞)/[2, 400] 3, 2, 2, 2

cp 0.01 [0, 1)/[0, 0.999] 3.07e−7, 4.09e−7,
0, 0

Cubist nsplits 100 [2,∞)/[2, 400] 173, 217, 173, 217
ntrees 1 [1, 100] 77, 41, 11, 26
ninstances 0 [0, 9] 2, 4, 2, 1

ter values except the initial corner one in the first iteration
and the four corner ones in every other iteration. Thus,
the number of evaluations in our search in the worst case is
limited by

O((k+2)l−1+(max j−1) ·n ((k+2)l−4)) = O(max j ·n kl),
where max j is the maximum number of iterations. By con-
figuring max j, n and k, the overhead of the algorithm can
be adjusted and kept within bounds. As discussed in the
next section, our evaluation showed that even moderately low
values of these parameters lead to substantial improvements
in the model accuracy.

Optimality. Our main goal is to achieve such model accu-
racy improvements efficiently. However, if we do not limit
the number of iterations and allow to search long enough,
our approach is able to find locally optimal solutions. Thus,
for convex problems our approach also guarantees globally
optimal solutions. This is since, let k > 1 and n > 0, ∀i ∈ L
one has if j → ∞, then s∗i → 0 for continuous parameters
and s∗i → 1 for discrete parameters. In other words, as we
iteratively explore the current best solutions of the iteration,
at least one solution will be fully explored.

Optimization Results. Based on the parameter optimiza-
tion algorithm, for each regression technique we create four
different models as described in Section 4: A read response
time model (RTr), a write response time model (RTw), a
read throughput model (TPr), and a write throughput model
(TPw). We configured the number of splits k to four and the
number of explorations n to five. We stop after 10 iterations.
Table 2 summarizes the parameters of the regression tech-
niques and lists their standard values as well as their valid
ranges. For unbounded parameters, we chose a generous
upper limit. For each model, the recommended parameter
value assignments for our performance models determined by
the optimization algorithm are shown. In the next section,
we evaluate the accuracy of the resulting optimized regres-
sion models and demonstrate the benefits of our modeling
approach.

6. EVALUATION
In this section, we analyze and evaluate our approach in
three steps. First, we evaluate the performance models w.r.t.
their goodness-of-fit as well as their predictive power for
interpolation and extrapolation scenarios. Then, we analyze
scenarios where the workload is distributed on multiple VMs.
Finally, we evaluate the improvements in model accuracy
achieved through our heuristic optimization. In each of the

4
The standard MARS algorithm does not include interactions. How-

ever, we only consider MARS with interactions, cf. Section 4.4.
5
Derived value (min(200,max(20, 2 ·#IndependentV ariables)) + 1).

289

Table 3: Goodness-of-Fit of Performance Models

Coefficient of determination R2

Model RTr RTw TPr TPw
1
4

∑
LRM 0.9720 0.9703 0.9699 0.9546 0.9667
MARS 0.9955 0.9991 0.9951 0.9973 0.9968
CART 0.9983 1 1 1 0.9996
Cubist 0.9990 0.9994 0.9995 1 0.9995

three steps, we use the optimized models generated by our
SPA tool as a basis for the evaluation.

6.1 Model Accuracy
Goodness-of-Fit. For each of the optimized performance mod-
els, we evaluate how well it reflects the observed system
behavior. To evaluate this goodness-of-fit, we analyze the
coefficient of determination R2 defined as

R2 := 1− SSE

SST
= 1−

∑
i(yi − f(~xi))

2∑
i(yi −

1
N

∑
j yj)

2
≤ 1,

where SSE and SST are the residual and the total sum of
squares, respectively, {(~xi, yi)}i=1,...,N represent the mea-
surement data and f is the respective regression model. R2

values close to 1 indicate a good fit. The results of our
evaluation for the different models are shown in Table 3.
Overall, most of the models fit very well to the measure-
ments. Especially MARS performs particularly well even
with a comparably low number of terms (cf. nprune param-
eter values). CART, however, has an expectedly good fit
due to the low minsplit and cp parameters allowing for a
highly splitted tree. Furthermore, as expected Cubist also
fits very well due to the large number of trees and especially
the instance-based correction. Finally, LRM exhibits a fairly
well fit, however, exhibiting the lowest fit of all the models.

Predictive Power for Interpolation Scenarios. We evaluate
100 configuration scenarios with parameter values randomly
chosen within the ranges shown in Table 4. For each scenario,
we compare the model predictions with measurements on the
real system.

Figure 9 shows the mean relative error for the various
models. Overall, the models perform very well and especially
MARS and Cubist exhibit excellent performance prediction
accuracy with less than 7% and 8% error, respectively. The
CART trees are highly splitted, yet with approximately 10%
error their accuracy is acceptable. Finally, the LRM models
exhibit the highest error with approximately 13%.

Figure 8 depicts the empirical cumulative distribution
functions of the prediction errors. In all cases, the majority
of the error is less than 10%. For MARS and Cubist, the error
is less than 10% for more than 75% of the samples. Most
notably, the 90th percentile of the error of both MARS and
Cubist is less than 25%. Moreover, even the 99th percentile
of the error is less than 50% for almost all models.

Predictive Power for Extrapolation Scenarios. We now con-
sider configuration scenarios with parameter values outside
of the ranges used to build the models. More specifically, we
extrapolate the request size, the file set size, and the read
percentage in two steps in each direction. We evaluate 256
scenarios by considering all combinations of the parameter
values shown in Table 5. We explicitly distinguish between
small (i.e., 1 KB and 2 KB) and large request sizes (i.e.,
36 KB and 40 KB).

As shown in Figure 10, the predictive power of the models
for extrapolation scenarios differs significantly for smaller

Table 4: Interpolation Setup Configuration

Parameter Range

I/O scheduler {CFQ, NOOP}
File set size [1 GB, 100 GB]

rounded to multiples of 16 MB
Request size [4 KB, 32 KB]

rounded to multiples of 512 bytes
Access pattern {random, sequential}
Read percentage [25%, 100%] for read requests

[0%, 75%] for write requests

Table 5: Extrapolation Setup Configuration

Parameter Values

I/O scheduler {CFQ, NOOP}
File set size {512 MB, 768 MB, 110 GB, 120 GB}
Request size {1 KB, 2 KB, 36 KB, 40 KB}
Access pattern {random, sequential}
Read percentage {15%, 20%, 80%, 85%}

and larger request sizes especially for throughput predic-
tions. Scenarios with smaller request sizes are predicted
fairly well for response time. The error for the best perform-
ing model Cubist is less than 15%. Throughput predictions,
however, exhibit much higher errors. This is due to the
large performance overhead of serving many small requests
simultaneously. The file system introduces significant over-
head since the standard extent sizes (in which data is stored)
are 4 KB. Furthermore, the optimization strategies in the
various layers (especially the I/O scheduler) are very eager
to optimize the requests. The latter is difficult since mul-
tiple threads issue requests simultaneously. This effect is
multiplied by the penalty introduced by frequent backend
RAID array accesses if the file set size is larger than the NVC
and the VC, respectively. On the other hand, scenarios with
larger request sizes are predicted very well. This is notable
since the models have to cope with unexplored regions in the
parameter space. Especially, Cubist predicts response times
with less than 9% error and throughput with approximately
16% error. Also, MARS performs impressively well with ap-
proximately 11% error for response time and approximately
21% error for throughput.

Summary. Overall, the performance models exhibited good
accuracy and predictive power. To highlight the key aspects,
the models managed to effectively capture the performance
influences with very high goodness-of-fit characteristics. In
interpolation scenarios, the models exhibited excellent per-
formance prediction accuracy for arbitrarily chosen config-
uration scenarios. Here, MARS and Cubist performed best
with approximately 7%-8% prediction error. Also, in ex-
trapolation scenarios, the models showed promising results.
Except for throughput predictions for smaller request sizes,
the best performing model Cubist had a prediction error of
only 9%-16%.

6.2 Workload Distribution
We now evaluate scenarios where the workload is distributed
on multiple co-located VMs as done for example in the
context of server consolidation. We distribute the workload
evenly across two and three VMs with shared cores, i.e.,
both the number of threads and the file set size are scaled
inversely by the number of VMs. We explicitly distinguish
between the different I/O scheduler implementations as well
as between random and sequential workloads. Thus, having
100 randomly chosen configurations based on the parameter
ranges in Table 4, we conduct 25 measurements for each

290

LRM MARS CART Cubist

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

R
T
r

R
T
w

T
P
r

T
P
w

10−1 100 101 102 103 10−1 100 101 102 103 10−1 100 101 102 103 10−1 100 101 102 103

Relative Error (%)

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

F
u
n
ct

io
n

Model Optimized Standard

Figure 8: Cumulative Distribution Function of the Relative Error of the Performance Models (Note the Logarithmic x-Axis)

LRM MARS CART Cubist

0

4

8

12

16

RTr
RTwT

Pr
T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw

M
ea

n
R

el
a
ti

v
e

E
rr

o
r

(%
)

Mean Relative Error (%)
Model RTr RTw TPr TPw

1
4

∑
LRM 14.73 8.72 15.05 13.74 13.06
MARS 7.80 4.90 9.52 5.39 6.90
CART 10.47 7.98 12.41 10.26 10.28
Cubist 8.63 7.23 7.75 6.44 7.51

Figure 9: Prediction Accuracy of Interpolation

CFQ & NOOP scheduler and random & sequential workload
combination. These measurements are used to evaluate the
prediction error for each model. Note that the models are
still extracted from measurements obtained in one VM to
show the effectiveness of our approach.

For two and three VMs, respectively, Figure 11 and Fig-
ure 12 show the mean relative error for all models structured
according to the chosen I/O scheduler and workload pattern.
Since CFQ performs significant optimizations that depend on
the current load, the model extracted from measurements in
one VM does not fit well with the measurements conducted
in multiple VMs for sequential workload. For random work-

LRM MARS CART Cubist

0

100

200

300

400

0

100

200

300

400

1
K

B
,

2
K

B
3
6

K
B

,
4
0

K
B

RTr
RTwT

Pr
T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw

M
ea

n
R

el
a
ti

v
e

E
rr

o
r

(%
)

Mean Relative Error (%)
Model RTr RTw TPr TPw

1
4

∑
Request Size: 1 KB, 2 KB

LRM 22.36 33.65 393.19 315.81 191.25
MARS 21.79 17.54 395.66 168.26 150.81
CART 22.18 22.59 211.69 204.60 115.27
Cubist 14.47 14.96 130.76 108.38 67.14

Request Size: 36 KB, 40 KB

LRM 19.90 18.34 29.77 42.47 27.62
MARS 11.66 10.00 24.86 17.98 16.13
CART 18.10 9.96 28.85 24.25 20.29
Cubist 8.70 8.52 14.12 15.74 11.77

Figure 10: Prediction Accuracy of Extrapolation

load, however, this effect is less significant. Response time is
predicted fairly well and especially throughput is predicted
very well. The NOOP scheduler performs only optimizations
based on request splitting and merging. Thus, the model
extracted from measurements in one VM fits much better for
multiple VMs in most cases. Only for write response times,

291

LRM MARS CART Cubist

0

30

60

90

0

30

60

90

0

30

60

90

0

30

60

90

C
F

Q
C

F
Q

N
O

O
P

N
O

O
P

R
a
n
d
o
m

S
eq

u
en

tia
l

R
a
n
d
o
m

S
eq

u
en

tia
l

RTr
RTwT

Pr
T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw

M
ea

n
R

el
a
ti

v
e

E
rr

o
r

(%
)

Mean Relative Error (%)
Model RTr RTw TPr TPw

1
4

∑
Scheduler: CFQ, Random Requests

LRM 29.42 12.24 14.86 13.88 17.60
MARS 29.62 13.96 12.80 9.01 16.35
CART 28.27 18.39 20.51 13.44 20.15
Cubist 30.17 17.03 13.24 10.47 17.73

Scheduler: CFQ, Sequential Requests

LRM 102.32 66.32 45.42 44.50 64.64
MARS 98.55 67.73 40.58 42.84 62.43
CART 97.45 64.34 43.08 43.20 62.02
Cubist 103.40 81.14 44.81 45.10 68.61

Scheduler: NOOP, Random Requests

LRM 28.85 39.83 15.79 14.58 24.76
MARS 20.31 33.82 7.97 5.48 16.90
CART 28.11 35.70 18.30 15.00 24.28
Cubist 20.61 36.07 7.78 10.46 18.73

Scheduler: NOOP, Sequential Requests

LRM 17.71 11.47 5.82 6.43 10.36
MARS 14.35 10.57 4.00 1.82 7.69
CART 14.05 12.13 12.19 4.22 10.65
Cubist 12.08 10.95 7.81 2.49 8.33

Figure 11: Prediction Accuracy of the One-VM-Models when
the Workload is Distributed on Two VMs

the model exhibits a high error particularly for larger file
set sizes exceeding the storage cache. We conclude that the
frequent cache misses and write request optimizations in the
storage system lead to higher prediction errors. Nonetheless,
in most cases the performance model still provides a valid
approximation of the system performance.

Summary. Distributing the workload among multiple VMs
leads to complex optimization and virtualization effects.
While our models were not tuned for these effects, they
still provided promising prediction results in most scenarios.
In some scenarios, the error was evident and expected as,
e.g., the CFQ scheduler is known for very active and eager
request optimization. Still, the mean error remains less than
10%-20% for the MARS and Cubist models in most cases.
While further in-depth analysis of the virtualization and
scheduler influences is out of scope of this paper, the results
are very encouraging.

LRM MARS CART Cubist

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

C
F

Q
C

F
Q

N
O

O
P

N
O

O
P

R
a
n
d
o
m

S
eq

u
en

tia
l

R
a
n
d
o
m

S
eq

u
en

tia
l

RTr
RTwT

Pr
T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw RTr

RTwT
Pr

T
Pw

M
ea

n
R

el
a
ti

v
e

E
rr

o
r

(%
)

Mean Relative Error (%)
Model RTr RTw TPr TPw

1
4

∑
Scheduler: CFQ, Random Requests

LRM 28.43 34.32 13.74 14.66 22.79
MARS 20.37 24.44 10.08 8.40 15.82
CART 21.12 28.34 14.97 11.88 19.08
Cubist 23.88 28.60 9.89 10.13 18.12

Scheduler: CFQ, Sequential Requests

LRM 163.93 133.93 57.13 57.37 103.09
MARS 169.06 136.32 57.91 57.85 105.29
CART 167.72 134.81 60.63 57.98 105.29
Cubist 173.29 143.90 59.63 57.51 108.58

Scheduler: NOOP, Random Requests

LRM 25.21 251.33 33.34 27.04 84.23
MARS 20.14 237.03 11.02 10.64 69.71
CART 18.65 261.30 16.55 12.19 77.17
Cubist 19.85 244.44 12.32 11.58 72.05

Scheduler: NOOP, Sequential Requests

LRM 24.01 16.13 7.04 5.17 13.09
MARS 21.16 16.49 5.83 2.59 11.52
CART 24.95 17.23 8.99 5.87 14.26
Cubist 20.30 16.89 7.35 2.70 11.81

Figure 12: Prediction Accuracy of the One-VM-Models when
the Workload is Distributed on Three VMs

6.3 Regression Optimization
To evaluate the improvements in model accuracy achieved
through our regression optimization algorithm, we compare
the accuracy of the models when using the optimized regres-
sion parameters vs. the standard parameters, respectively.
We evaluate the performance prediction error for each model
with 100 random configurations based on the ranges shown
in Table 4, cf. Section 6.1.

In Figure 13, we show the reduction in error for each
model. Overall, the results show significant improvements of
the model accuracy, i.e., reduced modeling error. Especially
MARS and CART benefit from the parameter optimiza-
tion exhibiting an error reduction of 66.30% and 74.08%,
respectively. The improvement of Cubist is less, however,
an error reduction of approximately 16% is still observed.
Interestingly, the highest error reduction was achieved for
read throughput predictions across all models. The MARS

292

models showed most improvements for throughput metrics,
while the CART models were almost evenly improved across
all metrics. Surprisingly, only a small error reduction was
achieved for Cubist’s read response time predictions, whereas
significant improvements were seen for write response time
and read throughput predictions.

In Figure 8, we evaluate the error distribution of the dif-
ferent techniques in the form of empirical cumulative distri-
bution functions. The results show that our optimization
especially eliminated large prediction errors. Furthermore,
the results confirm that the optimization especially improved
CART and MARS with a decisive reduction in large errors.
For Cubist, the improvement was less than for the other
techniques, however, the error reduction is still evident. This
is due to the fact that the technique performs competitively
well even with standard parameters and the optimization
is primarily able to decrease the number of extreme errors.
Still, the optimization process was key for achieving the
high quality results of the MARS and the Cubist models
presented in Section 6.1 and Section 6.2. These two models
exhibited the highest accuracy in almost all of the considered
evaluation scenarios

Finally, we evaluate the statistical significance of the op-
timization results. In a paired t-test, we evaluate the mean
of each difference of the prediction error of the respective
regression technique between the optimized and the standard
parameter values. Thus, for each regression technique the
null hypothesis H0 is that the true mean of differences of
the prediction error is equal to zero. For the t-test, the
p-value of both MARS and CART is less than 2.2e−16 and
the p-value of Cubist is 0.0003394. Thus, H0 is rejected
confirming that the optimization is statistically significant
for every considered regression technique.

Summary. Overall, the parameter optimization was crucial
for creating effective performance models. The mean error
reductions of approximately 16%, 66%, and 74% for Cubist,
MARS, and CART, respectively, lead to performance models
with high accuracy and predictive power. Especially the
improvements for MARS lead to accurate models that, to-
gether with the Cubist models, exhibited the best prediction
accuracy in our scenarios. Furthermore, the improvement
achieved by the parameter optimization was statistically
significant for every considered regression technique.

7. RELATED WORK
Many general modeling techniques for storage systems exist,
e.g., [7, 11, 20, 21, 28], but they are only shortly mentioned
here as our work is focused on virtualized environments.

The work closely related to the approach presented in this
paper can be classified into two groups. The first group
is focused on modeling storage performance in virtualized
environments. Here, Kraft et al. [17] present two approaches
based on queueing theory to predict the I/O performance
of consolidated virtual machines. Their first, trace-based
approach simulates the consolidation of homogeneous work-
loads. The environment is modeled as a single queue with
multiple servers having service times fitted to a Markovian
Arrival Process (MAP). In their second approach, they pre-
dict storage performance in consolidation of heterogeneous
workloads. They create linear estimators based on mean
value analysis (MVA). Furthermore, they create a closed
queueing network model, also with service times fitted to a
MAP. Both methods use monitored measurements on the

MARS CART Cubist

-100

-75

-50

-25

0

RTr
RTw T

Pr
T
Pw RTr

RTw T
Pr

T
Pw RTr

RTw T
Pr

T
Pw

R
e l

a
ti

v
e

E
rr

o
r

D
iff

er
en

ce
(%

)

Relative Error Difference (%)
Model RTr RTw TPr TPw

1
4

∑
MARS −58.64 −60.20 −77.59 −68.78 −66.30
CART −73.14 −73.24 −80.78 −69.15 −74.08
Cubist −0.25 −24.01 −31.52 −7.23 −15.75

Figure 13: Error Reduction by Parameter Optimization

block layer that is lower than typical applications run. In [1],
Ahmad et al. analyze the I/O performance in VMware’s ESX
Server virtualization. They compare virtual to native perfor-
mance using benchmarks. They further create mathematical
models for the virtualization overhead. The models are used
for I/O throughput degradation predictions. To analyze per-
formance interference in a virtualized environment, Koh et
al. [16] manually run CPU bound and I/O bound benchmarks.
While they develop mathematical models for prediction, they
explicitly focus on the consolidation of different types of
workloads, i.e., CPU and I/O bound. By applying different
machine learning techniques, Kundu et al. [19] use artificial
neural networks and support vector machines for dynamic ca-
pacity planning in virtualized environments. Further, Gulati
et al. [10] present a study on storage workload characteriza-
tion in virtualized environments, but perform no performance
analysis.

The second group of related work deals with benchmarking
and performance analysis of virtualized environments not
specifically targeted at storage systems. Hauck et al. [13]
propose a goal-oriented measurement approach to determine
performance-relevant infrastructure properties. They exam-
ine OS scheduler properties and CPU virtualization overhead.
Huber et al. [14] examine performance overhead in VMware
ESX and Citrix XenServer virtualized environments. They
create regression-based models for virtualized CPU and mem-
ory performance. In [3], Barham et al. introduce the Xen
hypervisor comparing it to a native system as well as other
virtualization plattforms. They use a variety of benchmarks
for their analysis to quantify the overall Xen hypervisor
overhead. Iyer et al. [15] analyze resource contention when
sharing resources in virtualized environments. They focus
on analyzing cache and core effects.

8. CONCLUSION
Summary. We presented a measurement-based performance
prediction approach for virtualized storage systems. We
created optimized performance models based on statistical
regression techniques capturing the complex behaviour of the
virtualized storage system. We proposed a general heuristic
search algorithm to optimize the parameters of regression

293

techniques. This algorithm is not limited to a certain domain
and can be used as a general regression optimization method.
We applied our optimization approach and created perfor-
mance models based on systematic measurements using four
regression techniques: LRM, MARS, CART, and Cubist. We
evaluated the models in different scenarios to assess their
prediction accuracy and the improvement achieved by our
optimization approach. The scenarios comprised interpola-
tion and extrapolation scenarios as well as scenarios when
the workload is distributed on multiple virtual machines. We
evaluated the models in a real-world environment based on
IBM System z and IBM DS8700 server hardware. In the
most typical scenario, the interpolation ability of the models
were excellent with our best models having less than 7%
prediction error for MARS and less than 8% for Cubist. The
extrapolation accuracy was promising. Except for through-
put predictions of 1 KB and 2 KB requests, the prediction
error of our best model Cubist was always less than 16%.
Furthermore, using our models we were able to successfully
approximate the performance if the workload is distributed
on two and three virtual machines. The average prediction
error of both MARS and Cubist was less than 20% in most
scenarios. Finally, our optimization process showed to be cru-
cial and reduced the prediction error by 16%, 66%, and 74%
for Cubist, MARS, and CART, respectively, with statistical
significance.

Lessons Learned. i) Our performance modeling approach
was able to extract powerful prediction models. For inter-
polation and extrapolation scenarios, the models showed to
have excellent prediction accuracy. ii) Even if the workload
is distributed on several virtual machines, the performance
models are able to approximate the expected performance
in most cases. iii) Our optimization process showed to be
key for the prediction accuracy of the models and achieved
statistically significant improvements for every considered
regression technique. iv) While LRM and CART showed
to perform well, MARS and Cubist consistently showed the
best fit and the best prediction accuracy.

Application Scenarios. Generally, our approach is targeted
at the analysis and evaluation of virtualized storage systems.
It is especially beneficial for complex systems and in cases
that prohibit explicit fine-grained performance models due
to, e.g., time constraints for the manual performance model
creation, calibration, and validation. Our automated perfor-
mance modeling approach can aid (e.g., the system developer)
to measure the system once and extract a performance model
that represents the environment. This model can be used in
different scenarios (e.g., by customers) to assess the system
characteristics and evaluate deployment decisions.

9. ACKNOWLEDGMENTS
This work was funded by the German Research Foundation
(DFG) under grant No. RE 1674/5-1 and KO 3445/6-1. We
especially thank the Informatics Innovation Center (IIC)6

for providing the system environment of the IBM System z
and the IBM DS8700.

10. REFERENCES
[1] I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija.

An analysis of disk performance in VMware ESX server virtual
machines. In WWC-6, 2003.

6
http://www.iic.kit.edu/

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37:164–177, 2003.

[4] L. Breiman. Random Forests. Machine Learning, 45, 2001.
[5] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen.

Classification and Regression Trees. The Wadsworth and
Brooks-Cole statistics-probability series. Chapman & Hall,
1984.

[6] D. Bruhn. Modeling and Experimental Analysis of Virtualized
Storage Performance using IBM System z as Example. Master’s
thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany,
2012.

[7] J. S. Bucy, J. Schindler, S. W. Schlosser, G. R. Ganger, and
Contributors. The DiskSim Simulation Environment -
Version 4.0 Reference Manual. Carnegie Mellon University,
Pittsburgh, PA, 2008.

[8] B. Dufrasne, W. Bauer, B. Careaga, J. Myyrrylainen,
A. Rainero, and P. Usong. IBM System Storage DS8700
Architecture and Implementation.
http://www.redbooks.ibm.com/abstracts/sg248786.html, 2010.

[9] J. H. Friedman. Multivariate Adaptive Regression Splines.
Annals of Statistics, 19(1):1–141, 1991.

[10] A. Gulati, C. Kumar, and I. Ahmad. Storage workload
characterization and consolidation in virtualized environments.
In VPACT ’09.

[11] P. Harrison and S. Zertal. Queueing models of RAID systems
with maxima of waiting times. Performance Evaluation,
64:664–689, 2007.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer Series in Statistics. Springer, 2nd edition, 2011.

[13] M. Hauck, M. Kuperberg, N. Huber, and R. Reussner. Ginpex:
deriving performance-relevant infrastructure properties through
goal-oriented experiments. In QoSA-ISARCS ’11.

[14] N. Huber, M. von Quast, M. Hauck, and S. Kounev. Evaluating
and Modeling Virtualization Performance Overhead for Cloud
Environments. In CLOSER ’11.

[15] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and
D. Newell. VM3: Measuring, modeling and managing VM
shared resources. Computer Networks, 53:2873–2887, 2009.

[16] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu. An Analysis of Performance Interference Effects in
Virtual Environments. In ISPASS ’07.

[17] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and
P. Kilpatrick. Performance Models of Storage Contention in
Cloud Environments. SoSyM, 2012.

[18] M. Kuhn, S. Witson, C. Keefer, and N. Coulter. Cubist Models
for Regression. http://cran.r-project.org/web/packages/
Cubist/vignettes/cubist.pdf, 2012. Last accessed: Oct 2012.

[19] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta.
Modeling Virtualized Applications using Machine Learning
Techniques. In VEE ’12.

[20] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Analytical
and Simulation Modelling of Zoned RAID Systems. The
Computer Journal, 54:691–707, 2011.

[21] E. K. Lee and R. H. Katz. An analytic performance model of
disk arrays. SIGMETRICS Perform. Eval. Rev., 21(1), 1993.

[22] P. Mell and T. Grance. The NIST definition of cloud
computing. National Institute of Standards and Technology,
53(6):50, 2009.

[23] Q. Noorshams, S. Kounev, and R. Reussner. Experimental
Evaluation of the Performance-Influencing Factors of
Virtualized Storage Systems. In EPEW ’12, volume 7587 of
LNCS. Springer, 2012.

[24] J. R. Quinlan. Combining Instance-Based and Model-Based
Learning. In ICML ’93.

[25] J. R. Quinlan. Learning with Continuous Classes. In AI ’92.
World Scientific.

[26] RuleQuest Research Pty Ltd. Data Mining with Cubist.
http://rulequest.com/cubist-info.html, 2012. Last accessed:
Oct 2012.

[27] The R Project for Statistical Computing.
http://www.r-project.org/, 2012. Last accessed: Oct 2012.

[28] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and
G. R. Ganger. Storage Device Performance Prediction with
CART Models. In MASCOTS ’04.

294

