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ABSTRACT
Performance is crucial for the success of an application. To
build responsive and cost efficient applications, software en-
gineers must be able to detect and fix performance prob-
lems early in the development process. Existing approaches
are either relying on a high level of abstraction such that
critical problems cannot be detected or require high man-
ual effort. In this paper, we present a novel approach that
integrates performance regression root cause analysis into
the existing development infrastructure using performance-
aware unit tests and the revision history. Our approach is
easy to use and provides software engineers immediate in-
sights with automated root cause analysis. In a realistic
case study based on the change history of Apache Commons
Math, we demonstrate that our approach can automatically
detect and identify the root cause of a major performance
regression.

Categories and Subject Descriptors
C.4 [Performance of Systems]; D.2.5 [Software Engi-
neering]: Testing and Debugging; D.2.8 [Software Engi-
neering]: Metrics—performance measures

General Terms
Measurement, Performance

Keywords
Performance Regression, Root Cause Isolation

1. INTRODUCTION
Despite a growing awareness for the importance of soft-

ware quality, performance evaluation is still postponed to
late development stages (the “fix-it-later” approach [32]).
Performance evaluation is still a manual and time-consuming
task. Software engineers need broad knowledge and exper-
tise about the various tools and techniques to analyse the
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performance of their application. The conducted case stud-
ies of [35, 34] show that comparing to functional bugs, per-
formance bugs are more challenging and require experienced
software engineers and more code changes to fix.

Due to the high efforts required and the missing experi-
ence, software engineers defer performance tests as far as
possible. But if a performance problem is found after de-
ployment (usually by customers) it would be too late to fix
it efficiently. Zimran and Butchart already showed that the
integration of performance engineering into software devel-
opment improves performance when applied early [36]. In
contrast, the costs for fixing problems grow heavily the later
they are discovered [10, 11].

Today in software development, many teams contribute
to the code base of an application. Unit tests are written to
validate the functionality of development artifacts. Revision
control systems are employed to manage code artifacts and
merge changes in order to enable the development teams
to simultaneously contribute to the code base. Automated
build infrastructure immediately notifies software engineers
when a build is broken after changes have been applied. Per-
formance regression testing is also an established discipline
with many facets. Standard performance regression tests
are specific for an early defined scenario. Software engi-
neers create tests for the scenario which are then executed
continuously. On the unit test level, software engineers are
provided with tools like ContiPerf [2] or JUnitPerf [8]. Both
tools build on existing JUnit [7] tests to evaluate the per-
formance whenever a build is performed. However, both
tools lack support for root cause analysis. In consequence,
software engineers still have to identify the responsible re-
vision which means, depending on the revision history, one
or more revisions have to be tested for the occurrence of
the performance regression. Thereafter, software engineers
often create and run problem specific performance tests and
manually investigate the functionality in the identified revi-
sion in order to find the root cause.

Software Performance Engineering (SPE) provides guide-
lines and approaches for evaluating software performance
throughout the development process. Approaches for model-
driven performance analysis allow software architects to cre-
ate architectures that can satisfy their performance require-
ments. Since many performance problems are caused by
low-level implementation details, they cannot be detected
in high-level architecture models which miss the necessary
details. Continuous performance tests during development
are needed to identify problems that are caused by low level
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details. Load tests validate the performance of the system
as a whole. However, they are usually executed late (e.g.
just before a product is shipped) and provide no support for
tracking the performance throughout the development pro-
cess. Specific regression benchmarks [13, 16, 15] built for
a specific problem, are proven to be useful to identify per-
formance problems. While this approach provides impor-
tant insights, it cannot be easily applied to a broader range
of products. Automatic detection of performance problems
and root cause analysis in load tests using statistical process
control charts for performance problem detection and root
cause analysis have been presented in [25] but require fur-
ther research. Nevertheless, the authors show that in most
cases automation reduces the root cause analysis time by
about 90 percent [25]. Identification of performance bugs
(not only performance regression problems) by monitoring
deployed applications and providing the information to soft-
ware engineers helps in finding the root causes [23]. How-
ever, load testing cannot be applied during development
when no running application is available. None of these ap-
proaches provide continuous development-time root cause
analysis by making use of unit tests and the revision history
of the system under development.

In this paper, we propose a novel approach called PRCA
(Performance regression Root Cause Analysis) for automated
root cause analysis of performance regressions. PRCA uses
unit tests to continuously monitor the application during the
development phase, detects performance regressions, and
identifies the revision in the history in which the perfor-
mance regression was introduced. Thereafter, it isolates
the root cause with systematic performance measurements
based on dynamically extracted call tree information of unit
tests. Our approach aims at ease of use and immediate
insight for software engineers. We build on existing and
commonly used technologies, such as JUnit [7] for unit test-
ing and Git [4] or Subversion [9] as revision control systems
known to software engineers. The performance tests can be
easily integrated in the development infrastructure and their
execution requires no further effort from software engineers.
This approach allows us to automatically isolate the root
cause of performance regressions in many cases.

We apply our approach to the revision history of Apache
Commons Math [1], an open source math library, with the
goal of demonstrating that PRCA can isolate the root cause
of a known performance regression that took more than 14
month to be resolved. As a result, PRCA correctly identified
the root cause of the performance regression.

Overall, we make the following contributions:

• We introduce an algorithm called PRCA to identify
the root cause of a performance regression. The al-
gorithm combines performance-aware unit tests with
the revision history of the revision control system to
isolate the problem’s root cause as far as possible.

• We demonstrate that PRCA can isolate the root cause
of a performance regression successfully.

The paper is structured as follows: In Section 2, we give
an overview of our approach. In Section 3 we discuss our em-
ployed performance regression detection approach. In Sec-
tion 4 we present our performance regression root cause anal-
ysis approach including bisection, call tree analysis, change
correlation and software engineer feedback. We demonstrate
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Figure 1: Overview of the PRCA approach

that our approach identifies the root cause of a major perfor-
mance regression in Section 5. We discuss our approach in
Section 6 with potential future work, and present the related
work in Section 7. Section 8 concludes the paper.

2. OVERVIEW
The main goal of our approach is twofold: to automati-

cally identify performance problems as early as possible and
to support software engineers with root cause analysis of the
problems in order to facilitate a swift and efficient problem
resolution.

To achieve this goal, PRCA combines the concepts of re-
gression testing, bisection and call tree analysis to detect
and provide performance regression root cause analysis as
early as possible. The idea is to have the approach tightly
integrated into the existing development infrastructure for
continuous integration and regression testing. The continu-
ity of performance tests allows identifying problems early.
The close integration with the development infrastructure
simplifies the usage of performance detection method.

The approach assumes the existence of two essential el-
ements in the development environment: (a) unit tests as
important artifacts of the target system that indirectly iden-
tify the main functionalities of the system, and (b) a code
repository that offers change graphs of the artifacts of the
system. Hence, the approach is applicable to any Java-based
software system that has a proper set of unit tests and its
source code is maintained on a revision control system.

Figures 1 and 2 provide an overview of PRCA. At regu-
lar intervals, PRCA fetches the latest revision of the soft-
ware system from the repository, instruments the tests in
unit test classes, runs all tests (with repetition) and gath-
ers measurements on performance metrics of interest (step
1). For every test in unit test classes, it then compares the
measurement results with the previous measurements done
at the last performance test (step 2). If a performance re-
gression is detected for any test, PRCA retrieves the change
history graph from the revision control system and, per-
forming a bisect algorithm, identifies one of the (potentially
many) changes that introduced the performance regression
(step 3). In the next step, the methods called by the affected
test are instrumented, the test is executed and a call tree an-
notated with performance data is produced. The annotated
call tree is then analyzed to identify the methods that con-
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Figure 2: The PRCA process

tribute to the performance regression (step 4). The result of
the analysis is then reported to the software engineer (step
5).

In order to achieve the best results, we assume that for the
components that have performance requirements, the unit
tests accompanying the source code are performance-aware
unit tests. We define performance-aware unit tests as unit
tests that are developed with performance requirements in
mind. For example, a unit test for a component that com-
putes the critical path of a graph, may test the component
with graph sizes of 1, 5, and 10, focusing only on the graph
structure. If the component is expected to be used, in the
target application, with graphs of size 50 to 100 nodes, a
performance-aware unit test will either test the component
for larger graph sizes (such as 30, 60, and 120), or will have
an explicit test for at least one large graph size (e.g., size
50) in order to test the component under a “typical” load.

For regression detection (step 2 of Figure 2), we need to
properly define what is considered as a performance regres-
sion. In Section 3, we briefly discuss various methods of
regression detection considered for this approach.

In order to isolate the change in the repository (step 3),
we need an efficient strategy to identify the change that
introduced the regression. Running performance tests is a
time and resource consuming task. Each performance test
may require a warm up time and many repetitions in order
to achieve stable and reproducible results. As a consequence,
performance tests cannot be executed with every build. For
the scope of this paper, we assume that performance tests
are run in longer but regular intervals (e.g., weekly). If a
regression is detected, there may be a long history of changes
made to the application. In this step, we apply a variation of
the Git bisection algorithm [3] to identify the change(s) that
introduced the regression. We discuss this topic in Section 4.

For the call tree analysis (step 4), our approach automat-
ically instruments the methods that are called by the test
(and that are part of the application or component interface)
and systematically searches for increases in response times
(Section 4). It then performs a breath first search that in-
vestigates the methods with the largest increase in response
time. The measurements are done on both revisions the new
and the changed one. If the implementation of a method has

been changed compared to the original revision, we consider
this method as the root cause of the regression problem.

3. REGRESSION DETECTION
In this work, we consider a performance regression as a sig-

nificant increase of the response time of a tested method. In
detecting regressions based on measurements, we are facing
the challenge to report regressions that are relevant in the
application context and valuable for the software engineers
in improving the performance of the software. Therefore, we
have to avoid reporting irrelevant or insignificant regressions
(false positives) or miss a critical regression (false negatives).
The balance here is to apply a meaningful regression strategy
that deals with noise and also distinguishes between minor
and major regressions. Existing approaches employ either
some kind of a threshold [18, 22, 25] (derived or specified)
or historic data [13, 28] each can be considered as a baseline
acting as comparison counterpart. Lee et al. [25] state that
the main issues in regression detection include the determi-
nation of the baseline of performance of the system under
test and the deviation from the baseline which is considered
as performance regression. PRCA includes no contribution
in the field of performance regression testing. We consider
the regression detection part as an extension point for future
research. Our approach can be enhanced with automated
generation of parameterized unit tests [19], test input se-
lection which maximizes resource consumption in order to
find performance problems [21] and Stochastic Performance
Logic formulas [12] to enable software engineers expressing
performance requirements. This could reduce the burden
of providing performance-aware unit tests for software engi-
neers.

In PRCA, we currently employ statistically rigorous per-
formance evaluation after the work of Georges et al. [20]
for performance regression detection. Since errors in exper-
imental measurements affect the accuracy of the results, we
employ a stable measurement environment to avoid that sys-
tematic errors introduce a bias into the measurements. Our
stable measurement environment is a hardware platform and
Java Virtual Machine (JVM) implementation that remains
unchanged and is dedicated to performance testing. We run
a unit test multiple times obtaining stable measurements in
the measurement environment for a certain revision. We
do not exclude JIT (re)compilation overhead from our per-
formance measurements because we observed that the first
run does the compilation and the performance of subsequent
runs suffer less from variability due to JIT (re)compilation.
We use the Analysis of Variance (ANOVA) to compare the
response time distributions of two revisions. Our decision to
use ANOVA is based on the suggestion of Georges et al., who
propose ANOVA as a statically rigorous method to compare
alternatives wrt. performance: “Also, ANOVA assumes that
the errors in the measurements for the different alternatives
are independent and Gaussian distributed. ANOVA is fairly
robust towards non-normality, especially in case there is a
balanced number of measurements for each of the alterna-
tives.” [20] After applying an ANOVA test PRCA can con-
clude if there is a statistically significant difference between
the two samples that is a performance regression. Based on
a series of experiments, we choose a confidence level of 99%
as suitable to deal with false positives and false negatives
in most cases. The termination criteria of the unit test run
repetition can either be a fixed number of repetitions or a
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Figure 3: Regression detection strategy example.
Category separation is indicated by the horizontal
dashed line.

certain confidence level. While confidence levels are more
appropriate, it is unclear how many repetitions are actually
necessary. In our case studies, we repeated each test run 50
times in order to achieve stable results based on our obser-
vation that 50 repetitions with a confidence level of 0.95 can
result in a relative measurement error of less than 10% for
larger response times (>100 ms). However, this setting is
very case specific and needs to be considered carefully.

Furthermore, not every performance degradation is a ma-
jor performance regression that must be corrected. To sup-
port software engineers in understanding the importance of a
regression and minimize false positives, we employ a regres-
sion detection strategy that classifies performance degrada-
tion into minor and major regressions. The classification
uses categories (thresholds) as baseline for major perfor-
mance regression detection and previous measurements as
baseline for minor performance regression detection. Cate-
gories span a range defining an interval for response time;
for example, performance categories “fast”, “medium” and
“slow” can be defined (cf. Figure 3). Methods are auto-
matically classified based on the measured response time
during the first test execution. PRCA reports a warning
if it is not the fastest category from a performance per-
spective. Software engineers can change the assignments
as needed. The defined categories act as baselines indicated
by the dashed horizontal line in Figure 3. With evolving
revisions our approach then reports a major performance
regression if the requirements of the assigned category are
not satisfied. For example, the changes applied in revision e
in Figure 3 change the category of the tested method from
“fast” to “medium” leading to a major regression. In con-
trast, if the category’s requirements are satisfied but historic
data comparison shows a significant performance regression
(cf. revisions a and b in Figure 3), PRCA reports a mi-
nor performance regression. The strategy enables software
engineers to easily distinguish between minor and major per-
formance regressions and to select only crucial performance
regressions for further problem diagnosis. The advantage is
that a manually specified threshold is not needed and the
risk of detecting a performance regression late is reduced.
Furthermore, it overcomes the lack of knowledge software
engineers may have particularly with regard to the accept-
able response time.

4. ROOT CAUSE ANALYSIS
Our problem diagnosis approach is partitioned into two

steps: bisection and call tree analysis. Within the bisection
step, we systematically evaluate the performance of revisions
in the repository in order to identify the change that leads
to the performance regression. The call tree analysis step is
then applied to find the root cause of the problem. There-
fore, we extract a performance annotated call tree (serv-
ing as a performance behaviour model) out of the tested
method and apply our analysis to systematically investigate
the tested methods call tree.

4.1 Bisection
Detecting the presence of a performance regression alone

within a performance test period is not sufficient, especially
when there are many revisions in the given period. When a
performance regression is detected, it would be desirable to
know which change introduced the regression. Hence, iden-
tifying the responsible change of a performance regression is
the first step of our proposed problem diagnosis approach.
It supports and limits the problem diagnosis effort by en-
abling the software engineer(s) to focus on the responsible
change rather than the whole history of the changes within
the test period.

In this section, we describe our approach of identifying
the responsible change in the revision control system that
lead to a performance regression. The approach is based on
the Git bisect functionality [3]. This feature of Git offers a
binary search over the change history and enables software
engineers to identify the change that introduced a problem.
The bisection process can also be automated by configuring
Git bisect to launch a script or command at each bisection
step checking if the current change is already affected by the
regression.

We adapt the bisection algorithm [3] of Torvalds and Ha-
mano to find the best intersection point in each step. Change
histories in general can be described as directed acyclic graphs
(DAG). When a performance regression is detected between
a pair of changes (cs, ce), where time(cs) < time(ce), the
actions performed by the algorithm can be summarized as
follows:1

1. Filter the DAG for relevant revisions and keep only the
nodes that are ancestors of the change ce, excluding cs
and ancestors of cs.

2. Compute and associate the number of ancestors ai to
each node ci starting with the leaves of the DAG. This
is the first step to compute a weight for each node in
the DAG.

3. Compute the corresponding weight

wi = min(ai + 1, N − (ai + 1)) (1)

and associate it with node ci. Here, N is the number
of nodes in the filtered DAG.

4. The next intersection point is the change ci with the
highest weight wi. We call this change cc.

We then apply our regression detection strategy of Sec-
tion 3 to examine the triple of changes (cs, cc, ce). We first
check the pair (cs, cc) to see if cc includes a performance

1We assume that there are no skipped changes.
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Figure 4: Bisection steps on a change graph

regression. To do so, we test the hypothesis that the mean
of the response times µcs is equal to that of µcc . Therefore,
we check if the null hypothesis

H0 : µcs = µcc (2)

cannot be rejected. If the response times do not differ sig-
nificantly or if they differ but µcs > µcc , we assume that
cc is not affected by a performance regression and continue
the bisection method with the pair (cc, ce). Otherwise, cc
includes a performance regression and we continue the bi-
section method with the pair (cs, cc). The method continues
until for a given input pair of (cs, ce), we have only the nodes
cs and ce in the graph. We then report ce as the change re-
sponsible for the performance regression.

Figure 4 shows an example of applying bisection to a
change graph for the pair of changes (A,H). At each step,
the dotted grey line indicates the filtered graph. Assum-
ing that a detectable performance regression is introduced
in change F , the regression is propagated into changes G
and H (marked with red circles in Figure 4(a)). Comparing
changes H and A, our method detects a performance re-
gression at H. At the first step of bisection, node E has the
highest weight of 3 = min(3, 4) in the filtered graph, so E is
selected as the next intersection point. Since E does not in-
troduce a performance regression compared to A, bisection
is repeated for the pair of (E,H). The graph is filtered (Fig-
ure 4(b)) and F (with a weight of 2) is selected as the next
intersection point. Node F shows a performance regression
compared to E, hence bisection continues for the pair (E,F )
with only the nodes C and F remaining in the filtered graph
(Figure 4(c)). Node C does not show a regression compared
to E, so the bisection continues with the pair (C,F ) and
since there would be no more node in the graph except C
and F , node F is reported as the node responsible for the
introduced regression.



 



 















Figure 5: Call tree with performance annotations

Finding the next intersection point is the first step of the
bisection process within our approach. The second step is to
examine the change by running performance regression tests
using our regression detection strategy described in Section
3. In each bisection step, the source code of the change
is checked out and an automatic build is executed. In the
resulting executable any tested method is instrumented for
runtime monitoring. The corresponding unit tests are then
executed to gather response time measurements.

4.2 Call Tree Analysis
In this section, we present PRCA’s strategy for root cause

analysis using call trees. PRCA identifies methods in the call
tree and reports paths that are suspected to have caused the
performance regressions to software engineers. For this pur-
pose, PRCA examines the call trees of tested methods for
which performance regressions have been detected. Further-
more, we explain PRCA’s method for extracting call trees
annotated with performance data gathered through system-
atic measurements.

For root cause analysis, we employ a call tree with perfor-
mance annotations (cf. Figure 5). Methods are represented
as nodes (e.g., foo()) in the call tree. Each node contains
the signature of the method, a list of method calls and a se-
ries of response time measurements. Edges connecting two
nodes represent method calls (e.g. foo() calls bar()). The
edges are annotated with the number of calls (call count)
performed during the execution of the corresponding tests.
For example in Figure 5, fem() calls wug() 3 times.

PRCA extracts annotated call trees in two steps. In the
first step, we use a full instrumentation of the test case to
retrieve the structure of a call tree and the number of method
calls. In the second step, we extract performance data of
individual methods. This step requires many test executions
and a very selective instrumentation in order to produce
reliable performance data. In the following, we describe both
steps in more detail.

To extract the structure of the call tree (i.e., its nodes
and edges), we instrument all methods called during test
execution. The instrumentation is fully automated and per-
formed by PRCA requiring no manual intervention. For this
purpose, PRCA employs byte code weaving based on Javas-
sist [6, 14] and the monitoring possibilities of Kieker [31].
Java classes are loaded into a class pool, a copy of the byte
code is stored in a byte code repository and the monitoring
instructions are weaved into the byte code of the method(s)
before they are used. The original class, if already loaded
into the JVM, is replaced with the instrumented class us-
ing the HotSwap mechanism for class file replacement of the
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Java SDK. The byte code stored in the repository is later
used to undo the instrumentation. Based on the generated
trace data, PRCA can extract the structure of the call tree
including the number of calls from one method to another.
Because the call tree and the call count are not affected by
monitoring overhead, all data can be collected in a single
test execution.

However, the same approach is not suitable for gathering
the performance data. Response times can be strongly af-
fected by measurement overhead introduced by a full instru-
mentation. The instrumentation of one method can affect
the response time of another introducing systematic errors
which causes a bias in measurements affecting the accuracy
of the results [20]. For example, when doo() and fem() (cf.
Figure 5) are instrumented and monitored in the same test
run, the time required to execute the monitoring instruc-
tions in fem() are part of the response time of doo(). If this
is not considered, the overall regression detection can easily
be misleading. In addition, performance measurements have
to be reproducible and minimize potential disturbances.

To address these issues, PRCA breaks down the extrac-
tion of response times in multiple steps and repeats measure-
ments several times. In each step, PRCA instruments only
the methods on one level of the call tree. With this strat-
egy, PRCA minimizes disturbances as none of the methods
called by the instrumented method are monitored. For the
example in Figure 5, PRCA first instruments foo(), second
bar() and doo(), third fem(), and finally qux() and wug().
For each step, PRCA executes the test multiple times which
results in measurements m1, . . . ,mn for each method (cf.
Figure 5).

The goal of the call tree analysis is to identify paths in the
call tree with methods that are suspected to cause the perfor-
mance regression. For this purpose, the call trees with per-
formance annotations are extracted for the revisions where
a regression has been introduced. Figure 6 continues the
example introduced in Section 4.1. In this example, the
changes made from revision C to F introduced a regression.
To identify the methods that potentially cause the perfor-
mance regression (cf. fem() in Figure 6), PRCA compares
the nodes in the call tree of revision C with its counterpart
in revision F. For each pair of nodes, PRCA conducts an
ANOVA test for the response time measurements. Using a
breadth-first search, our approach looks for nodes with sta-
tistically significant differences between the measurements
of both revisions (e.g. foo(), doo() and fem()). Such nodes
are flagged and all methods called by them are evaluated
in the next step of the breadth-first search. If the ANOVA
test cannot conclude that there are statistically significant
differences in the response times of a method between the
two revisions, our algorithm does not further investigate it.
For example, this is the case for bar(), qux() and wug() in
Figure 6. Furthermore, if the call tree of a method changed
from one revision to the next and its response time increased
significantly, our call tree comparison will flag the method
as a candidate for the root cause of the regression. Since the
call trees of both revisions are different, our algorithm does
not further investigate it. After the breath-first search is
done, the flagged nodes point to the potential root cause in
the call tree (foo()→doo()→fem() in Figure 6). PRCA uses
the path and correlates it with the changes in the revision
control system.

foo()

bar() doo()

fem()

qux() wug()

foo()

bar() doo()

fem()

qux() wug()

✘

✘

✘

✓✓

Revision C Revision F

Figure 6: Example of call tree analysis. Methods
that are suspected to cause a performance regression
are marked with a cross.

4.3 Change Correlation
The goal of change correlation is to identify the meth-

ods in a path that are affected by changes that are sus-
pected to cause the performance regression. The challenge
here is to track down the changes included in a revision
to the methods establishing a path. The changes are pro-
vided by and can be queried from the revision control sys-
tem (e.g. Git). Without employing static code analysis, we
are only able to track down changes to class level. There-
fore, we extract the class name out of any node in a path
(e.g. in Java from the full qualified method name <package-
name>.<classname>.foo()). We then look up the changes
in the revision control system for the responsible revision to
check if there are any changes made to that class. Methods
that might be affected by changes are marked (cf. fem() in
Figure 6). This enables us to exclude methods of classes
that are unchanged from the feedback we give to the soft-
ware engineer.

4.4 Software Engineer Feedback
The goal of our approach is to support software engineers

in root cause analysis of performance regressions. The chal-
lenge of providing feedback on root cause analysis results
is the amount and complexity of the presented information.
Our goal is to provide self-explanatory feedback (cf. Fig-
ure 7) to software engineers that shows the starting point for
problem resolution without requiring deep knowledge (e.g.
in statistics). Following a lean approach, we hide the com-
plexity as much as possible. For a detected performance
regression, we show the name of the unit test and the test
method as well as the name of the tested method. We em-
ploy two figures to communicate the results of the root cause
analysis. We highlight the performance regression between
the two revisions (e.g. C and F ) as well as the categories.
The results of the call tree analysis are shown in a figure that
contains the call tree of the identified revision. The call tree
is similar to the one for revision F in Figure 6. Methods
that are suspected to cause the regression are highlighted.
Nodes that are correlated with changes are flagged with a
black dot (cf. fem() in Figure 7). The feedback includes all
necessary information to provide software engineers with a
well prepared starting point for problem resolution.

32



Regression
Test: PerfTestFoo.testFoo()
Tested Method: foo()

foo()

bar() doo()

fem()

qux() wug()

Revision F

re
sp

o
n

se
 t
im

e

revision

fa
st

F

C

m
ed
iu
m

sl
ow

Figure 7: Feedback given to software engineers.

5. CASE STUDY
In this section we look into a number of case studies that

validate the approach presented in this paper. We begin
with four synthetic experiments that cover four cases of a
performance regression (see Figure 9) and validate the re-
gression detection approach for each case. We then pro-
vide a summary of applying our method to a real-world sce-
nario, the Apache Commons Mathematics Library (Com-
mons Math) [1]. There, we utilized our call tree analysis
method to find the root cause of a performance regression
that was introduced in a certain revision of Apache Com-
mons Math.

5.1 Controlled Experiments
In order to demonstrate the validity of the regression de-

tection method, we applied our method to four well-defined
controlled experiments with artificial performance regres-
sions. With these experiments, we address the overarching
question:

Can PRCA identify the injected regressions as expected?
We defined each experiment around six consecutive re-

visions of a test system, namely revisions [r1 . . . r6], where
revision r1 represents the last point in the revision history
that performance regression testing was applied and revision
r6 is the latest revision in the repository when the current
performance regression test is being performed. Since the
goal is not to validate the already established bisection al-
gorithm, we assume a linear order of the changes in each
experiment. The system under test is an implementation
of the Fibonacci function, which allows us to simply focus
on and introduce changes in the response time. We assume
that the configuration of the system under test provides the
input value to the Fibonacci function, which can vary be-
tween revisions. The system comes with a unit test that
reads the input value from the configuration file and runs
the Fibonacci function for that particular value.

At every performance test, we are facing one of the follow-
ing three cases: (i) performance is improved since the last
tested revision (Figure 8(a)), (ii) performance is almost the
same as the last tested revision with no significant change
(Figure 8(b)), even though performance oscillation may have
occurred between the two revisions which will not be de-
tected, (iii) performance is worsened between the current
revision and the last tested revision (examples in Figure 9).
For these experiments, we focus only on the latter case where
we have a significant performance regression between the two
tested revisions.

In order to simulate the performance change in a revision,

re
sp

o
n
se

 t
im

e

revision

(a)

re
sp

o
n
se

 t
im

e

revision

(b)

Figure 8: (a) Performance improved; (b) No perfor-
mance change detected
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Figure 9: Evaluation of the Bisection Method

we change the system configuration and increase or decrease
the input value to the Fibonacci function. The input value
is changed such that it results to a significant performance
change of the system. In the following sections, we describe
each experiment in detail.

Simple Regression
The purpose of this experiment is to validate detection of a
simple performance regression introduced at some point be-
tween revisions 1 and 6 (see Figure 9(a)). We simulate the
performance regression by increasing the input value in the
configuration at the fifth revision (r5). The null hypothesis
H0 : µr1 = µr6 is rejected during the performance regres-
sion test and the bisection starts. In the first bisection step
H0 : µr1 = µr3 is not rejected. The bisection continues until
the test H0 : µr4 = µr5 is rejected as a result of perfor-
mance regression. Hence, the bisection identifies r5 as the
responsible change (indicated by the arrow in Figure 9(a)).

Improvement and Regression
Next, we validate detection of a performance regression in-
troduced after a performance improvement (see Figure 9(b)).
We simulate a leading performance improvement in front of
a performance regression. Therefore, we decrease the value
of the input parameter at r3 before we use fault injection
to increase it in r4. The performance regression detection
rejects H0 : µr1 = µr6 and starts bisection. In the following
bisection steps H0 : µr1 = µr3 is rejected due to a per-
formance improvement, and H0 : µr3 = µr6 is rejected as
a result of a performance regression, so bisection continues
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with r3 and r6. In the last bisection step, H0 : µr3 = µr4 is
rejected due to performance regression and as a result, the
bisection identifies r4 as the source of performance regres-
sion.

The reverse of the story is also presented in Figure 9(c),
where a performance improvement (r5) follows a perfor-
mance regression (r4). The bisection method correctly de-
tects r4 as the source of regression.

Performance Oscillation
In the last experiment, we alternate performance regressions
and improvements to simulate an oscillating performance
(see Figure 9(d)). We use fault injection in revisions r3 and
r5 to decrease the performance. We reverse the fault injec-
tion in r4 to temporarily improve the performance. As a
result, both revisions r3 and r5 are introducing performance
regression. Through the bisection process H0 : µr1 = µr3 is
rejected and the bisection identifies r3 as responsible change
and the bisection ends. We will further discuss, in Section 6,
possible improvements to our method with respect to per-
formance oscillation.

5.2 Apache Commons Math
Apache Commons Math (henceforth called commons math)

is a lightweight mathematics and statistics library for Java
that addresses the common mathematical problems for which
a suitable solution is not available in the Java program-
ming language [1]. It is a small set of utilities that ad-
dress programming problems such as fitting a line to a set
of data points, curve fitting, solving system of linear equa-
tions, random number generation, and other miscellaneous
mathematical functions. With a focus on real-world appli-
cations, it is apparent that performance of the commons
math library in computing mathematical functions is of high
importance. Various sources maintain and publish perfor-
mance comparison of commons math against other available
libraries (see [5] for example).

On October 10th, 2010, a code modification submitted
to the commons math code repository (revision 1006301)
introduced a substantial performance regression in one of
the functions. The problem stayed hidden for 7 months until
it was first reported2 on May 16th, 2011. The resolution of
the problem took more than 14 months until it was finally
resolved on July 22nd, 2012.

There are two interesting aspects in this story: (a) the
performance regression introduced by the submitted code
stayed unreported for more than half a year; (b) it took more
than one additional year for the bug to be resolved. Our pro-
posed approach in this paper targets both of these aspects.
Continuous performance monitoring based on performance-
aware unit tests reveals performance issues early in the de-
velopment process, before allowing their causes to get lost in
the history of changes or their effects be propagated further
into other components. When a performance regression is
detected, our proposed call tree analysis method investigates
and reports the root cause of the problem, hence consider-
ably facilitating the problem solving process.

Assuming that performance-aware unit tests are avail-
able,3 we applied our approach to the commons math code
repository. We supposed a weekly performance regression

2 https://issues.apache.org/jira/browse/MATH-578
3We manually extended the unit tests with one that tests
the affected functionality of commons math.
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Figure 10: Performance Regression in Apache Com-
mons Math (2010)

routine performed every Monday morning at 00:00 that runs
all unit tests and monitors their performance. Applying this
method retrospectively to the commons math code reposi-
tory revisions in October 2010 we observe the performance
graph of Figure 10 for our performance-aware variation of
the DescriptiveStatisticsTest unit test that uses the trou-
bling function. The execution of all unit tests4 (including
repetition) took about 48 minutes for revision 1006301 and
30 minutes for revision 1004044. Our bisection method cor-
rectly detects a performance regression and identifies revi-
sion 1006301 as the cause of this regression. In this case, this
is the right-most revision in testing interval. The residual
distribution plots of the two revisions marked in the dia-
gram of Figure 10 are provided in Figure 11. Despite a few
outliers, the residuals in both plots are close to the straight
line indicating that random errors have a close to normal
distribution.

In the next step, PRCA applies the call tree analysis
method to find the root cause of the problem in revision
1006301. It instruments the methods that are called in the
test that introduced regression and identifies a regression in

DescriptiveStatistics.getPercentile(double)

in revision 1006301 compared to 100515. A breadth-first
analysis of the call tree (comparing the performance of the
methods between the two revisions) is continued until the
root cause of the regression is isolated to the call tree of
Figure 12. The problem appears to be originated from a
change in the following method:

Percentile.evaluate(double[], int, int, double)

The call tree analysis of PRCA detects that (a) the call tree
under the above method is changed in the problematic revi-
sion, and (b) the common parts of that call tree do not show
a performance regression. As a result, the call tree leading
to that method is reported as a potential cause of the intro-
duced performance regression. This analysis also matches
what happened in reality. The revision 1006301 introduced
a change in this method that caused the performance of the
method to decrease seriously for certain boundary cases.

6. DISCUSSION
There is no need to argue that the proposed combination

of automated detection and root cause analysis of perfor-

4Unit tests in folder src/test/java (excluding 3 tests that
we were not able to run properly with our tooling).
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Figure 11: Residual Distribution Plots
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Figure 12: The Problematic Call Tree in Apache
Commons Math Revision 1006301

mance regressions early in the software development process
can significantly reduce the costs of fixing performance issues
and maintaining the quality of the software. Automated re-
gression detection identifies performance issues as soon as
possible before they are hidden in the future changes to the
software. When a regression is detected, the proposed root
cause analysis then helps software engineers to focus on the
potential sources of the problem.

We have already applied the idea of continuous perfor-
mance regression testing and root cause analysis internally
at SAP. Over the course of one month, we detected a crucial
performance regression which would otherwise have stayed
hidden. Despite the encouraging results of applying the
method to internal projects and case studies, there are still
limitations and issues that require improvement. In the fol-
lowing, we briefly point out these limitations and discuss
potential solutions and future improvements.

Although one can apply the proposed method to any soft-
ware under development that has a proper set of unit tests,
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Figure 13: An example of unit test time distribution

regular unit tests are usually not enough to detect perfor-
mance regressions. For example, Figure 13 shows the dis-
tribution of unit test execution times of an internal project
at SAP. In this example, the majority of the tests are exe-
cuted in less than 0.1 milliseconds. The execution times for
these tests are too short to allow for a meaningful detection
of regressions. In most cases such as this example, regu-
lar unit tests focus only on functional testing with usually
the minimum set of test cases to test the functionality of
the components. In order to detect performance regressions
properly, our proposed method requires performance-aware
unit tests that test the system units not only for function-
ality, but also for cases that can potentially be critical for
the performance of the code in the target application con-
text. This also implies that the performance unit tests have
the right granularity and coverage to detect relevant perfor-
mance regressions. Of course, considering that the goal of
this approach is to mostly rely on the existing unit tests and
not to build specifically designed unit tests that target all
the performance-influencing parts of the code, there is no
guarantee that all performance regressions will be detected.

The proper definition of performance regression and the
development and evaluation of good heuristics for its detec-
tion are crucial for a broader applicability of performance
regression testing. The heuristics for regression detection
must minimize false positives (wrong alerts) and false neg-
atives (regressions going undetected) in order to be useful.
Software engineers quickly lose interest in performance re-
gression tests if the results are not reliable or they have to
provide too much additional information for the tests. In
this work, we used a performance regression detection strat-
egy based on historical data and categories. Although this
approach worked well in our scenarios, it still requires fur-
ther evaluation and refinements, such as conducting more
experiments with performance regression issues and a thor-
ough analysis of the results of fault positive and fault nega-
tive rates.

The current version of our framework has limitations in
detecting and properly reporting three cases of performance
regression:

1. Performance oscillations within a test period which
lead to similar performance at both ends of the pe-
riod are not detectable with our approach. If this is
the result of a performance regression introduced and
then resolved within the test period, it can be ignored.
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However, such an oscillation can be caused by a pair
of unrelated performance improvement and regression.
In such a case, it is desirable to be able to detect the
regression introduced in the code. We can reduce the
chance of such cases by having more frequent perfor-
mance regression tests (hence shortening the test pe-
riods). However, unless there are enough resources to
perform regression tests on every change submitted, we
cannot detect the performance regressions introduced
in such cases.

2. The second is the case of slow decay of performance
within a test period. Using our regression detection
strategy, we would ultimately detect such a decay, but
the root cause analysis would be difficult. Take the
example of Figure 14, in which the performance is de-
creasing slowly such that a performance regression is
detected between the two points of the test interval,
but the problem diagnosis method cannot identify a
single revision as the cause of the regression since the
mid point of the period does not introduce a signifi-
cant change in performance. In such cases, we would
like to report all the changes within the test period as
potential sources of performance regression.

3. The third limitation occurs when there is more than
one regression introduced within the test period. In
this case, we only report one change as the cause of
the overall performance regression. We would like to
improve our bisection algorithm such that once a per-
formance regression is detected for a testing period,
the algorithm would recursively identify and report all
the changes that introduce a performance regression
within the test period.

We consider the issues and ideas for improvements dis-
cussed in this section as topics of future work.

7. RELATED WORK
The approach presented in this paper combines perfor-

mance regression testing with automatic diagnosis of per-
formance problems. In the following, we discuss existing
work that addresses these aspects.

Only few approaches combine performance regression test-
ing with problem diagnosis and root cause analysis. Lee et
al. [25] present an approach for automatically detecting per-
formance anomalies in database management systems and
isolating their root cause. They developed a framework that
significantly reduces the effort of detecting and isolating per-
formance problems for database developers. The approach

uses established database benchmarks and profiling methods
to compare new commits to the most recent stable state. Lee
et al. share our goal of detecting performance problems early
and supporting software engineers in isolating the problem’s
root cause. However, their solution is highly specific to the
domain of database management systems and cannot eas-
ily be generalized. Mostafa and Krintz [28] developed an
approach to automatically identify differences in call trees
between two subsequent code revisions. The call tree can
also contain performance metrics and include them in the
tree comparison. While performance is considered, the au-
thors focus on tree comparison and try to identify changes
in the call tree (like added, removed or modified methods).
The most important challenges of performance regression
testing are not addressed.

Performance regression testing itself has been subject to
research for several years [13, 18, 29]. Nguyen et al. [29]
use statistical process control charts to analyze performance
counters across test runs to check for performance regres-
sions. Bulej et al. [13] use specialized regression benchmarks
to detect performance regressions in application middleware.
Specific regression benchmarks provide important insights,
but cannot be easily applied to a broader range of prod-
ucts. Foo et al. [18] present an automated approach for
performance regression testing to uncover performance re-
gressions in situations where software performance degrades
compared to previous releases. Performance metrics of a
software system are monitored and compared to a set of
estimated correlated metrics extracted from previous per-
formance regression testing results. None of the approaches
supports the root cause isolation of performance regressions.

In addition, the performance of a software system depends
on its input data [24]. Thus, it is important to choose the
input data for test cases well. Existing approaches [19, 21]
support software engineers in choosing good input data for
functional and performance tests. Grechanik et al. [21] apply
machine learning techniques to find the input set which max-
imizes resource consumption in order to increase the proba-
bility of finding performance problems. Fraser and Zeller [19]
present an approach for automatic generation of parameter-
ized functional unit tests. Such approaches complement our
work. The combination of input data generation with our
approach can increase the efficiency of performance problem
detection and root cause analysis.

Existing approaches that focus on performance problem
detection during runtime [17, 26, 27, 30, 33] are using mon-
itoring techniques to track a software system’s performance
and to gather measurement data for performance analysis.
Even though these approaches can detect performance prob-
lems in a productive system and sometimes diagnose their
root causes, they can only be a last resort. Detecting per-
formance problems during operation is way too late to solve
them efficiently.

8. CONCLUSIONS
In this paper we presented PRCA, a novel approach that

utilizes unit tests and revision history graphs for automatic
detection and root cause analysis of performance problems
throughout the development process. The approach pre-
sented here builds on (i) a hybrid regression detection strat-
egy, (ii) bisection over revision change graphs, and (iii) anal-
ysis of performance annotated call trees, to provide a pro-
cess of continuous performance regression root cause anal-
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ysis. We evaluated different heuristics for regression detec-
tion in order to minimize false positives. We extended Git
bisection algorithm to identify the changes that introduced
a performance problem. Finally, we designed an approach
to systematically analyze call trees to identify the methods
and call graphs that most likely caused the performance re-
gression.

Once our methods are integrated in the development in-
frastructure used at SAP, software engineers can use familiar
tools and techniques to write performance-aware unit tests.
The tests are automatically executed on a regular basis (e.g.
during integration builds). If a regression is detected, PRCA
automatically provides information on which change caused
the regression and which methods are involved. Using per-
formance regression testing, software engineers can detect
performance problems early and fix them swiftly. We have
validated and demonstrated the application of PRCA us-
ing control experiments and Apache Commons Math as a
real-world example.

Based on the promising results of our case study, we plan
to apply our approach inside SAP. To achieve this, we need
to improve the implementation of PRCA toward offering it
as a stand-alone tool and extending its supported perfor-
mance metrics. In many cases, throughput and resource
consumption are also needed to be monitored in addition to
the response time.
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