
Modeling Performance of a Parallel Streaming Engine:
Bridging Theory and Costs

Ivan Bedini Sherif Sakr Bart Theeten Alessandra Sala Peter Cogan
Alcatel-Lucent Bell Labs, Ireland and Belgium

{firstname.lastname}@alcatel-lucent.com

ABSTRACT
While data are growing at a speed never seen before, par-
allel computing is becoming more and more essential to
process this massive volume of data in a timely manner.
Therefore, recently, concurrent computations have been re-
ceiving increasing attention due to the widespread adoption
of multi-core processors and the emerging advancements of
cloud computing technology. The ubiquity of mobile de-
vices, location services, and sensor pervasiveness are exam-
ples of new scenarios that have created the crucial need for
building scalable computing platforms and parallel architec-
tures to process vast amounts of generated streaming data.
In practice, efficiently operating these systems is hard due
to the intrinsic complexity of these architectures and the
lack of a formal and in-depth knowledge of the performance
models and the consequent system costs. The Actor Model
theory has been presented as a mathematical model of con-
current computation that had enormous success in practice
and inspired a number of contemporary work in this area.
Recently, the Storm system has been presented as a real-
ization of the principles of the Actor Model theory in the
context of the large scale processing of streaming data. In
this paper, we present, to the best of our knowledge, the
first set of models that formalize the performance character-
istics of a practical distributed, parallel and fault-tolerant
stream processing system that follows the Actor Model the-
ory. In particular, we model the characteristics of the data
flow, the data processing and the system management costs
at a fine granularity within the different steps of executing a
distributed stream processing job. Finally, we present an ex-
perimental validation of the described performance models
using the Storm system.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiple
Data Stream Architectures (Multiprocessors)— Parallel pro-
cessors; C.1.4 [Computer Systems Organization]: Par-
allel Architectures—Distributed Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

Keywords
Distributed Stream Processing Engine, Performance Model,
Measurement

1. INTRODUCTION
Today’s era of Big Data is witnessing a continuous in-

crease of user and machine connectivity that produces an
overwhelming flow of data which demands a paradigm shift
in the computing architecture requirements and large-scale
data processing mechanisms. Therefore, concurrent com-
putations have been receiving increased attention due to
widespread adoption of multi-core processors and the emerg-
ing advancements of cloud computing technology. For exam-
ple, the MapReduce framework [12] has been introduced as
a scalable and fault-tolerant data processing framework that
enables the processing of a massive volume of data in paral-
lel on clusters of horizontally scalable commodity machines.
By virtue of its simplicity, scalability, and fault-tolerance,
MapReduce is becoming ubiquitous, gaining significant mo-
mentum within both industry and academia. However, the
MapReduce framework, open sourced by the Hadoop1 Imple-
mentation, and its related large-scale data processing tech-
nologies (e.g. Pig2 and Hive3) have been mainly designed for
supporting batch processing tasks but they are not adequate
for supporting real-time stream processing tasks [26]. The
ubiquity of mobile devices, location services, sensor perva-
siveness and real-time network monitoring have created the
crucial need for building scalable and parallel architectures
to process vast amounts of streamed data.

In general, distributed stream processing systems support
a large class of applications in which data are generated from
multiple sources and are pushed asynchronously to servers
which are responsible for processing. Therefore, stream pro-
cessing applications are usually deployed as continuous jobs
that run from the time of their submission until their can-
cellation. The Actor Model [20] is a mathematical model of
concurrent computation which has enjoyed enormous suc-
cess and has inspired a number of systems in this area.
Today, this field is mature and provides the proper foun-
dation to operate a horizontally scalable system for mas-
sive parallel computations of big data [18, 19]. Recently,
Twitter has open-sourced Storm4 as a parallel, distributed
and fault-tolerant system which is designed to fill the gap of
providing a platform that supports real-time processing of

1http://hadoop.apache.org/
2http://pig.apache.org/
3http://hive.apache.org/
4https://github.com/nathanmarz/storm/wiki

173

large scale streaming data on clusters of horizontally scalable
commodity machines. In principle, the Storm system rep-
resents a realization of all the principles of the actor model
in the context of concurrent processing on streaming data.
In particular, it relies on the idea of creating and intercon-
necting interactive universal entities, called Actors, which
are responsible for executing tasks concurrently and asyn-
chronously while communicating with each other through a
message-passing protocol [3, 8].

Contributions. In practice, many researchers and en-
gineers are currently increasingly shifting to parallel and
distributed systems for large-scale data precessing. How-
ever, the lack of expertise and in-depth understanding of
the theoretical foundation of this area interferes with the ef-
ficient analytic design or with the proper resource allocation
strategies to achieve expected performance [7, 11]. In or-
der to tackle this challenge, we introduce, to the best of our
knowledge, the first set of performance models that formal-
ize the performance characteristics of an Actor Model based
distributed stream processing engine, i.e. Storm. This per-
formance model can play a fundamental role in guiding the
user of these systems with the understanding of the system
costs which are independent of the executed jobs; the level
of parallelization necessary to efficiently execute a particular
job; and to better predict the latency, throughput and phys-
ical resource costs. In particular, we formalize three main
performance cost components as follows:
• Data Flow Costs: This component captures informa-

tion about the amount of data flowing (transmitted)
through the different processing steps of a distributed
stream processing job.
• Data Processing Costs: This component captures in-

formation about the execution time of the different
processing steps within a distributed stream process-
ing job.
• System Management Costs: This component captures

information about the system communication overhead
between the different components of a distributed stream
processing job for ensuring the reliability and fault tol-
erance during the execution steps.

We use these components to model the general performance
characteristics of an Actor Model based implementation of a
distributed stream processing system. Finally, we leverage
these models to drive our experimental evaluations within
the Storm framework.

RoadMap. The remainder of this paper is organized
as follows. Section 2 defines the preliminary concepts used
in this paper about the Actor Model and the Storm system.
We present the modelling of the data flow costs in Section 3.
The modelling of the data processing costs is presented in
Section 4 while the modelling of the system management
costs is presented in Section 5. The results of our exper-
imental evaluation are presented in Section 6. We discuss
the related work in Section 7 before we finally conclude the
paper in Section 8.

2. BACKGROUND AND MOTIVATIONS
This section introduces the fundamental concepts of the

Actor Model which are used in this paper and provides an
overview of the Storm system which is used as our case study
for implementing distributed stream processing jobs using
the concurrent computations principles of the Actor Model.

2.1 Actor Model Theory
The Actor Model is one of the first computational models

that proposes substantial differences from the Turing Ma-
chine Model [20]. In particular, the fundamental difference
with the Turing Model is the absence of global states in the
Actor Model. Indeed, the Turing Model makes use of global
states that have also been described by McCarthy and Hayes
in 1969, as “the complete state of the universe at an instant
of time”. The Actor Model is defined under a fundamen-
tally different concept of “reacting to input events”. These
events are messages that flow through Actors and trigger re-
sponses/computations when computed in some Actor, there-
fore Actors are based on the concept of Partial ordering [22].
Since the arrival orderings are indeterminate, they cannot be
deduced from prior information based on mathematical logic
alone. This has been referred to as indeterminacy in con-
current computation by Hewitt [17]. Specifically, this logic
evolved into the concept of unbounded nondeterminism in
which the possible delay in serving a request can become
unbounded given the arbitration of contention for shared re-
sources. However, an important property is still guaranteed
that “the request will eventually be serviced”. In principle,
the fundamental concepts of the Actor Model focuses on in-
terpreting everything as an Actor entity. The concurrency
model introduced with the Actor Model is based on three
fundamental concepts:

1. The Actors are the computational units whereby they
execute a computation on some input and generate an
output.

2. Actors’ input and output are realized through the con-
cept of messages that are defined as the communication
unit for exchanging data among Actors.

3. Actors’ communication channels are realized through
buffers or queues from where Actors read and send the
data to process. In particular, Actors communicate
with each others via simple primitives such as: receipt
of messages from other Actors, execution of some com-
putation on incoming messages, generation of output
messages, and finally dispatch of output messages to
other Actors.

In practice, jobs usually involve multiple Actors. These Ac-
tors communicate among each other only through the con-
cept of addresses and can be visualized as a graph topology
where each node is an Actor and a direct edge from Actor A
to Actor B means that there is a flow of messages from A to
B. However this graph may be highly dynamic where Actors
have the possibility to reconfigure their topology on the fly
based on the input messages, i.e. Actors can be dynamically
added and removed from the system. Therefore, any con-
current system implemented through the Actor concurrency
model is theoretically perfectly parallel and scalable.

2.2 From Theory to a Real Streaming System
The Storm system has been presented as a distributed

and fault-tolerant stream processing system that instanti-
ates the fundamental principles of Actor theory. The key
design principles of Storm are:
• Horizontally scalable: Computations and data process-

ing are performed in parallel using multiple threads,
processes and machines.
• Guaranteed message processing : The system guaran-

tees that each message will be fully processed at least

174

�����

����

����

����

�����

����

Figure 1: Sample Storm Topology

once. The system takes care of replaying messages
from the source when a task fails.
• Fault-tolerant : If there are faults during execution of

the computation, the system will reassign tasks as nec-
essary.
• Programming language agnostic: Storm tasks and pro-

cessing components can be defined in any language,
making Storm accessible to nearly anyone. Clojure,
Java, Ruby, Python are supported by default. Support
for other languages can be added by implementing a
simple Storm communication protocol.

2.2.1 Design Specifics in Storm
The core abstraction in Storm is the stream. A stream

is an unbounded sequence of tuples. Storm provides the
primitives for transforming a stream into a new stream in a
distributed and reliable way.

The basic primitives Storm provides for performing stream
transformations are spouts and bolts. A spout is a source of
streams. A bolt consumes any number of input streams, car-
ries out some processing, and possibly emits new streams.
Complex stream transformations, such as the computation
of a stream of trending topics from a stream of tweets, re-
quire multiple steps and thus multiple bolts.

A topology is a graph of stream transformations where
each node is a spout or bolt. Edges in the graph indicate
which bolts are subscribing to which streams. When a spout
or bolt emits a tuple to a stream, it sends the tuple to every
bolt that subscribed to that stream. Links between nodes
in a topology indicate how tuples should be passed around.

Each node in a Storm topology executes in parallel. In any
topology, we can specify how much parallelism is required
for each node, and then Storm will spawn that number of
threads across the cluster to perform the execution. Figure 1
depicts a sample Storm topology.

Communication Semantics. The Storm system re-
lies on the notion of stream grouping to specify how tuples
are sent between processing components. In other words, it
defines how that stream should be partitioned among the
bolt’s tasks. In particular, Storm supports different types of
stream groupings such as:

1. Shuffle grouping where stream tuples are randomly dis-
tributed such that each bolt is guaranteed to get an
equal number of tuples.

2. Fields grouping where the tuples are partitioned by the
fields specified in the grouping.

3. All grouping where the stream tuples are replicated
across all the bolts.

4. Global grouping where the entire stream goes to a sin-
gle bolt.

In addition to the supported built-in stream grouping mech-
anisms, the Storm system allows its users to define their own
custom grouping mechanisms.

WORKER (node A)

SPOUT (task 1)

Spout
Implementation

OutputCollector

emit() Transfer Queue

b: partition, serialize
(remote tasks)

BOLT (task 2)

Receive Queue OutputCollector

Bolt
Implementation

nextTuple()

Read Loop

TQ Loop

1: take()

a:
 p

ar
tit

io
n

(lo
ca

l t
as

ks
)

RQ Loop

1: take()

2: execute()

emit()

a: partition
(local tasks)

WORKER (node B)

BOLT (task 3)

Receive Queue OutputCollector

Bolt
ImplementationRQ Loop

1: take(),
deserialize

2: execute()

emit()

a: partition
(local tasks)

Transfer Queue

b: partition, serialize
(remote tasks)2:

 tr
an

sf
er

 s
er

ia
liz

ed
 tu

pl
e

b: partition, serialize
(remote tasks)

put tuple

Socket
Read Loop

Figure 2: Execution of a Storm Topology

Storm Cluster. In general, a Storm cluster is super-
ficially similar to a Hadoop cluster. One key difference is
that a MapReduce job eventually finishes while a Storm job
processes messages forever (or until the user kills it). In
principle, there are two kinds of nodes on a Storm cluster:
• The Master node runs a daemon called Nimbus (sim-

ilar to Hadoop’s JobTracker) which is responsible for
distributing code around the cluster, assigning tasks
to machines, and handling failures.
• The worker nodes run a daemon called the Supervi-

sor . The supervisor listens for work assigned to its
machine and starts and stops worker processes as nec-
essary based on what Nimbus has assigned to it.

In a Storm cluster all the interactions between Nimbus and
the Supervisors are done through a ZooKeeper5 cluster, an
open source configuration and synchronization service for
large distributed systems. Both the Nimbus daemon and Su-
pervisor daemons are fail-fast and stateless, where all state
is kept in ZooKeeper or on local disk.

Communication between workers living on the same host
or on different machines is based on ZeroMQ sockets over
which serialized java objects (representing tuples) are being
passed.

2.2.2 The Execution Steps of Storm Topologies
In practice, a storm job is called a topology which continu-

ously processes stream(s) of incoming tuples (events) within
a Java Virtual Machine (JVM). Figure 2 illustrates the var-
ious phases in processing a tuple in a sample topology con-
sisting of a single spout (task 1) and two bolts (task 2 and
task 3) distributed over a 2 node cluster (Worker Node A and
Worker Node B). The figure should be read starting at the
Read Loop part of the spout. Here, tuples are continuously
being read from an unspecified tuple source, which could for
example be a text file or a queue. The spout’s nextTuple()
method is called continuously. The user-defined implemen-
tation of this method can for example read the next line
of text or read the next tuple of the queue and transform
the read data into a new tuple (i.e. a sequence of key-value
pairs). Then, the implementation calls the emit() function
on the spout’s OutputCollector object to actually inject the
tuple into the storm cluster. The OutputCollector applies
the stream groupings onto the tuple which associates one or
more task ids for each tuple. A task id uniquely refers to a
particular task process/thread in the cluster where the tuple

5http://zookeeper.apache.org/

175

should be sent for processing. If it turns out that the task
id refers to a local task, it will simply add the tuple onto the
receive queue of the local task (task in the same worker).
Otherwise, it needs to send the tuple to another worker (i.e.
JVM), either on the same node or a different node in the
cluster and therefore it is first serialized and then added to
the transfer queue. The continuous loop, (TQ Loop), reads
the serialized tuples off the transfer queue and sends them
to the destination worker(s).

As shown in Figure 2, the tuples emitted by the spout
are sent directly to the subsequent bolt which is executing
task 2. As this is a local task which is running in the same
worker as the spout, the tuple is directly placed onto the
receive queue of the local bolt. The RQ Loop continuously
reads tuples off the receive queue and calls the user-defined
execute() method on the bolt referred to by the task id as-
sociated with that tuple. When the implementation decides
that a new tuple should be triggered, it should construct a
new tuple and emit it to the bolt’s OutputCollector. In
the case of task 3, which is a remote task, the new tuple
is first serialized and then placed on the worker’s transfer
queue. The TQ Loop will read the tuple and send it to node
B where the tuple will be placed on the receive queue of task
3. The RQ Loop at node B will read the tuple, deserialize
it and the same process as described above continues.

3. DATA FLOW COST MODEL
The data flow cost model is designed to capture informa-

tion about the size of data flowing through an active storm
topology and the cost of transferring these data between the
processing actors.

3.1 Data Size
The size of data flowing in a Storm job is expressed per

time unit (e.g. per second) and is composed of the following
two components:
• The input data size: It represents the total amount

of tuples which are injected into the storm cluster by
the various spouts in the topology.
• The output data size: It represents the total amount

of tuples which are generated and emitted by the vari-
ous processing bolts in the topology and are consumed
during further processing by other processing bolts.

Input Data Size In general, an input spout can generate
input tuples of different types. The data size of an input
spout per time unit can therefore be modeled as:

S.dataSize =
n∑

t=1

S.numTuplest ∗ tupleSizet

where S refers to a particular input spout, n refers to the
number of different types of input tuples produced by that
spout, S.numTuplest refers to the average number of tuples
(of type t) emitted by spout S per time unit and tupleSizet
represents the average byte size of tuples of type t. The
total size of data input per time unit of a particular storm
topology is then defined as follows:

T.inputSize =
s∑

i=1

Si.dataSize

where T refers to a particular topology and s refers to the
total number of input spouts for that topology.

Output Data Size Each processing bolt of a topology
consumes at least one stream of tuples and possibly gen-

erates and emits one or more new streams of tuples. The
number of output tuples of a processing bolt for a specific
input tuple type t per time unit is defined as follows:

B.numTuplest =
m∑

d=1

Ed.numTuplest ∗B.selectivityt

where Ed refers to a source executor (i.e. spout or bolt) that
emits tuples for which B is a destination, m is equivalent
to the number of direct edges in the topology graph from
an executor E to bolt B, and B.selectivityt represents the
ratio between the number of input tuples of type t and the
number of new output tuples being emitted as the result
of processing those input tuples by a particular bolt B. In
principle, each processing bolt can have different selectivity
values for the different types of tuples it can process and it
can produce tuples of multiple types as output. Therefore
B.selectivityt can be expanded to:

B.selectivyt =
n′∑

t′=1

B.selectivityt,t′

where n′ refers to the number of different types of output
tuples produced by bolt B in response to receiving tuples of
type t. As a consequence, the output data size of a process-
ing bolt per time unit is defined as follows:

B.dataSize =
n∑

t=1

B.numTuplest ∗ tupleSize

where tupleSize represents the average size of output tuples,
which can be further expanded as:

n∑
t=1

m∑
d=1

(
Ed.numTuplest ∗

n′∑
t′=1

(B.selectivityt,t′ ∗ tupleSizet′)

)
where n refers to the number of different input tuple types
received by bolt B and n′ refers to the number of different
output tuple types produced and emitted by B.

Topology Data Flow Size. The total data flow size for
a storm topology can then be represented as the summation
of the total data input size injected by all spouts into the
topology and the total data output size emitted by all the
processing bolts in the topology. This can be expressed as:

T.dataSize =
s∑

i=1

Si.dataSize +
b∑

j=1

Bj .dataSize

where s refers to the total number of spouts and b refers
to the number of bolts which are defined in the executed
topology.

3.2 Data Transfer Cost
The data transfer cost is the cost of actually delivering the

tuple to a destination task (i.e. bolt instance). A distinction
must be made between various allocations of communicat-
ing spouts and bolts across the cluster because running tasks
remotely or locally produces substantially different commu-
nication costs in terms of bandwidth consumption and com-
munication time, i.e. latency. Therefore, we distinguish
between three categories of data transfer cost (α) as follows:

1. Local Java virtual machine (JVM) allocation
(αlocal): where communicating actors (i.e. spout→bolt
or bolt→bolt) are allocated within the same worker
and thus within the same JVM. In this case, the tu-
ple serialization/ deserialization step via the transfer
queue is by-passed and tuples are immediately placed
on the consuming bolt’s receive queue.

176

2. Local node allocation (αnode): where communicat-
ing actors are allocated on different workers that are
hosted on the same cluster node. In this case, a seri-
alization/ deserialization cost to send the tuple from
one JVM to another is incurred.

3. Remote allocation (αremote): where communicat-
ing actors are allocated on different workers hosted on
different cluster nodes. This is the most expensive case
as both a serialization/deserialization cost and a net-
work transfer cost are incurred.

In practice, Storm’s allocation strategy sequentially and it-
eratively allocates all instances of each component (spout
or bolt) up to the configured parallelization factor, whereby
an outer loop iterates across all workers and an inner loop
iterates across all nodes in the cluster. In the following sub-
sections, we describe how the fraction of tuples that can be
processed according to each category can be calculated.

Calculating the Local JVM Allocation. Let P be
the collection of worker processes running across the clus-
ter and let D be the collection of communicating actors
(spout→bolt or bolt→bolt) in the topology. For each pro-
cess p ∈ P and for each communicating actor d ∈ D in the
sender role (i.e. emitting tuples), let Aemitterp,d be the
number of instances of that actor that are allocated in the
process p. Similarly, for each process p ∈ P and for each
communicating actor d ∈ D in the receiver role (i.e. receiv-
ing tuples), let Areceiverp,d be the number of instances of
that actor that are allocated within the same process p. Fi-
nally, for each communicating actor d ∈ D, let us assume
that Aemitterd and Areceiverd represent respectively the
total number of instances of the sending and receiving ac-
tors across the entire cluster. It follows that the fraction
of tuples which are processed within a single JVM can be
computed as:

αlocal =

|D|∑
d=1

|P|∑
p=1

(
Aemitterp,d∗Areceiverp,d

)
|D|∑
d=1

Aemitterd∗Areceiverd

Calculating the Local Node Allocation. Let n ∈ N
be a node in the cluster (where |N | is the cluster size), and
Aemittern,d and Areceivern,d represent the number of in-
stances of that actor d, respectively in the sender and re-
ceiver role, that are allocated on the same node n. The
fraction of tuples that are processed among tasks within a
single node αnode can then be derived by computing the dis-
tribution of the tasks among the nodes of the cluster, which
we call αintra node, given by the following formula:

αintra node =

|D|∑
d=1

|N|∑
n=1

(
Aemittern,d∗Areceivern,d

)
|D|∑
d=1

Aemitterd∗Areceiverd

Thus, the fraction of tuples that are processed on the same
node but on a different processes:

αnode = αintra node − αlocal

Calculating the Remote Allocation. Given the
above formulas, the fraction of tuples that are transferred
across the network to another node, contributing to the over-
all data transfer cost can be expressed as follows:

αremote = 1− αnode

Overall Data Transfer cost. Given the information
of the fraction of tuples that are processed in each node and
in each JVM, we can now compute the total IO cost per
time unit as follows:

Let us assume that the stream comprises of a single tuple
type and let Γlocal, Γnode and Γremote be respectively the
CPU cost of sending a tuple to the local queue (i.e. within
the same JVM), to the same node (but on a different JVM),
and to different nodes in the cluster, the total IO cost per
time unit can be represented as follows:

IOCost = numTuples ∗ IOTranfer

where

IOTransfer = αlocal∗Γlocal+αnode∗Γnode+αremote∗Γremote

In the case where the stream comprises different types of
tuples, the IOCost would be computed for each tuple type
t and summed together which leads to:

IOCost =
n∑

t=1

numTuplest ∗ IOTransfert.

In the above formulas, numTuples and numTuplest refer
respectively to the total amount of tuples and those tuples
of type t, flowing through the system.

4. DATA PROCESSING COST MODEL
The data processing cost model describes the execution

time of the different processing steps within an active storm
topology as well as the IO cost of exchanging tuples between
spouts and bolts. The model is again expressed per time unit
and has the following two main components:
• Spout processing cost : This represents the cost of read-

ing a raw event of an unspecified source and injecting
a storm tuple into the topology.
• Bolt processing cost : This represents the cost of pro-

cessing a tuple in a bolt and possibly emitting new
tuples into the topology for further processing.

In the following, we provide an in-depth analysis of the
CPU processing costs for spouts and bolts, by identifying
all the logical operations that are a factor of these costs.

4.1 Spout Processing Cost
Figure 3 illustrates the data processing steps in the pro-

cessing component (e.g. spout or bolt) which can be split in
a number of sequentially executed phases:

1. Read : reads a raw data item from an event source (e.g.
a queue or a file).

2. Transform (γ): formats the raw data item into a storm
tuple sequence.

3. Emit : adds the storm tuple sequence to the spout’s
output collector. There will be one destination per
direct edge from the spout to a bolt in the topology.

4. Partition: defines where (i.e. which task) to send the
tuple sequence to for each destination defined in the
emit step. Depending on the chosen stream grouping,
this could be one or more tasks (i.e. bolt instances
identified by a node and port pair).

5. Serialize: transforms the tuple sequence in a format
that can be transmitted efficiently across the network
or across JVMs. This phase will only be executed when
there is at least one remote destination, i.e. a bolt task
that is not running within the emitting spout’s JVM.

177

Figure 3: Data Processing Steps in a Processing
Component

The Read, Transform and Emit phases are part of the user-
defined implementation logic of the spout, while the remain-
ing phases are part of the Storm platform.

The CPU processing cost for an input spout (S) per time
unit can therefore be modeled as:

S.CPUCost =
n∑

t=1

S.numTuplest ∗ S.CPUCostt

with

S.CPUCostt = S.inputCostt + S.outputCostt

where

S.inputCostt = S.CPUReadt + S.CPUTransformt

and where

S.outputCostt =

S.numDestt∑
i=1

Bi.groupingCostt

+ S.hasExternalTaskt ∗ CPUSerializet
where
• n is the number of the different types of tuples which

are emitted by the spout S.
• S.numTuplest is the number of tuples of type t, emit-

ted by spout S per time unit.
• CPUReadt is the CPU cost of reading a raw input

tuple of type t.
• CPUTransformt is the CPU cost of transforming a

raw input tuple of type t into a Storm tuple of type t.
• S.numDestt is the number of destination bolts that

consume tuples of type t emitted by spout S.
• Bi.groupingCostt represent the cost of partitioning

the input tuples of type t which varies according to
the stream grouping algorithm (Shuffle, Fields, All,
Global) chosen by the processing bolt Bi.
• S.hasExternalTaskt is a boolean variable which stores

the value 1 if the tuples of type t emitted by spout S are
consumed by at least one external task. An external
task is an instance of a bolt running on a different
worker than the one which is hosting the instance of
spout S that is emitting the tuple. Note that this
could still be on the same host, but on a different JVM.
Otherwise it stores the value 0.
• CPUSerializet is the CPU cost of serializing a tuple

of type t.

4.2 Bolt Processing Cost
In practice, bolt processing involves running through the

same sequence of phases as spout processing with the only
difference being that of instead of having a transform phase,
there is a more general execute phase in which the actual
bolt’s processing logic is executed. It is also in this execute
phase that the decision will be made as to which and how
many new tuples (of type t′) will be emitted by the bolt.
Therefore, the CPU processing cost for a processing bolt
(B) per time unit is modelled as the sum of the cost to pro-
cess all input tuples of type t received per time unit and the
cost of processing all resulting output tuples (of type t′), for
all possible tuple types this bolt can receive. This formula
is shown as:

B.CPUCost =
n∑

t=1

B.numInputTuplest ∗B.inputCostt

+
n′∑

t′=1

(B.numOutputTuplest,t′ ∗B.outputCostt′)

with

B.inputCostt = B.CPUReadt +B.CPUExecutet +
B.isExternalTask ∗ CPUDeserializet

and

B.outputCostt′ =
B.numDestt′∑

i=1

Bi.groupingCostt′

+ B.hasExternalTaskt′ ∗ CPUSerializet′

where
• B.numInputTuplest is the number of tuples of type
t received by the bolt B, which, as was shown before,
can be represented as:

B.numInputTuplest =

m∑
d=1

Ed.numTuplest

where Ed refers to the source executor (spout or bolt)
that emits tuples for which B is a destination, m is
the amount of executors that emit to this bolt and
Ed.numTuplest refers to the number of tuples of type
t emitted by executor Ed

• B.numOutputTuplest,t′ is the number of new tuples
of type t′ generated and emitted by the bolt B in re-
sponse to receiving input tuples of type t, which can
be expressed as:
B.numOutputTuplest,t′ =
B.numInputTuplest ∗B.selectivityt,t′

• B.CPUReadt is the cost of reading an input tuple of
type t by bolt B, excluding potential deserialization
cost.
• B.CPUExecutet is the cost of the algorithm imple-

mented by bolt B.
• B.isExternalTask is a boolean variable that stores

the value 1 if the tuple being read was sent by an exter-
nal task and is therefore in serialized form. Otherwise,
it stores the value 0.
• CPUDeserializet is the CPU cost of deserializing a

tuple of type t.

4.3 Topology cost
The total processing cost for a storm topology represents

the summation of the total CPU processing cost for all
of its spouts and bolts. Therefore, the topology cost, i.e.

178

ZooKeeper

Nimbus

Supervisor Worker

1. Synchronize Topology

 (check current assignments

 and reassign if necessary)

2. Synchronize Supervisors

 (read assignments and reassign

 if necessary)

4. Supervisor Heartbeat

 (update run-time information

 about supervisor)

3. Synchronize Worker

 (check active storms, check

 assignments and connections +

 re-establish if necessary)

5. Worker Heartbeat

 (update run-time information

 about each executor/task)

Supervisor Worker
Worker
Worker

Figure 4: ZooKeeper interactions

T.CPUCost, for a storm topology is defined as:

T.CPUCost =
s∑

i=1

Si.CPUCost +
b∑

j=1

Bj .CPUCost

where s represents the total number of spouts in the topol-
ogy and b represents the total number of bolts in the topol-
ogy.

5. SYSTEM MANAGEMENT COST MODEL
The System Management costs model the impact of the

set of tasks, abstracted away from the user, which are re-
quired to run a Storm cluster. These tasks include provision
of support for node failure/addition/removal, JVM failures,
network issues etc. Storm’s system management tasks are
coordinated through ZooKeeper and are mainly related to
the interaction between ZooKeeper and Nimbus, Supervisor
and Worker as shown in Figure 4. There are 5 recurring
System Management tasks that interact with ZooKeeper,
and the frequency of these interactions can be configured
manually. These parameters are described in the following
list:

1. Synchronize Topology: Every configurable St sec-
onds, Nimbus checks the active assignments and com-
pares them to the required assignments according to
the topology specification. If a difference is detected,
e.g. because of node failure, Nimbus will reassign the
unassigned tasks over the available worker processes
in the cluster. (period: St, number of requests: Rt,
bandwidth: Bt)

2. Synchronize Supervisors: Every configurable Ss
seconds, each supervisor reads its assignments from
ZooKeeper and re-assigns them if it detects a differ-
ence between what it has currently assigned across its
workers. Re-assignment takes the form of updates to
ZooKeeper’s assignments for the workers to query dur-
ing their next poll cycle.
(period: Ss, number of requests: Rs, bandwidth: Bs)

3. Synchronize Workers: Every configurable Sw sec-
onds, each worker reads its assignments from ZooKeeper.
If there is a mismatch, the missing connections are es-
tablished. In addition to this, each worker also checks

the active storm topologies. If the storm topology for
which it is running tasks would no longer be active (be-
cause it was explicitly killed), the worker would need
to stop processing.
(period: Sw, number of requests: Rw, bandwidth: Bw)

4. Supervisor Heartbeat: Every configurable S ′s sec-
onds, each supervisor will send a heartbeat to ZooKeeper.
A heartbeat takes the form of storing some run-time
information about the supervisor in ZooKeeper.
(period: S ′s, number of requests: R′s, bandwidth: B′s)

5. Worker Heartbeats: Similarly, every configurable
S ′w seconds, each worker sends heartbeats to ZooKeeper.
A worker heartbeat includes statistics information about
each task running in that worker.
(period: S ′w, number of requests: R′w, bandwidth: B′w)

In principle, the System Management Cost has two compo-
nents: a component that reflects the load on ZooKeeper,
expressed in number of requests per time unit (R) and a
network load component which represents the network band-
width consumption (B).

5.1 Number of requests to ZooKeeper
The number of ZooKeeper requests per time unit is a

function of the amount of nodes (i.e. supervisors) and the
amount of workers in the cluster as reflected by the following
equation:

R =
Rt

St
+ numNodes ∗

(
Rs

Ss
+
R′s
S ′s

)

+numWorkers ∗
(
Rw

Sw
+
R′w
S ′w

)
whereRt,Rs,Rw,R′s andR′w are all fixed (implementation-
related) constants and Ss, Sw, S ′s and S ′w are configurable
constants. It should be noted that the number of requests
per time unit is independent of the amount of tasks/components
instantiated around the cluster6 and is linear with the size
of the cluster.

5.2 Network Bandwidth Consumption
The network bandwidth consumption depends both on the

number of supervisors and workers in the cluster, and also
on the number of tasks running on those workers. Specifi-
cally, an increase in the number of workers leads to more
worker heartbeat messages per time unit as each worker
sends the heartbeats separately; an increase in number of
supervisors leads to more assignment info messages being
exchanged with ZooKeeper as each supervisor is in charge
of managing its own assignments and finally, an increase in
the number of tasks increases the size of both the worker
heartbeat and assignment info messages as they contain in-
formation that are specified to each task.

In order to present a formula to calculate the bandwidth
consumption of system management tasks, we will first look
at two of the most important data structures used to com-
municate with ZooKeeper, i.e. Worker Heartbeat (WHB)
and Assignment Info (AI).

Worker Heartbeats A Worker Heartbeat data struc-
ture contains information about the status of the various

6with the caveat as explained above that numWorkers is a
dynamic thing in case numTasks is smaller than the sum of
the configured maximum number of workers on each node.

179

tasks assigned to a worker. The byte size of one round of
worker heartbeats can be defined as:

numWorkers∑
i=1

|WHBi| = a ∗ numTasks+ b ∗ numWorkers

where a and b are constants related to the specific imple-
mentation of this data structure in Storm, which will not be
further detailed to improve readability.

Assignment Information Assignment information con-
tains a mapping from task ID to host and port and the
timestamp of when the component was started.

The byte size of the assignment information data structure
is given by

|AI| = c ∗ numNodes+ d ∗ numTasks+ e

where again c, d and e are constants related to the specific
design of the AI data structure, which will not be further
detailed. It should be noted that the overhead of the AI is
independent of the amount of workers per node.

Bandwidth As was mentioned previously, an approxi-
mation of system management bandwidth consumption can
be written as the sum of the bandwidth consumed by each
of the recurring tasks as follows:

B =
|Rt|
St

+ numNodes ∗
(
|Rs|
Ss

+
|R′s|
S ′s

)
+numWorkers ∗

(
|Rw|
Sw

+
|R′w|
S ′w

)
where |X | is used to denote the size (in bytes) of X ; numNodes
is the number of nodes in the Storm cluster running a su-
pervisor; numWorkers is the sum of all active workers on
all nodes in the Storm cluster. A worker becomes active if
it has at least one task assigned to it.

By leveraging an in depth analysis that correlates Rt, Rs,
Sw, S ′s and S ′w with numNodes, numWorkers, |AI| and
|WHB| (which we do not report here for brevity), we can
express the System Management Bandwidth as:

B = k1 + k2 ∗ |AI|+ numNodes ∗ (k3 + k4 ∗ |AI|)

+ numWorkers ∗ (k5 + k6 ∗ |AI|) + k7 ∗
∑
i

|WHBi|

where all of k1 through k7 are constants.
In conclusion, with this final formulation we can see that

ZooKeeper traffic bandwidth increases proportionally with
the number of tasks and nodes running in the cluster, which
is also validated by the experiment reported in Figure 5. In
the figure we plot the measured BW (in KB) attributed to
ZooKeeper communication as a function of the number of
tasks running around the cluster, for various cluster sizes.
Note also that ZooKeeper communication is independent of
the specific algorithms implemented in spouts or bolts.

6. EXPERIMENTAL EVALUATION
This section provides a detailed experimental evaluation

of the performance characteristics of the Storm system us-
ing real industrial datasets. This section aims to experimen-
tally quantify the performance variation in running different

0	

20	

40	

60	

80	

100	

120	

140	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	

BW
	 (K

B/
s)
	

Number	 of	 tasks	

1	 node	

2	 nodes	

3	 nodes	

4	 nodes	

5	 nodes	

Linear	 (1	 node)	

Linear	 (2	 nodes)	

Linear	 (3	 nodes)	

Linear	 (4	 nodes)	

Linear	 (5	 nodes)	

Figure 5: System management traffic as a function
of the number of components

Storm configurations by leveraging insights from the perfor-
mance model. Furthermore, the intent of this experimental
analysis is to detect the causes of this variability in the sys-
tem performance and shed light on the precautions required
in order to run the system under optimal configurations.

6.1 Dataset and Environment Setup
The experiments have been run with a real Telco dataset

consisting of Performance Management (PM) observations
of a large Femtocell7 network. Femtocells were designed for
use in a home or small business to improve localized cellular
service and offload bandwidth usage from macrocells (i.e.,
traditional cell towers). During operation, Femtocells pro-
duce many low-level performance logs (e.g. number of suc-
cessful handovers, number of call initiation attempts) across
a range of performance categories (e.g. packet data perfor-
mance, handover performance). The considered dataset is
composed of hourly PM logs collected over 15 days for a net-
work of 70k Femtocells, totalling approximately 11 million
XML files. These files contain a list of 128 key-value pairs of
operational and statistical counters with a mixture of integer
and floating-point values. These data are usually analyzed
to monitor network performance characteristics and predict
traffic peaks or failures. The experiments presented in this
paper deploy a simple topology composed of two actors (one
spout and one bolt) whose task it is to identify the Femto-
cells which require the most bandwidth. The spout reads
input messages from an external queue (this corresponds to
the XML data) and produces a stream of tuples. The bolt
receives the stream of tuples with a shuffle grouping and
emits the Femtocell list.

Cluster Configuration. Each test runs on a cluster
comprising 5-nodes of identical configuration. Additional
machines were used to generate load into this cluster and to
host the external message queue(s). Each machine is a dual
4-core Intel Xeon 3Ghz 32bit 16 GB Memory, 1 Gb/s net-
work interface. Nodes are interconnected through a 10Gb
OmniSwitch 6850 Ethernet Switch. Each node runs Linux
version 2.6.32-220.4.1.el6.i686. The following software com-
ponents were used: Java 1.6 OpenJDK Runtime Environ-
ment (IcedTea6 1.10.4), ZeroMQ 2.1.7, Zookeeper 3.4.2 and
Kestrel 2.3.4. We used a modified version of Storm, Storm-
0.8.0-SNAPSHOT (version of July 2012), to include timers

7Alcatel-Lucent 9360 Small Cell. http://www.alcatel-
lucent.com/small-cells/

180

Spout Parallelisation
0 5 10 15 20 25 30 35

La
te

nc
y

[m
se

c/
tu

pl
e]

0

100

200

300

400

500

T
hr

ou
gh

pu
t [

tu
pl

es
/s

ec
]

0

2000

4000

6000

8000

10000

(a) Effect of Spout Parallelisation

Bolt Parallelisation
0 5 10 15 20 25 30 35

La
te

nc
y

[m
se

c/
tu

pl
e]

1.5

2

2.5

3

3.5

4

4.5

5

T
hr

ou
gh

pu
t [

tu
pl

es
/s

ec
]

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

(b) Effect of Bolt Parallelisation

Figure 6: Measuring latency and throughput on the different system configurations.

and related statistical tools for the purpose of the experi-
ments.

6.2 Experiment Configurations
A comprehensive test automation suite was developed which

is composed of various shell scripts and Java programs to
automatically execute the Storm topologies and collect run-
time statistics on the system performance. Storm configura-
tions were tested while varying the number of nodes, spouts,
bolts and workers. Each specific configuration was tested 10
times in order to accumulate statistical information. Care-
ful consideration was taken to ensure that each configuration
was tested under the same operational conditions.

Each individual test case is executed on a clean cluster,
meaning that all processes from a previous run were killed on
all cluster nodes before starting the new ones. In addition,
all data generated by the previous run is erased from the
filesystem. Each test consists of an initial warm-up phase
of 1 minute (in which we do not collect statistics because
the system may not be in its computational steady state
yet) followed by a 5 minute measuring phase during which
statistics are being gathered, including:

1. Throughput (µ) which represents the total number of
events processed per second.

2. Latency (L) which represents time to process a tuple
both within a single actor and within the entire system.

3. External and internal queue sizes and their growth
rate.

4. Network bandwidth in terms of the number of mes-
sages exchanged among workers on different nodes.

5. Various statistics on system management overhead (e.g.
communication with ZooKeeper).

6. Approximate memory usage and CPU usage per thread.
Each test is run with a different Storm configuration which

is determined by the following parameters:
• Parallelization factor : represents the number of tasks,

from {1, 2, 4, 8, 16, 24, 32}, instantiated per actor.
• Cluster size: represents the number of nodes partici-

pating in the Storm cluster, i.e. from 1 to 4.
• Worker pool size: represents the number of workers

(JVMs) per node, which host the tasks. In our experi-
ment this number is selected from {1, 2, 4, 8, 16, 24, 32}.
• Event injection rate: represents the number of events

injected per second into the queue which provides data
to the spouts. In our experiments the event injection
rate varies among three different rates, 5K, 10K and
50K tuples per second, to observe how Storm adjusts
to different conditions.

6.3 Experimental Analysis
In order to optimize the system performance while run-

ning Storm jobs there are several variables and parameters
which need manual configuration. The configuration is thus
a complex task that requires a precise knowledge of the most
relevant parameters and how they impact the system per-
formance. In particular, we focus on the following metrics:
the throughput (µ), the latency (L) and the system resource
utilization (CPU, memory, network bandwidth).

In the following subsections we present a set of experi-
ments that aim to shed light on how to configure this sys-
tem based on the theoretical understanding derived from the
performance model presented in the previous sections.

6.3.1 Performance Variability for Different System
Configurations

The experiments presented in this section comprise obser-
vations of the impact on latency and throughput produced
by different configurations in terms of parallelization, work-
ers and cluster size.
A configuration is expressed as the specification of the sys-
tem parameters, i.e. number of nodes, spouts, bolts, and
workers (hereafter simply < n, s, b, w >). For brevity, we
only report experiments run on a single node cluster with
external queue fed with 50k messages per second. However,
the same experiments run on a 1 through 4 node cluster
show similar results, with only a few small deviations at-
tributed to the increased system management costs to run
more nodes which will be discussed in detail in the next
sections.

Spout Parallelisation In order to study the impact of
the number of spouts on the overall system performance, we
fixed all other parameters at 1 while varying the number of
spouts in {1, 2, 4, 8, 16, 24, 32}. Figure 6(a) illustrates the
effect upon throughput (in terms of tuples per second) and
the latency (in terms of milliseconds to process a tuple) as
the number of spouts is adjusted. The system throughput
can be increased by increasing the number of spouts - how-
ever as the number of spouts continues to increase beyond
some threshold, the throughput declines. This can be under-
stood by observing the latency which exhibits exponential
growth. Beyond some threshold (determined by the system
hardware), the system is overstressed with many processes
and the context switch among them kills the system perfor-
mance.

Bolt Parallelisation In order to study the impact of
the number of bolts on the overall system performance, we

181

fix all other parameters at 1 while varying the number of
bolts in {1, 2, 4, 8, 16, 24, 32}. Figure 6(b) illustrates the ef-
fect upon throughput (in terms of tuples per second) and
the latency (in terms of milliseconds to process a tuple) as
the number of bolts is adjusted. An increase in bolt par-
allelisation reduces throughput due to the extra CPU load
associated with scheduling. However, a reduction in latency
towards a lower limit is also observed when the number of
bolt is within [8, 24] range. This limit represents the fastest
possible bolt execution time, which is the cost of the system
from the emission of the tuple by the spout up to the com-
pletion of the algorithm implemented by bolt B, defined in
the performance model in Section 4.

6.3.2 Costs of Distributing Computation
This section aims to quantify the variation in performance

when varying the number of workers, and the way communi-
cating tasks are distributed across these workers. Section 3
showed that the dataflow cost depends on whether two com-
municating tasks are hosted (a) within the same JVM, (b)
within the same node but on different JVMs, or (c) on dif-
ferent nodes. Specifically, cases (b) and (c) incur a serializa-
tion/deserialization cost, while case (c) additionally incurs
network transfer cost. Here we demonstrate its practical
impact.

Cost of Communicating JVMs Figure 7 displays the
system latency L when some tasks are assigned to the same
physical node, but to different JVMs running on that node.
Each point in the plot represents a different system config-
uration. On the x-axis we report the specific configuration
setting, i.e. the actual instantiation of < n, s, b, w > and
on the y-axes we plot two different results: the left-hand
side axis displays the latency, in milliseconds, of the system
for each configuration while the right-hand side y-axis es-
timates αnode defined in Section 3, i.e. the percentage of
tuple exchanges across different JVMs on the same physi-
cal node. In this experiment, an increment of the latency
corresponds to the cost of transferring the associated tuples
from one JVM to another, which mainly comes from the
serialization/ deserialization costs. We show that when the
theoretical approximation of αnode increases the correspond-
ing latency for that configuration goes up, which means that
αnode can be used to predict the system latency of a par-
ticular configuration. Within the yellow box, starting with
configuration < 1, 8, 8, 1 >, we observe that the system falls
in an unstable configuration in the sense that the serializa-
tion/deserialization costs are not the dominant costs any-
more and the latency degrades from 5ms to 28ms in the last
configuration. We have increased the number of tasks and
we can observe that the system is affected by extra costs such
as: management overhead, Java garbage collection, schedul-
ing and context switching among JVMs.

Impact of Increasing Workers. One of the benefits of
a distributed system is its capacity to increase the amount
of parallel threads of execution and reliably distribute them
over the cluster nodes so as to improve processing efficiency
in time and capacity. However, the number of allocable
JVMs per single node has a direct impact on performance.
This number is highly related to the number of CPUs/cores
per node, therefore, the number of allocable threads per
worker per CPU needs to be carefully calibrated to achieve
optimal system utilization before undesirable effects on the

Figure 7: The latency for different system configu-
rations.

performance show up. Figure 8(a) and Figure 8(b) show
the throughput and the latency for different system con-
figurations. In this experiment, we highlight the effect of
instantiating from 1 worker with 16 threads to 16 workers
each with 1 thread. The direct proportional effect of the
tuple serialization/deserialization cost on the latency, which
is clearly visible in Figure 7, is no longer apparent for higher
thread counts. In fact, for higher thread counts, Figures 8(a)
and 8(b) show that we can improve throughput and latency
by instantiating multiple workers, each with a lower thread
count to achieve the same overall level of parallelism.

This experiment shows that when there are more threads
than cores the system performance can have unexpected be-
havior. For instance, if the number of threads per JVM is
too high, as in configuration < 1, 8, 8, 1 > with 16 threads
per JVM, the throughput is lower than when there is only
a single thread per JVM as in configuration < 1, 8, 8, 16 >.
One of the factors explaining this observed behavior is the
increased JVM garbage collection activity for higher thread
counts. Figure 8(a) and 8(b) confirm that this trend is the
same for all cluster sizes.

Bandwidth Consumption. As we have previously
shown, the more cluster nodes we leverage, the better through-
put we may expect to achieve. However, the participating
nodes need to communicate by transferring tuples among
each other, which comes at a cost that is constrained by the
available network bandwidth.

In the simple topology we have used for our experiments,
we can estimate total bandwidth consumption as follows:
BWtotal = BWexternal +BWsystem +BWdataflow

where
• BWexternal is the bandwidth required by the spout to

read raw events from the event source (i.e. a Kestrel
queue in our experiments).
• BWsystem is the system management bandwidth we

calculated in Section 5. For simplicity, we can overes-
timate this portion of the overall bandwidth by taking
an upper bound for at least 100 active tasks as re-
ported in Figure 5, i.e. 56K bytes per second for the
2-node configuration.
• BWdataflow is the bandwidth related to exchanging

tuples between spout and bolt instances. For this por-
tion, we can use the formulas presented in Section 3.
More specifically, BWdataflow = numTuples∗αremote∗
tupleSize where numTuples represents the amount of
tuples emitted by the spout per time unit.

From measurements performed on our dataset, we have
determined that the size of an external event is 360 bytes

182

(a) Effects of the parallelism on the Throughput (µ) (b) Effects of the parallelism on the Latency (L)

Figure 8: Measuring latency and throughput with 1 to 16 JVMs respectively with 1 to 16 threads per node.

and the size of a transformed event, i.e. a Storm tuple,
is 44 bytes. Therefore, in this experiment, the bandwidth
consumption can be computed using the following formula:

BWtotal = numTuples ∗ (360 + 44 ∗ αremote) + 56000

Figure 9 shows the calculated bandwidth consumption as
a function of system configuration for clusters consisting of
2,3 and 4 nodes. These bandwidth calculations were verified
using the Unix dstat tool.

Figure 9: System Communication Cost

7. RELATED WORK
The growing demand for large-scale data processing and

data analysis applications has spurred the development of
novel solutions from both the industry (e.g., web-data anal-
ysis, click-stream analysis, network-monitoring log analysis)
and the sciences (e.g., analysis of data produced by massive-
scale simulations, sensor deployments, high-throughput lab
equipment). MapReduce [12] is a framework which was in-
troduced by Google for programming commodity computer
clusters to perform large-scale data processing. The frame-
work is designed such that a MapReduce cluster can scale
to thousands of nodes in a fault-tolerant manner. However,
the basic architecture of the MapReduce framework requires
that the entire output of each map and reduce task be mate-
rialized into a local file before it can be consumed by the next
stage. Therefore, it is not adequate for supporting real time
processing of streaming data. Several approaches have been
proposed to tackle this challenge. For example, the MapRe-
duce Online approach [9] has been proposed as a modified
architecture of the MapReduce framework in which inter-
mediate data is pipelined between operators while preserv-
ing the programming interfaces and fault tolerance models
of previous MapReduce frameworks. The Incoop system [6]
has been introduced as a MapReduce implementation that
has been adapted for incremental computations which detect

the changes on the input datasets and enables the automatic
update of the outputs of the MapReduce jobs by employing
a fine-grained result reuse mechanism. In particular, it al-
lows MapReduce programs which have not been designed for
incremental processing to be executed transparently in an
incremental manner. The M3 system [4] has been proposed
to support the answering of continuous queries over streams
of data bypassing the HDFS so that data are processed only
through a main-memory-only data-path and totally avoids
disk access. In this approach, Mappers and Reducers never
terminate where there is only one MapReduce job per query
operator that is continuously executing. While these ap-
proaches could improve the performance of the MapReduce
framework for incremental and streamed data processing,
they are still unable to fully support the distributed real
time processing requirements of data intensive applications.

Several distributed stream processing systems have been
presented in the literature such as Aurora [1], Borealis [2],
SPADE [13], Stormy [21] and Apache S4 8. For example, in
Borealis, the collection of continuously running queries are
treated as one giant network of operators. The processing
of these operators is distributed to multiple sites where each
site runs an instance of the Borealis server. The query pro-
cessing is controlled by an Admin component which takes
care of moving query diagram fragments to and from re-
mote Borealis nodes when instructed to do so by other com-
ponents. SPADE is a declarative stream processing engine
which supports a set of basic stream-relational operators
with powerful windowing and punctuation semantics. The
system is designed to execute a large number of long-running
jobs that take the form of data flow graphs where each graph
consists of a set of processing elements connected by streams
and each stream carries a series of Stream Data Objects.
The processing elements can communicate with each other
via their input and output ports. The concepts and ideas
of our proposed models can be easily adopted to be used
within the context of these systems. Some studies have been
presented for analyzing and modeling the service latency
of event-based systems. They have been mainly focusing
on different classes of implementations such as the Pub-
lish/Subscribe systems [23, 27] and message-oriented mid-
dlewares [24, 25].

When designing parallel and distributed systems, a crit-
ical problem is the one of how to tune the system configu-
ration (e.g., in terms of number of nodes), so as to achieve
certain performance goals (e.g., maximize throughput, min-
imize latency or meet a prefixed latency constraint). To this

8http://incubator.apache.org/s4/

183

end, various authors tried to build abstract models for the
performance of such systems, starting from the well-known
Amdahl law [5] and its various enhancements, some of which
are summarised in [10].

Giurgiu [14] has presented an approach for estimation of
performance for mobile-cloud applications. The approach
tried to identify the factors which impact interaction re-
sponse times, such as the application distribution schemes,
workload sizes and intensities, or the resource variations of
the mobile-cloud application setup. It also attempted to find
correlations between these factors in order to better under-
stand how to build a unified and generic performance estima-
tion model. The Starfish system [15, 16] is the most relevant
system for our work. It represents a cost-based optimizer for
MapReduce programs which focuses on the optimization of
configuration parameters for executing these programs on
the Hadoop platform. It relies on a Profiler component that
collects detailed statistical information from executing the
programs and a What-if Engine for fine-grained cost esti-
mation processing. For a given MapReduce program, the
role of the cost-based optimizer component is to enumerate
and search efficiently through the high dimensional space of
configuration parameter settings, making appropriate calls
to the What-if Engine, in order to find the optimal configu-
ration setting. It clusters parameters into lower-dimensional
subspaces such that the globally-optimal parameter setting
in the high-dimensional space can be generated by compos-
ing the optimal settings found for the subspaces. Our cur-
rent study represents the first step in the implementation
of a similar what-if analyzer component in the more com-
plex environment of real time distributed stream-processing
engines.

8. CONCLUSIONS
The lack of expertise and in-depth understanding of the

theoretical foundation for the performance modeling of large
scale distributed processing system is a crucial problem.
Many researchers, engineers and organizations are currently
shifting their focus to exploit the advantages of the new data
processing paradigm shift. In this paper, we presented a de-
tailed set of models that formalize the performance charac-
teristics of the Storm system as a representative of a practi-
cal distributed, parallel and fault-tolerant stream processing
engine that follows the Actor Model theory. Our approach
is applicable to estimate the performance characteristics of
distributed stream processing jobs which follow the same
principles in addition to optimizing the configuration set-
tings of the underlying system and hardware cluster. Sev-
eral directions represent good candidates for future work to
further understand and optimise the complex environment
of real time distributed streaming processing engines. For
example, we are planning to build a What-if Engine that can
help users to find the right configuration setting and param-
eters for their jobs. In addition, we plan to implement a
more intelligent allocation strategy for the processing com-
ponents across the running workers which can optimize the
data transfer cost.

9. REFERENCES
[1] Abadi, D. J., et al. Aurora: A Data Stream Management

System. In SIGMOD Conference (2003), p. 666.

[2] Abadi, D. J., et al. The Design of the Borealis Stream
Processing Engine. In CIDR (2005), pp. 277–289.

[3] Agha, G. Actors: a model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA,
1986.

[4] Aly, A. M., et al. M3: Stream Processing on
Main-Memory MapReduce. In ICDE (2012).

[5] Amdahl, G. M. Validity of the single processor approach
to achieving large scale computing capabilities. In
Proceedings of AFIPS ’67, Spring Joint Computer
Conference (1967), pp. 483–485.

[6] Bhatotia, P., et al. Incoop: MapReduce for Incremental
Computations. In SOCC (2011).

[7] Cherkasova, L. Performance modeling in mapreduce
environments: challenges and opportunities. In ICPE
(2011), pp. 5–6.

[8] Clinger, W. D. Foundations of Actor Semantics. Tech.
rep., Cambridge, MA, USA, 1981.

[9] Condie, T., et al. MapReduce Online. In NSDI (2010),
pp. 313–328.

[10] Cucinotta, T. Optimum scalability point for parallelisable
real-time components. In Proceedings of SOMRES (2011).

[11] de Gooijer, T., et al. An industrial case study of
performance and cost design space exploration. In ICPE
(2012), pp. 205–216.

[12] Dean, J., and Ghemawat, S. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI (2004), pp. 137–150.

[13] Gedik, B., et al. Spade: the system s declarative stream
processing engine. In SIGMOD Conference (2008),
pp. 1123–1134.

[14] Giurgiu, I. Understanding performance modeling for
modular mobile-cloud applications. In ICPE (2012),
pp. 259–262.

[15] Herodotou, H., et al. MapReduce Programming and
Cost-based Optimization? Crossing this Chasm with
Starfish. PVLDB 4, 12 (2011), 1446–1449.

[16] Herodotou, H., et al. Starfish: A Self-tuning System for
Big Data Analytics. In CIDR (2011), pp. 261–272.

[17] Hewitt, C. ORGs for Scalable, Robust, Privacy-Friendly
Client Cloud Computing. IEEE Internet Computing 12, 5
(2008), 96–99.

[18] Hewitt, C. ActorScript(TM): Industrial strength
integration of local and nonlocal concurrency for
Client-cloud Computing. CoRR abs/0907.3330 (2009).

[19] Hewitt, C. Actor Model for Discretionary, Adaptive
Concurrency. CoRR abs/1008.1459 (2010).

[20] Hewitt, C., et al. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In IJCAI (1973),
pp. 235–245.

[21] Loesing, S., et al. Stormy: an elastic and highly available
streaming service in the cloud. In EDBT/ICDT Workshops
(2012), pp. 55–60.

[22] Meseguer, J., and Talcott, C. L. A partial order event
model for concurrent objects. In Proceedings of CONCUR
(1999).

[23] Mühl, G., et al. Stochastic Analysis of Hierarchical
Publish/Subscribe Systems. In Euro-Par (2009).

[24] Sachs, K., et al. Benchmarking of message-oriented
middleware. In DEBS (2009).

[25] Sachs, K., et al. Performance evaluation of
message-oriented middleware using the SPECjms2007
benchmark. Perform. Eval. 66, 8 (2009).

[26] Sakr, S., et al. A Survey of Large Scale Data
Management Approaches in Cloud Environments. IEEE
Communications Surveys and Tutorials 13, 3 (2011),
311–336.

[27] Schröter, A., et al. Stochastic performance analysis and
capacity planning of publish/subscribe systems. In DEBS
(2010).

184

