
 

Propagation of Incremental Changes to Performance 
Model due to SOA Design Pattern Application  

Nariman Mani, Dorina C. Petriu, Murray Woodside 
Carleton University 

Department of Systems and Computer Engineering 
1125 Colonel By Drive 

Ottawa, Ontario, Canada 

{nmani | petriu | cmw}@sce.carleton.ca
  

ABSTRACT 
Design patterns for Service Oriented Architecture (SOA) provide 
solutions to architectural, design and implementation problems, 
involving software models in different layers of a SOA design. 
For performance analysis, a performance model can be generated 
from the SOA design and used to predict its performance.  The 
impact of the design patterns is also reflected in the performance 
model.  It is helpful to be able to trace the causality from the 
design pattern to its predicted performance impact. This paper 
describes a technique for automatically refactoring a SOA design 
model by applying a design pattern and for propagating the 
incremental changes to its LQN performance model. A SOA 
design model is expressed in UML extended with two standard 
profiles: SoaML for expressing SOA solutions and MARTE for 
performance annotations. The SOA design pattern is specified 
using a Role Based Modeling Language (RBML) and their 
application is automated using QVT-O. Automated incremental 
transformations are explored and evaluated for effectiveness on a 
case study example. 

Categories and Subject Descriptors 
H.3.4 [Systems and Software]: Performance evaluation 
(efficiency and effectiveness) 

General Terms 
Performance, Design, Experimentation, and Verification. 

Keywords 
Software performance, service-based systems, SOA pattern, 
model change, change propagation, LQN. 

1. INTRODUCTION 
Service Oriented Architecture (SOA) is an innovative software 
architectural paradigm for developing and deploying applications 
as a set of reusable composable units called services, that can be 
collectively and repeatedly used for the realization of specific 
goals [1]. In Model Driven Engineering (MDE), the performance 
of a SOA design can be evaluated using model transformations to 

generate a performance model (hereafter called PModel) of the 
SOA system from its software design model (hereafter called 
SModel) extended with performance annotations. In our work, the 
initial SModel to PModel transformation is performed with the 
PUMA transformation chain [2], previously developed in our 
research group, which requires the generation of an intermediate 
model Core Scenario Model (CSM), as shown in Figure 1.(A). 
CSM captures the essence of performance specification and 
estimation as expressed by SModel annotations, and strips away 
the design detail which is irrelevant to performance analysis. 
During the initial transformation, trace links expressing the 
mapping between the SModel and the corresponding PModel 
elements are created [3].  

In this paper we propose to use performance evaluation to screen 
candidate SOA pattern applications, after an initial SOA design 
has been modeled and its PModel derived for the first time. We 
assume that the candidate patterns are selected by the designer in 
order to improve a certain quality of the design (such as 
maintainability, robustness, performance, security, etc.). 
However, the logic behind the pattern selection is not addressed in 
this paper, being left for future work.  The focus of this paper is 
on the automatic application of a SOA design pattern, followed by 
the incremental propagation of SModel changes directly to the 
PModel, as illustrated in Figure 1.(B) (Model modifications are 
denoted using the “” symbol). SOA design patterns describe 
generic solutions for different architectural, design and 
implementation problems[1, 4]. Changes due to the application of 
such patterns may impact performance and other non-functional 
properties either positively or negatively.  

 

Figure 1 : (A) Initial transformation of SModel to PModel         
(B) Propagation of SModel changes due to design pattern 

application directly to PModel 

Reconstructing the entire intermediate and performance models 
from scratch after a pattern application requires a lot of effort. To 
address this issue, we propose here an incremental approach that 
allows investigating the  impact  of  changes  due  to  design  
patterns  on  the  system performance in a time and cost effective 
way, by identifying the affected performance model elements and 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICPE’13, April 21–24, 2013, Prague, Czech Republic. 
Copyright © 2013 ACM  978-1-4503-1636-1/13/04...$15.00. 
 

89



 

parameters without re-constructing the entire performance model. 
This enables incremental studies of numerous design alternatives 
when applying a large number of SOA design patterns. 

As already mentioned,  we use the standard UML profile Service 
Oriented Architecture Modeling Language (SoaML) [5] to 
represent the design of a SOA system.  SoaML defines extensions 
to UML 2 to support a range of modeling requirements for 
service-oriented architectures [6].  

Another standard UML profile used in our approach is MARTE 
(Modeling and Analysis of Real-Time and Embedded Systems) 
[7], which bridges the gap between the software and the perfor-
mance domains. The MARTE annotations help us not only in 
transforming the SModel into a PModel, but also in propagating 
the modifications due to the application of design patterns. 

For studying the impact of design patterns on the system and its 
performance, the SOA design patterns need to be formally 
specified. In this paper, we use the Role Based Modeling 
Language (RBML) [8] to formally define two parts of a SOA 
design pattern: the set of SModel elements and their relationships 
that represents the problem addressed by the pattern, as well as 
the subset that constitutes the solution. The pattern application 
will actually replace the elements from the “problem” subset with 
the “solution” subset, leaving the remaining SModel elements 
unchanged. The actual implementation of the SModel 
transformation that corresponds to the pattern application rules is 
implemented using the standard language QVT (Query, View, and 
Transformation) Operational (QVT-O) [9]. Trace links between 
SModel and Pmodel (created during the initial PModel derivation) 
are used to propagate the changes to the PModel. We illustrate the 
proposed approach with the Service Façade design pattern applied 
to a Shopping and Browsing system.  

The paper is organized as follows: Section 2 presents related 
work; Section 3 shows an overview of the approach proposed in 
this paper; Section 4 presents briefly the derivation of a 
performance model from the SOA design (i.e., SModel to PModel 
transformation); Section 5 discusses SOA design pattern 
specification using RBML; Section 6 presents the pattern 
application to a SModel using RBML and QVT-O; Section 8 
shows how the SModel changes are propagated to the 
performance model and Section 9 presents the performance 
analysis results for a case-study system before and after a design 
patterns is applied. Finally Section 10 concludes the paper. 
 

2. RELATED WORK 
There are a significant number of papers on the derivation of a 
PModel of a system from the design model (SModel). The OMG 
standards for UML performance annotations, SPT and MARTE, 
have enabled research to transform UML design specifications 
into many kinds of performance models, based for example on 
Queuing Networks [10], Layered Queuing Networks [2, 11, 12] 
Stochastic Petri nets , etc. 

PUMA is a set of transformations which take as input different 
SModels and transform them into different performance models 
[2, 11]. PUMA uses a pivot language, the Core Scenario Model 
(CSM), to extract and audit performance information from 
different kinds of design models (e.g., different UML versions 
and types of diagrams) and to support the generation of different 
kinds of performance models (e.g., QN, LQN, Petri nets, 
simulation). In [12], a graph-grammar based algorithm was 

proposed to divide the activity diagram into activity sub-graphs, 
which are further mapped to LQN phases or activities. In this 
work we propose to create a mapping between SModel and 
PModel elements during the PUMA model transformation, to help 
us propagating incremental modifications of the design model 
directly to PModel.  

Another category of related works studies the impact of design 
patterns on software performance.  Beside the patterns which are 
recognized as best practices for software development, Smith and 
Williams [13] introduced general performance anti-patterns, 
which exclusively focus on performance concerns. Anti-patterns 
are defined as common design mistakes that consistently occur, 
causing undesirable results. Cortellessa et al. [14] present an 
approach based on anti-patterns for identifying performance 
problems and removing them. The identification of an anti-pattern 
suggests the architectural alternatives that can remove that 
specific problem.  Arcelli et al.  [15] used the anti-pattern 
detection approach in  [14] and also RBML to detect and remove 
performance anti-patterns from the software architectural model.  
In their approach [15], RBML is used to present the anti-pattern 
problems as source and anti-pattern solution as target role models. 
We use a similar approach for specifying the SOA design pattern, 
but the difference is that we implement the pattern application in 
QVT-O and propagate the changes directly to the PModel. 

Menascé et al [16] presents a framework called SASSY whose 
goal is to allow designers to specify the system requirements 
using a visual activity-based language and to automatically 
generate a base architecture that corresponds to the requirements. 
The architecture is optimized with respect to quality of service 
requirements (i.e. as measured by several performance metrics 
such as execution time and throughput) through the selection of 
the most suitable service providers and application of quality of 
service architectural patterns. 

Parsons and Murphy [17] introduce an approach for the automatic 
detection of performance anti-patterns by extracting the run-time 
system design from data collected during monitoring by applying 
a number of advanced analysis techniques.  

Xu [18] applied rules to performance model results to diagnose 
performance problems and to propose solutions for fixing them, 
which resulted in changes at the PModel level, which could be 
interpreted to suggest corresponding design changes. However, 
the changes were not propagated automatically to the SModel. 

In this paper, we propose a technique for propagating the design 
pattern changes to the design of a service based system, which 
allows us to study the pattern impact on the system performance.  
We use RBML for the specification of the SOA design patterns 
and the OMG standard for model transformation, QVT-O for 
refactoring the SOA design according to the design pattern. To 
the best of our knowledge, none of the works in literature 
addresses the problem as proposed in this paper.   

3. PROPOSED APPROACH OVERVIEW  
Figure 2 shows an overview of the proposed approach. The key 
areas of the overview are shown in grey boxes (numbered from 1 
to 3). Grey area 1 (solid grey) shows a more detailed view of what 
is shown in Figure 1.(A). As briefly discussed earlier, the 
performance model of a system (PModel) is generated from its 
software design model (SModel) extended with performance 
annotations (i.e. MARTE) using the transformation chain PUMA 
[2].  PUMA uses an intermediate model called “Core Scenario 

90



 

Model” (CSM) to bridge the gap between different kinds of 
software models accepted as input and different kinds of 
performance models generated as output. CSM bridges the 
semantic gap between SModel and PModel, and captures only 
those software aspects that are relevant to performance models. 
During the initial transformation, trace links expressing the 
mapping between the SModel and the corresponding PModel 
elements are created which is used in grey area (3). 

We assume that, in order to improve the quality of a SModel, the 
designer will apply different design patterns, which may impact 
performance and other non-functional properties, either positively 
or negatively. A designer selects a design pattern to solve a 
performance or non-performance problem and decides where to 
apply it by binding the roles defined in the pattern to specific 
SModel elements. In this paper we do not discuss the factors 
involved in selecting a candidate design pattern for SModel 
design issues, leaving it for future work. The grey areas (2) and 
(3) (dotted grey) in Figure 2 show the processes involved in 
applying the pattern and propagating the changes.  

 

Pattern Application 
Rules – QVT 

Transformation Rules

RBML Pattern 
Presentation - Problem

RBML Pattern 
Presentation - Solution

SOA Pattern 
Repository

SModel
(SoaML)

CSM to PModel  
Transformation

PModel
(LQNS)

Select the 
Candidate SOA 
Design Pattern 

Performance 
Analysis 

Identify areas with problem in
SOA design

Identifying the model
elements affected

by the pattern 

Modifying the PModel
to present

the changes

Refactoring the SModel

Identifying Affected PModel Elements
and Parameters using the SModel

To PModel mapping

SModel after applying 
the design pattern

(1)

(2)

(3)

Verifying the transformed (output)
design

SModel to
CSM

Transformation 
CSM

SModel
to PModel 
Mapping

 

Figure 2 : Proposed Approach Overview 

Grey area (2) represents the process for refactoring the SModel by 
applying a pattern. The process starts when the designer selects a 
pattern. Next, the pattern specification is retrieved from the SOA 
pattern repository. As further discussed in Section 5, each design 
pattern consists of three main parts: problem, solution and 
application rules. In this paper, we use RBML to formally specify 
the first two, which are named “RBML Pattern Problem 
Specification”/”RBML Problem” and “RBML Pattern Solution 
Specification”/”RBML Solution”. Details about RBML and the 
design pattern specifications are provided in Section 6. We use 
the QVT-O language for implementing the model transformation 
that corresponds to the pattern application rules. In Figure 2, area 
(2) “RBML Pattern Problem Specification” is used for identifying 
a subset of SModel elements that will be modified by the pattern 
(i.e., the respective model elements and their relationships must 
conforms to the RBML problem specification). If a match is 
found, the respective subset will be replaced by a “solution 
subset”, which must conform to the “RBML Pattern Solution 
Specification”. The actual transformation is described in the form 
of generic QVT rules, which consist of one or more basic actions, 
such as Adding, Removing, and Moving a model element or 

parameter.  After performing the model transformation, the 
outcome is verified by checking whether the newly modified 
SModel elements conform with the RBML Pattern Solution 
Specification (see Section 7 for more details). 

The SModel changes are propagated to PModel. As shown in 
Figure 2,  area (3), the mapping between the elements of SModel 
and PModel is used to identify the required performance model 
changes. Finally, the flow of the processes in Figure 1 goes back 
to area (1) where the modified PModel after applying the design 
pattern is being re-analyzed to investigate the impact on the 
system performance.  In Section 9, we discuss the performance 
results changes due to application of Service Façade design 
pattern to the SOA system case study.  

4. SMODEL TO PMODEL 
TRANSFORMATION 
In this section we present briefly the SModel expressed in UML 
extended with SoaML and MARTE, and the corresponding 
PModel using the Layered Queuing Network formalism [2]. 

4.1 SoaML and MARTE annotations 
The SoaML specification is an OMG standard for the design of 
services within a SOA system [5, 6]. It is defined as a UML 
profile that provides a standard way to architect and model SOA 
solutions. In this section we provide a brief description of the 
SModel of a SOA system used in our approach.  

In SOA design using SoaML, the first step is to identify services 
by analyzing the business goals and objectives of the system, as 
well as the businesses processes to be implemented for meeting 
these objectives.  Using these processes it is possible to identify 
other business-relevant services. The model created in this step is 
called Business Processes Model (BPM) diagram [8].  In this 
paper we specify the BPM diagram using the UML activity 
diagram notation [19]. An UML activity diagram representing an 
example of such a model for a shopping and browsing service is 
shown in Figure 3. Once the business processes have been 
identified, each will be specified in a business process diagram 
and refined in regard to participants, their tasks, and information 
flow between the participants.  

The next step is to define the Service Architecture Model 
(SEAM) based on the existing BPMs. SEAM is a high level 
description of how participants work together for a purpose by 
providing and using services expressed as service contracts. 
Participants are recognized from pools, participants and lanes 
specified in the BPM processes. Once the participants are known, 
the possible interactions between the different participants must 
be identified and represented as service contracts. Figure 4 
represents a SEAM in the form of a UML collaboration diagram 
with service participants and contracts. Participants are modeled 
as UML classes stereotyped «Participant» and a service contract 
is a UML collaboration with the stereotype «ServiceContract». In 
SoaML, the service contracts can be refined further in a Service 
Contracts diagram [6]. Each participant plays either the role of 
Provider or of Consumer with respect to a service.  For instance, 
in Figure 4 the Shopping participant provides PlaceRequest and 
consumes PlaceOrder. A participant may provide or consume any 
number of services. A service contract represented by a 
collaboration may contain nested participants and services. 

91



 

 

Figure 3: Checkout Business Process Model  

«ServiceArchitecture»
OnlineShop

 

Figure 4: Service Architecture model for the Online Shop case 
study 

 

Next, the specification of each service is further refined by 
defining the service interfaces between consumers and providers 
of the service. The diagram created in this step is called Service 
Interface diagram. It represents the provided and required 
interfaces, the roles that the interfaces play in the service 
specification, and protocols for how the roles interact. The third 
step, Service Realization, starts with identifying services that each 
participant provides and/or uses. This process has an important 
effect on service availability, distribution, security, transaction 
scopes, and coupling. The third step actually models how each 
service functional capability is implemented and how the required 
services are actually used. The forth step, called Service 
Composition or Components diagram, is about assembling and 
connecting the service participants models and then 
choreographing their interactions to provide a complete solution 
to the business requirements. Finally the last step is Service 
Implementation. 

Among all the SoaML models mentioned in this section, our 
approach uses BPM (Figure 3) and SEAM (Figure 4) to propagate 
to PModel the changes made into the SModel by the application 
of design patterns. The reason is that all the information required 
to create the PModel can be obtained from these diagrams [3]. 
(See Section 8 for more details). 

We add performance information to a UML+SoaML specification 
by adding annotations defined in the OMG standard profile 
MARTE [7]. Figure 3 shows an example of a  SoaML behavioral 
diagram for the checkout operation of a shopping application. 
MARTE performance annotations describe the behavior as a 
Scenario, with steps and a workload «GaWorloadEvent» attached 
to the first step. Concurrent runtime instances «PaRunTInstance» 
are identified with swimlane roles. «PaStep» represents the 
execution of an activity or an operation invoked by a message, 
and has attributes hostDemand giving the required execution time 
and PAprob giving the probability if it is an optional step. The 
workload «GaWorloadEvent» defines a closed workload (a set of 
users) with a population given by the variable $Nusers and a think 
time for each user given by the variable $ThinkTime. 

For performance analysis, the SOA specification must include the 
deployment of concurrent runtime component instances (see 
Figure 5). Where deployment is not specified, some kind of 
deployment is assumed, such as one host node with one 
concurrent process for each service. UML deployment diagrams 
will be used, and performance annotations are also added to this 
diagram. In Figure 5, the processing nodes are stereotyped as 
«GaExecHost» and the communication network nodes as 
«GaCommHost», and the stereotypes have attributes for 
processing capacity, etc. Such annotations help us not only in 
transforming SModels into PModels, but also in propagating 
future modifications due to the application of design patterns. 

 

 

Figure 5: SOA Deployment Diagram 

92



 

4.2 Performance Model (PModel) 
This work constructs performance models (PModels) in an 
extended queuing format called Layered Queuing Networks 
(LQNs) [2]. An LQN represents congestion in waiting for service 
provided by host processors and also by software servers. 

Figure 6 shows the LQN model corresponding to the SoaML 
business process in Figure 3. For each service there is a task, 
shown as a bold rectangle, and for each of its operations there is 
an entry, shown as an attached (thin line) rectangle. The task has a 
parameter for its multiplicity (e.g. {1} for OrderProcessing task in 
Figure 6) and the entry has a parameter for its host CPU demand, 
equal to the hostDemand of the operation in SoaML (e.g. [0.3 
ms]). Calls from one operation to another are indicated by arrows 
between entries (a solid arrowhead indicates a synchronous call 
for which the reply is implicit, while an open arrowhead indicates 
an asynchronous call). The arrow is annotated by the number of 
calls per invocation of the sender (e.g. (3)). For deployment, the 
host node is indicated by a round symbol attached to each task. 

User
[z=1000ms]

users

Entrynet
[pure delay 
100 ms]

Network
Network

p

users
p

EntryServ
2

[s=30ms]

EntryServ1
[s=30ms]

EntryPayCredit
[s=1ms]

EntryPayDebit
[s=1ms]

Order Processing
Service
{1}

Orde
rpEntryProcessCredit

[s=1ms]
EntryProcessDebit

[s=1ms]

Payp

Payment 
Processing

{1}

EntryCT
[s=5ms]

Product 
Service
{1} 

CTp

EntryDCT
[s=5ms]

DB
{1} 

DBp

0.5
0.5

3 1.5

1.5

2

1.5

Browsing Service

0.5

1

ShoppingService

Shop
P

BrowP

 

Figure 6 : LQN Performance Model (PModel) corresponding 
to Figures 3 and 4 

We apply existing techniques [2, 11, 12] and also the technique in 
our previously published paper [3] to convert the 
UML+SoaML+MARTE SModel to a LQN model and to build the 
mapping between SModel and PModel elements. The mapping is 
further discussed in Section 8. 

5. PATTERN APPLICATION RULES 
A design pattern is defined as a proven design solution for a 
common design problem that is formally documented in a 
consistent manner. In the context of SOA, there are many 
categories of design patterns which address different aspect of a 
SOA-based systems including but not limited to: service 
messaging patterns, service implementation patterns, service 
security patterns, composition implementation patterns, etc. [1]. A 
SOA design pattern contains the description of a situation or 
problem where it applies, the solution for it and application rules. 
The RBML formal specification of these patterns and 
implementation of their application rules in form of QVT rules 
proposed in this paper helps the system designers to 
systematically identify the place in a SModel where a pattern can 
be applied and to automatically apply the pattern. 

This section describes a pattern from the category of service 
implementation patterns called “Service Façade” [1]. Later this 
example will be used to show traceability issues and techniques.   

Design Pattern Service Façade [1]. In general, the Service 
Façade addresses the way in which a service can accommodate 
changes to its contract or implementation while allowing the core 
service logic to evolve independently. 

Problem: Usually a service contains a core logic that is 
responsible for operating its main capabilities. When a service is 
subject to change either due to changes in the contract or in its 
underlying implementation, this core service logic is also prone to 
modifications to accommodate that change.  

Solution: Façade logic is added into the service architecture to 
create one or more layers of abstraction that can accommodate 
future changes to the service contract, the service logic, and the 
underlying service implementation. 

Applications Rules: Service façade components can be 
positioned within the service architecture in different ways, 
depending on the nature and extent of abstraction required, such 
as: 1) between the core service logic and the contract to 
intentionally tightly couple to their respective contracts, allowing 
the core service logic to remain loosely coupled or even 
decoupled 2) between the core service logic and the underlying 
implementation resources to help shield core service logic from 
changes to the underlying implementation by abstracting backend 
parts. 

As can be understood from the pattern description, it requires a 
new component to be added to the service architecture wherever 
there is service core logic that is tightly coupled with its service 
contract or underlying implementation. The application rules for 
this pattern are defined as: 

 Conditions: If there is a core service logic in the SOA design 
which is identified as tightly coupled (considered as a design-
choice by the system designer) with its associated contracts or 
underlying implementations.  

 Actions: Add a new façade participant between the core 
service logic participant and the coupled contracts/underlying 
resources. Change all the communications in the service core 
logic and the coupled contract/underlying implementation to 
consume/provide services from/to the façade participant. Add 
processes (activities) to the newly added participant as façade 
to handle the responses/requests from the service core logic 
and also service contract/underlying implementation.  Since 
the façade participant is created to be coupled with the service 
core, this newly added participant should be created as a 
private participant and in the same component (or even the 
same physical service). 

As it can be understood from this pattern, new processes and 
participants need to be created in the SOA design. Therefore this 
pattern is targeting the business process in the SOA design. In 
future sections, we use this design pattern and apply it to the case 
study shown in Figure 3 and trace its impacts on the PModel of 
the case study. 

There are several ways that the facade pattern could be applied to 
the SOA specification shown in Figure 3 and Figure 5. In general, 
if there is a service core which is prone to future changes, a 
service façade can help to protect it. In the SOA example in this 
paper, the shopping and browsing services, payment service, and 

93



 

product service are candidates for service façade, but we assume 
that the shopping service is selected as core service. The Service 
Façade pattern will be applied to accommodate requests on 
multiple channels (different types of devices, e.g. desktops, 
tablets, and smartphones). The capability to handle requests from 
multiple channels could be created either by adding new activities 
to each service/task (which may corrupt the core logic), or by 
applying the Service Façade pattern, so we consider both 
alternatives. In Section 7 and 8 , the change due to application of 
the Service Façade pattern is propagated to the PModel and then 
in Section 9, the system performance is evaluated for both 
approaches (multi-channel implementation with and without 
Service Façade).   

6. ROLE-BASED SOA DESIGN PATTERN 
SPECIFICATION 
Informal descriptions of the design patterns (similar to the one 
discussed in section 5) are useful for communicating proven 
solutions to the development team, but they lack the formality 
needed to support precise specification of design patterns and the 
development of automated techniques and supporting tools. 
Although formal pattern specification languages using a 
mathematical notation (e.g., see [20, 21]) provide the concepts 
needed to precisely describe design patterns, applying them 
requires sophisticated mathematical skills. Therefore in this 
research, we decided to deploy pattern specification languages 
that are based on familiar software modeling concepts (e.g. UML) 
to specify SOA design patterns in our proposed technique in this 
paper.  The notation used is called Role-Based Modeling 
Language (RBML) [8] , which it was used for a similar purpose 
(i.e., specifying performance anti-patterns) in [22]. 

A Role Model is a structure of meta-roles (hereafter called roles), 
where a role defines properties that determine a family of UML 
model elements [8]. A UML model element conforms to a role if 
it is an instance of the role's base and has the properties specified 
in the role.  A Role Model is thus a characterization of UML 
diagrams and its profiles such as SoaML. Therefore a Role Model 
realization is a model (e.g., a static structural diagram, sequence 
diagram) that consists of realizations of the roles in the Role 
Model. The concept of role in RBML is very helpful to capture 
the various aspects of the knowledge in the design patterns. 

In model specification using RBML, the specification consists of 
a Static Role Specification (SRMs) that specifies the static 
structural models, and a set of Interaction Role Models (IRMs) 
that specifies interactions (i.e. behaviors) [8]. Respectively, we 
use SRM to represent the static and IRM for interactive 
(behavior) aspects of SOA design patterns.  

In [8], authors provided the SRM notation and IRM samples for 
UML sequence and collaboration diagrams. Since in this research 
we use UML+SoaML to present the SOA system under study, we 
extended the concepts proposed in [8] with IRM for activity 
diagrams using UML extended with profiles. 

6.1 Static Role Models (SRMs) in SOA 
Figure 7.(A) shows the structure of a single SRM role. A SRM 
role characterizes a set of UML static modeling constructs (e.g., 
class, and association constructs). The top section has three parts: 
1) a role base declaration in form of “«Base Role»”, where Base 
is the name of the role's base (i.e., the name of a metamodel class) 
2) a role name declaration in form of “/RoleName”, where 
RoleName is the name of the role; and 3) a realization 

multiplicity that specifies the allowable number of realizations 
that can exist for the role in a realization of the SRM that includes 
the role. The second section contains metamodel-level constraints 
and the third, optional, section contains feature roles that 
determine a family of application-specific properties (e.g., 
properties represented by attributes and operations defined in 
application-specific classes). 

In RBML, there are two types of feature roles: 

(1) Structural roles that specify state of the properties that are 
realized by attributes or operations in a SRM role realization. 

(2) Behavioral roles specify behaviors that are realized by a 
single operation or method.  

In this paper, we use SRM to represent the static aspects of a SOA 
design pattern. In pattern specification using SRM, each SOA 
participant (e.g., providers and consumers) can be considered as a 
role.  An example of service façade SRM is shown in Figure 7.(A) 
SRM presents a role for coupled core service logic. In Figure 
7.(B), the “Shopping” service is playing that role (assuming that 
this was  the decision of the designer).  

 

Figure 7 : (A) SRM of a coupled core service in Service 
Façade (B) Conformance to coupled core service in Shopping 

example  

In SOA systems, the architecture is represented not only with 
class diagrams, but also with collaboration diagrams, as for 
example the service architecture. Therefore, we also use SRM 
specifications in the form of collaborations (see Figure 8). 

6.2 Role Relationships  
In RBML, a role can be associated with another role in a class 
diagram, indicating that the realizations of the roles are associated 
in a manner that is consistent with how the bases of the roles are 
related in the UML model. RBML uses the UML form of 
association to represent relationships between roles. Role 
associations can be named and can have multiplicities associated 
with their ends. An example of relationship between roles in 
SoaML is shown in Figure 7.(B). In this figure, the “Shopping” 
service, which plays the role of Coupled Core Service in the 

94



 

Service Façade design pattern is in “shop” relationship with 
“User”. The multiplicity on the role relationship shows that more 
than one user can be in “shops” relationship with the “Shopping” 
service.  

«ServiceArchitecture»
ServiceFaçadeProblem

|CoreService

|CoreService
Contract

|Customer <<Consumer>>

<<Provider>>

«ServiceArchitecture»
ServiceFaçadeSolution

|CoreService
Contract

|Customer

<<Consumer>>

<<Provider>>|CoreService

| Façade|Façade
Contract

<<Consumer>>

<<Provider>>

 

Figure 8: SRM specification for the Service Façade pattern: 
problem (top) and solution specification (bottom) 

<<PaRunTInstance>>

|Customer

|Request
Service

|Convert
FwdRequest

<<PaRunTInstance>>

|Façade

|Convert
FwdReply|GetReply

|Accept
Request

<<PaRunTInstance>>

|CoreService

CoreService
Logic

|Reply

<<PaRunTInstance>>

|Customer

|Request
Service |Accept

Request

<<PaRunTInstance>>

|CoreService

CoreService
Logic

|Reply

|GetReply

(B) ServiceFaçadeSolution

(A) ServiceFaçadeProblem

 

Figure 9: IRM specification for the Service Façade behavior 
view: (A) pattern problem specification; and (B) pattern 

solution specification 

 

The RBML specification of the service architecture view of the 
Façade Pattern is illustrated in Figure 8: the problem specification 
on the top and the solution on the bottom. The roles played by the 
participants and the service contracts are represented as formal 
parameters (by convention the names start with ‘|’). When the 
pattern will be applied, the formal parameters |Customer, 
|CoreService, |CoreServiceContract will be matched and bound to 
actual participants and service contracts from the SModel service 
architecture, as described in Section 7. 

6.3 Interaction Role Models (IRM)  
We use Interaction Role Model (IRM) to present the interactions 
between participants in SOA behavior diagrams (e.g., a BPM 
diagram). IRM is defined using the roles specified as formal 
parameters in the SRM for specifying the participants and may 
add other roles to specify some of their actions. Figure 9 
illustrates the IRM behavior view of the Façade Pattern: (A) the 
pattern problem and (B) the pattern solution.  When the pattern is 
applied, a new participant |Façade is added. Its activities are 
located in a new swimlane in the activity diagram in Figure 9.(B). 
The activities from the Service Façade Problem with names 
starting with ‘|’ (i.e., formal parameters) will be matched and 
bound to activities from a concrete BPM diagram, which will be 
then modified according to the pattern solution. For instance, a 
participant playing the role of |Customer will need to perform an 
activity that matches |RequestService and another that matches 
|GetReply. The activity sending the request will be followed by an 
edge crossing the swimlane to the |CoreService, while the activity 
receiveing the reply has an incoming edge from the |CoreService 
swimlane. Similarly, the activities execute by a participant 
playing the role of |CoreService will have to be matched with 
|AcceptRequest and |Reply, respectively. Figure 10 illustrates the 
refactored BPM after applying the Service Façade; its activities 
shaded in grey are bound to formal parameters from Figure 9.(B). 

6.4 Conformance with Pattern SRM and IRM 
An SRM is a generic presentation of the SOA model structure. 
Each role in a SRM specifies a specialization of its base class in 
the UML model. In this paper, we consider that a SModel 
diagram or sub-diagram structure conforms to a pattern SRM if 
each role defined in the pattern SRM can be played by at least one 
model element from the SModel. This involves the following: 

(i) Each role defined in the pattern SRM has at least one 
matching SModel element and for each role there is at least 
one match for metamodel-level constraints specified in 
SRM. 

(ii) Each attribute/behavior defined for the role in pattern SRM 
has a matching attribute/behavior among the SModel 
elements.  

Also we consider that a SModel behavior diagram conforms to a 
pattern IRM if: (a) it conforms structurally to the associated 
pattern SRM and (b) the behavior of roles specified in IRM match 
the behavior of elements playing SRM roles. The definition of 
behavioral conformance is dependent to the UML behavioral 
diagram used to illustrate the scenario. In SoaML, a BPM which 
is an UML activity diagram is one of the main behavioral 
diagrams. An activity diagram used in a SOA SModel conforms 
to IRM if the model elements matching the SRM roles are 
following the same execution flow and are located in matching 
swimlanes as the roles in IRM.   

95



 

G
aP

erfo
rm

an
ce
C
o
n
te
xt

{co
n
te
xtP

aram
s=
$
N
u
sers,$

T
h
in
kTim

e, $
R
}

 

Figure 10 : Refactored BPM after applying the service façade 
design pattern  

 

7. PATTERN APPLICATION USING 
RBML SPECIFICATIONS AND QVT-O 
In Section 6, we discussed the importance of using a formal 
UML-based pattern definition language for the specification of 
the design patterns. Furthermore we discussed how we used 
RBML to specify the design pattern problem and solution 
description. In this section we discuss the way that the RBML 
specification for both solution and problem is being used to apply 
the design patterns to a SModel. First, the “RBML problem” is 
used for identifying the subset of SModel elements that will be 
affected by the pattern, then the “RBML solution” is used to 
identify the affected model elements due to application of the 
pattern . Once the impacted elements in the SOA are identified, 
the QVT-O transformation rules are executed to apply the 
changes (Section 7.2). Finally, the refactored SModel is being 
verified by checking its conformance with “RBML solution”. Due 
to lack of space, in this section we only show the application of 
design patterns to SModel BPM and SEAM. Using the same 
techniques, the design pattern changes can be reflected to SModel 
in Deployment Diagram.  

7.1 Conformance with RBML Specification 
The first step toward applying a design pattern to a SOA design is 
to identify the places in the SModel where the design pattern can 
be applied. This can be done by finding a diagram or subset of it 
which conforms to the RBML Pattern Problem Specification.  

In our proposed approach, the place in the SModel where a design 
pattern should be applied is identified by the software designer. 
Figure 11.(B) shows the SoaML service architecture diagram for 
the case study system, and the subset of model elements for 
applying the Service façade pattern shown in grey does conform 
to the RBML Pattern Problem Specification shown in Figure 
11.(A). 

As shown in Figure 11, there might be more than one place in the 
SModel which conforms to the RBML Pattern Problem 

Specification, but since Service Façade is supposed to be applied 
to the core service logic only, the software designer must indicate 
which service is considered as core service. This is another reason 
for the direct intervention of software designer in the selection of 
design patterns and the place where they should be applied. 

 

«ServiceArchitecture»
ServiceFaçadeProblem

|CoreService

|CoreService
Contract

|Customer <<Consumer>>

<<Provider>>

«ServiceArchitecture»
OnlineShop

<<ServiceContract>>

Place Request

<<ServiceContract>>

Place Order

<<ServiceContract>>
Process 
Payment

<<Participant>>

:User

<<Participant>>

:Shopping

:Order Processor

<<Participant>>

:Payment Processor

<<Consumer>>

<<Provider>>

<<Consumer>>

<<Consumer>>

<<Provider>>

<<Provider>>

(A)

(B)

 

Figure 11: (A) RBML Facade Pattern Problem Specification” 
(B) SModel Service Architecture diagram  

 

Once the subset of SModel elements corresponding to the pattern 
problem was identified, the following changes need to take place: 

 Adding a new contract to service architecture associated to 
the new communication between the service façade 
participant and service (in this case, “Format Multi-
Channel Request” is added as the  Façade contract) 

 Moving all the communication to core service logic contract 
to the newly added service contract (in this case the 
communication from participant “ User1” is moved to 
“Format Multi-Channel Request”) 

 Adding a new contract participant as Service Façade 
(“Multi Channel Façade 1” is added) 

 Moving all the communications from the core service logic 
contract to the newly added contract participant (all the 
communications from “Place Request” are moved to “Multi 
Channel Façade 1”). 

All the above steps are defined as generic steps for adding a 
service Façade to an existing SOA design. The above steps 
become specific when they are bound to model elements of a 
specific pattern application. Therefore similar to RBML Pattern 
Specifications of the problem and solution, the above can be 
translated into a form of model transformation rules and be re-
used for future application of the Service Façade design pattern to 
any SModel. In the Section 7.2 we discuss this in more details.  

96



 

7.2 Applying the Design Pattern using  
QVT-Operational  
The RBML graphical presentation of the design patterns helps the 
software engineer to identify the elements that need to be added 
or removed from a SModel, but it does not help in applying the 
changes to the model. Therefore in this research, we define the 
model transformation rules corresponding to the application of a 
pattern in OMG’s standard language QVT-Operational [9]. The 
rules are able to transform (more specifically, refactor) a SModel 
by adding or removing model elements. QVT defines three 
domain-specific languages:  Relations, Core and Operational. In 
this research, we chose QVT Operational (QVT-O) because of its 
flexibility in comparison with the other two languages, due to the 
fact that it includes constructs commonly found in imperative 
languages, such as loops and conditions (i.e. Figure 12). 

 

Figure 12: QVT-O rules for Service Façade Pattern 

By examining the types of SModel changes needed to apply a 
design pattern, we introduced the following three refactoring 
primitives: 1- Adding a model element, 2- Removing a model 
element, and 3- Moving a model element. Using these refactoring 
primitives, more complicated refactoring actions (e.g. Merge and 
Divide) can also be implemented. In the model transformation we 
use in this paper, it’s assumed that the model elements which are 
not impacted by the patterns are being copied into result model. 

Figure 12 shows the QVT-O rules that have been created for the 
solution statement of the Service Façade pattern. The main 
function starts in line 5 with getCoreServiceToFaçade(). This 
function retrieves the selected core service logic by the system 
designer that the Service Façade needs to be applied for. Then a 
new Service Façade and also an associated service contract are 
being created by addFaçadeService() and 
addNewFaçadeContract() and all the connecting edges (i.e. 

incoming and outgoing) are being updated to accommodate the 
new model nodes.   
addFaçadeService() adds the new Service Façade node to the 
target diagram by making a copy of the provided core service 
logic. Line 18 shows that the new node is being created using the 
deepclone() that QVT-O provides. Lines 19-29 contain 
conditional statements checking if there exist any incoming or 
outgoing edges that connect to the core service logic. When 
found, the first edge in either set is copied with the QVT-O 
deepclone() operation and then connected to the core service logic 
and the Service Façade (cloned node) by setting the source and 
target properties appropriately. 

In lines 29-36 all outgoing edges from the core service logic are 
moved to the Service Façade by setting the source property of 
each edge to point to the new element. addNewFaçadeContract() 
function will also works very similarly to addFaçadeService() to 
create a new service contract for the newly created Service 
Façade. 

The result of executing the QVT-O transformation rules for 
Service Façade design pattern (i.e. which are partially presented 
in Figure 12) is shown in Figure 13.(B). The Façade service (i.e. 
called contract participant in SoaML service architecture diagram) 
and the Façade contract are both added and all the 
communications are moved to accommodate the design pattern 
changes.  

«ServiceArchitecture»
ServiceFaçadeSolution

|CoreService
Contract

|Customer

<<Consumer>>

<<Provider>>|CoreService

| Façade
|Façade
Contract

<<Consumer>>

<<Provider>>

«ServiceArchitecture»
OnlineShop

<<ServiceContract>>

Place Request

<<ServiceContract>>

Place Order

<<ServiceContract>>
Process 
Payment

<<Participant>>

:User1

<<Participant>>

:Shopping

:Order Processor

<<Participant>>

:Payment Processor

<<Consumer>>

<<Provider>>

<<Consumer>>

<<Consumer>>

<<Provider>>

<<Provider>>

<<Participant>>

:MultiChannelFacade1

<<ServiceContract>>
FormatMulti 

ChannelRequest
Payment

<<Consumer>>

<<Provider>>

(A)

(B)

  
 

Figure 13: (A) “RBML Pattern Solution Specification” (B) 
Refactored SoaML Service Architecture diagram 

7.3 Verifying the Transformation Output  
After executing the model transformation implemented in QVT-O 
the transformed model can be verified to make sure that it 
represents the changes correctly. This not only verifies the content 
of the generated SOA design, but it also verifies the 
transformation rules which are used to generate the transformed 
diagrams. The application of the design pattern is implemented in 

97



 

the transformation and thus if the verification detects an error, this 
can be considered as a bug in the transformation and the 
transformation rules can be corrected. The step is part of the 
research (as an end-to-end verification of the transformation) 
rather than part of the proposed methodology. In this work, we 
verify the generated SOA design by checking the conformance of 
the transformed areas with the “RBML Pattern Solution 
Specification”. Figure 13 shows the generated model (Figure 
13.(B)) using the QVT-O transformation rules and also the 
conformance of the modified area with the “RBML Solution” 
(Figure 13.(A)). 

8. IDENTIFY PMODEL CHANGES 
In Section 7, we discussed how a design pattern can be applied to 
an SModel and how the modifications are identified. As a PModel 
is being generated from the SModel, modifications to SOA design 
lead to changes into the associated PModel of SOA and the 
performance analysis results. The LQN performance model is 
derived from the SOA Service Architecture (Figure 13.(B)), SOA 
BPM (Figure 10) and the SOA Deployment Diagram (Figure 5). 
Due to lack of space, in this paper we do not discuss the changes 
made to deployment diagram due to application of design pattern 
but for the sake of case study in this paper, the process is 
performed based on discussions in Sections 6 and 7 and results 
are used in performance evolution provided in Section 9. The 
changes to the LQN performance model due to the impact of 
design pattern are passed through these three models. The key 
elements of the LQN model are LQN Tasks, Processors, Entries 
and RequestArcs. The LQN performance model of the SOA under 
study before applying the Service Façade design pattern is shown 
in Figure 6 and its structure is discussed in Section 4.2. Therefore, 
a very straightforward mapping between SModel and PModel 
(which is determined automatically)  is established as follows [3]: 

 Mapping deployment diagram Executing Host Nodes to 
LQN hosts (processors) 

 Mapping Service Architecture diagram Contract Participant 
(i.e. services) to LQN tasks 

 Mapping activities in the BPM swimlane associated to the 
service presented in  Service Architecture diagram to LQN 
entries 

 Mapping Swimlane-crossing Edges to LQN Requests Arcs. 

Some swimlane-crossing Edges associated to a service in BPM 
represent outgoing requests for the service and some represent the 
incoming responses. Since in LQN diagram, the LQN Requests 
Arcs represent both requests and responses from the LQN task, 
only the BPM Swimlane-crossing Edges that make the request are 
mapped into LQN Requests Arcs. A more detailed discussion 
about mapping Swimlane-crossing Edges to LQN requests can be 
found in [12]. Based on the SOA design changes discussed in 
Section 7 and also the mapping showed in this section (see the 
grey area 3 in Figure 4 approach overview), the newly added 
Service Façade in service architecture diagram (Figure 13.(B)) in 
and the activities (annotated by «PaStep») in its associated 
swimlane (annotated by «PaRunTInstance») in BPM  (Figure 10) 
cause the creation of the “Service Façade” LQN task and its LQN 
entries, “EntryFaçade” shown in grey in the LQN model in Figure 
14. Also, since a new processing node is added to the deployment 
diagram for the newly added “Service Façade” component, a 
LQN processor is created in the LQN model and attached to the 
corresponding LQN task. 

User
[z=9s]

users 2

Entrynet
[pure delay 

80ms]
Network

Network
p2

users
p2

EntryServ
2

[s=30ms]

EntryServ1
[s=30ms]

EntryPayCredit
[s=1ms]

EntryPayDebit
[s=1ms]

Order 
Processing
Service
{1}

Ord
erpEntryProcessCredit

[s=1ms]
EntryProcessDebit

[s=1ms]

Payp

Payment 
Processing

{1}

EntryCT
[s=5ms]

Product 
Service
{1} 

CTp

EntryDCT
[s=5ms]

DB 
{1}

DBp

0.5 0.5

3 1.5

1.5

2

1.5

Browsing Service
{i}

Service
Façade

P

0.5

1

Entry 
façade1
[s=5ms]

Service 
Façade
{i} 

1

ShoppingService
{i}

Shop
P

BrowP

User
[z=10s]

users 1

Entrynet
[pure delay 
100 ms]

Network
Network

p1

users
p11

1

User
[z=8s]

users 3

Entrynet
[pure delay 
50 ms]

Network
Network

p3

users
p31

1

Entry 
façade2
[s=10ms]

Entry 
façade3
[s=20ms]

 

Figure 14: SOA Performance Model after applying the façade 
design pattern 

9. PERFORMANCE ANALYSIS  
This section discusses the impact of the pattern application on the 
performance results of the case study system. We evaluate the 
performance results of Shopping and Browsing SOA before and 
after applying the service façade design pattern. In this case study, 
it is assumed the core service logic is the Shopping and Browsing 
service and the service façade design pattern is applied to help the 
core service handle requests from more than one user type by 
adding a multi-channel service façade to SOA. We evaluate four 
scenarios named A, B, C and D, to find the system throughput and 
response time of all three user groups for a range of numbers of 
users in each group. For N users in “User Group 1”, we defined 
2N in “User Group 2”, and N/2 in “User Group 3”. N was varied 
from 2 to 220, so the total number of the system users (i.e. 
N+2N+N/2=3.5N) ranged from 7 to 770. In scenario A, the 
service façade pattern is not applied and instead the multi-channel 
capability is implemented by adding to each of the shopping and 
browsing services in the system. The performance model for 
scenario A is shown in Figure 15. In scenario A, a separate task 
entry is created for each service as used by each user group (1, 2 
and 3). In scenario B the service façade pattern is applied, giving 
the performance model shown in Figure 14. The new service 
façade task added to the system has three entries, each responsible 
for the interface with one group of users. Also the service facade 
task has its own dedicated processor. Figure 16 compares the 
system throughputs and Figure 17 compare the system response 
times of scenarios A and B for each user group of the system. 
Figure 16 and Figure 17 show that scenario B has better 
throughput and response time than A for all three user groups. 
The underlying reason is that in scenario B a new processor is 
dedicated to the Service Façade task, while in scenario A the new 
functionality related to the multi-channel interface is running on 
the existing processors for the Shopping and Browsing services. 
To make a more fair comparison between the “before” and “after” 
scenarios, we use our knowledge of how the resources are used in 
the scenarios A and B to experiment with scenarios C and D. 

98



 

User
[z=9s]

users 2

Entrynet
[pure delay 

80ms]
Network

Network
p2

users
p2

EntryServ2
1

[s=30ms]

EntryServ11
[s=30ms]

EntryPayCredit
[s=1ms]

EntryPayDebit
[s=1ms]

Order 
Processing
Service
{1}

Ord
erpEntryProcessCredit

[s=1ms]
EntryProcessDebit

[s=1ms]

Payp

Payment 
Processing

{1}

EntryCT
[s=5ms]

Product 
Service
{1} 

CTp

EntryDCT
[s=5ms]

DB 
{1}

DBp

0.50.5

3 1.5

1.5

2

1.5

Browsing Service
{i}

0.5

1

0.5

ShoppingService
{i}

Shop
P BrowP

User
[z=10s]

users 1

Entrynet
[pure delay 
100 ms]

Network

Network
p1

users
p1

1

0.5

User
[z=8s]

users 3

Entrynet
[pure delay 
50 ms]

Network
Network

p3

users
p31

EntryServ12

[s=30ms]
EntryServ13
[s=30ms]

EntryServ22
[s=30ms]

EntryServ23
[s=30ms]

0.5
0.5

 

Figure 15: Performance Model after applying the multi-
channel capability to each service without applying any 

Service Façade Design Pattern 

 

Scenario C is obtained from A by changing the processors for the 
browsing and shopping services from single to dual-core. The 
reason is that these processors become the bottleneck in case A at 
high loads. Scenario D is obtained from B by changing the 
processors for the shopping and browsing services to dual 
processors and by allocating the service façade task to one of the 
existing processors that are under-utilized (in this case the 
processor of the Order Service task). So, the hardware resources 
for C and D are identical. The results for C and D are shown in 
Figure 18 and Figure 19. 

 

0

5

10

15

20

25

30

35

40

45

7 70 140 210 280 350 420 490 560 630 700 770

System Throughput Comparison ‐ A and B Scenarios 

User Group 1 ‐ A

User Group 2 ‐ A

User Group 3 ‐  A

user Group 1 ‐ B

User Group 2 ‐ B

User Group 3 ‐ B

Users

Req/Sec

 

Figure 16: System Throughput for Scenarios A and B  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

7 70 140 210 280 350 420 490 560 630 700 770

System Respose Time Comparison ‐ A and B Scenarios 

User Group 1 ‐ A

User Group 2 ‐ A

User Group 3 ‐ A

User Group 1 ‐ B

User Group 2 ‐ B

User Group 3 ‐ B

Seconds

Users

 

Figure 17: System Response Time for Scenarios A and B 

 
0

5

10

15

20

25

30

35

40

45

7 70 140 210 280 350 420 490 560 630 700 770

System Throughput Comparison ‐ C and D Scenarios 

User Group 1 ‐ C

User Group 2 ‐ C

User Group 3 ‐ C

User Group 1 ‐ D

User Group 2 ‐ D

User Group 3 ‐ D

Users

Req/Sec

 

Figure 18: System Throughput for Scenarios C and D 

0

0.5

1

1.5

2

2.5

3

3.5

7 70 140 210 280 350 420 490 560 630 700 770

System Respose Time Comparison ‐ C and D Scenarios 

User Group 1 ‐ C

User Group 2 ‐ C

User Group 3 ‐ C

User Group 1 ‐ D

User Group 2 ‐ D

User Group 3 ‐ D

Seconds

Users

 

Figure 19: System Response Time for Scenarios C and D 

Firstly, the throughput of C is better by about 20% than A due to 
the extra processing power added to the system. Secondly, the 
throughput and response time for D (the modified version of B) 
are only slightly worse than scenario C (the modified version of 
A) even though now C and D are running on identical hardware 
resources. The underlying reason is that we made use of our 
understanding of the resource utilization in the system and 
deployed the service façade in D on one of the existing but under-
utilized processors. In conclusion, we could minimize the 
negative performance effect of the façade service pattern with the 
help of the LQN model, while taking advantage of its benefits to 
the system architecture (i.e. creating one or more layers of 
abstraction that can accommodate future changes to the service).  

10. CONCLUSIONS 
This paper traces the change propagation due to applying a SOA 
design pattern, from the SOA design model (created using 
SoaML) to its performance model.  In illustration and using our 
approach, an example of SOA design patterns called Service 
Façade was applied to a Shopping and Browsing SOA case study, 
to equip it with a multi-channel request handler. In Sections 6 and 
7 we discussed how the SOA design patterns can be applied to the 
SOA design using the RBML pattern presentation and QVT-O 
application rules.  In Section 8 we showed that how the changes 
to SModel due to the application of a design pattern can be traced 
into performance model of the SOA using the mapping between 
SModel and PModel elements.   

The overall possibilities of the technique are demonstrated in 
Section 9 by showing the results of the performance analysis. In 
Section 9, we evaluate the performance of the Shopping and 
Browsing service using four different scenarios that represent the 
Shopping and Browsing SOA with multi-channel capability 
before and after applying the service façade. The experiment 
shows the system designer the impact of the design pattern on the 
performance results of system in a time and cost effective way 

99



 

(without constructing a new performance model for the modified 
SOA design) and helps to make decisions about applying the 
design pattern. The results also indicate that the impact of the 
design pattern is partly determined by how the system is 
deployed. We are planning on developing QVT rules to also 
modify the LQN model to reflect the SOA design pattern changes. 
Furthermore, we are planning to integrate the proposed approach 
in a methodology for improving the quality of SOA systems, 
which will address the issue of selecting appropriate design 
pattern candidates. This will give a complete technique for SOA 
design improvement. 

11. ACKNOWLEDGEMENTS  
This work was supported by the Ontario Centers of Excellence 
through its Centre of Excellence for Research in Adaptive 
Systems (CERAS), by the Natural Sciences and Engineering 
Research Council (NSERC) through its Discovery Grant program, 
and by the Healthcare Support through Information Technology 
Enhancements (hSITE) Strategic Research Network. 

REFERENCES 
[1]  Erl, T. SOA Design Patterns Prentice Hall PTR, Boston, 

MA, 2009. 

[2]  Woodside, M., Petriu, D. C., Petriu, D. B., Shen, H., Israr, T. 
and Merseguer, J. Performance by Unified Model Analysis 
(PUMA). In Proceedings of the WOSP '05 Proceedings of 
the 5th international workshop on Software and 
performance. ACM New York, NY, USA, 2005.  

[3]  Mani, N., Petriu, D. C. and Woodside, M. Studying the 
Impact of Design Patterns on the Performance Analysis of 
Service Oriented Architecture. In Proceedings of the 37th 
EUROMICRO Conference on Software Engineering and 
Advanced Applications (SEAA) (Oulu, Finland). IEEE 
Computer Society Washington, DC, USA, 2011.  

[4]  Rotem-Gal-Oz, A., Bruno, E. and Dahan, U. SOA Patterns 
(Early Access Edition). Manning Publications, 2007. 

[5]  Object Management Group, Service oriented architecture 
Modeling Language  (SoaML) URL: 
http://www.omg.org/spec/SoaML/1.0.1/ [Last time accessed 
Oct 5th, 2012]. Version 1.0, formal/2009-11-02.  

[6]  Elvesæter, B., Carrez, C., Mohagheghi, P., Berre, A., 
Johnsen, S. G. and Solberg, A. Model-driven Service 
Engineering with SoaML. Springer Vienna, City, 2011. 

[7]  Object Management Group, A UML Profile for MARTE 
(Modeling and Analysis of Real-Time and Embedded 
systems). Version 1.0, formal/2009-11-02 URL: 
http://www.omg.org/spec/MARTE/1.0/PDF/  [Last time 
accessed Oct. 5th ,2012].  

[8]  France, R. B., Kim, D.-K., Ghosh, S. and Song, E. A UML-
Based Pattern Specication Technique. IEEE Trans. Software 
Eng.,Vol 30 (3), 2004, 193-206. 

[9]  Object Management Group, Meta Object Facility (MOF) 2.0 
Query/View/Transformation (QVT) URL : 
http://www.omg.org/spec/QVT/1.1/ [Last time accessed Oct 
5th, 2012]. Version 1.1, formal/January 2011.  

[10] Woodside, M., Petriu, D. C., Petriu, D. B., Xu, J., Israr, T., 
Georg, G., France, R., Bieman, J. M., Houmb, S. H. and 
Jürjens, J. Performance analysis of security aspects by 

weaving scenarios extracted from UML models. Journal of 
Systems and Software,Vol 82 (1), 2009, 56-74. 

[11] Petriu, D. C. Software Model based Performance Analysis. 
ISTE Ltd and John Wiley & Sons Inc., City, 2010. 

[12] Petriu, D. C. and Shen, H. Applying the UML Performance 
Profile: Graph Grammar-based Derivation of LQN Models 
from UML Specifications. In Proceedings of the TOOLS '02 
Proceedings of the 12th International Conference on 
Computer Performance Evaluation, Modelling Techniques 
and Tools. Springer-Verlag, London, UK, 2002.  

[13] Smith, C. U. and G.Williams, L. Performance Solutions : A 
Practical Guide to Creating. Responsive, Scalable Software. 
Addison Wesley, Boston, MA,, 2002. 

[14] Cortellessa, V. and Mirandola, R. Deriving a Queueing 
Network based Performance Model from UML Diagrams. In 
Proceedings of the WOSP '00 Proceedings of the 2nd 
international workshop on Software and performance. ACM 
New York, NY, USA, 2000.  

[15] Arcelli, D., Cortellessa, V. and Trubiani, C. Antipattern-
based model refactoring for software performance 
improvement. In Proceedings of the Proceedings of the 8th 
international ACM SIGSOFT conference on Quality of 
Software Architectures (Bertinoro, Italy). ACM New York, 
NY, 2012.  

[16] Menascé, D. A., Ewing, J. M., Gomaa, H., Malex, S. and 
Sousa, J. P. A framework for utility-based service oriented 
design in SASSY. In Proceedings of the WOSP/SIPEW '10 
Proceedings of the first joint WOSP/SIPEW international 
conference on Performance engineering. ACM New York, 
NY, USA, 2010.  

[17] Parsons, T. and Murphy, J. Detecting Performance 
Antipatterns in Component Based Enterprise Systems. 
Journal of Object Technology,Vol 7 (3), 2008. 

[18] Xu, J. Rule-based automatic software performance diagnosis 
and improvement. In Proceedings of the Proceeding 7th Intl 
Workshop on Software and Performance, Princeton, NJ, 
2008.  

[19] IBM, Modeling with SoaML, the Service-Oriented 
Architecture Modeling Language. January 7th , 2010  URL: 
http://www.ibm.com/developerworks/rational/library/09/mod
elingwithsoaml-1/ [Last time accessed Oct 5th, 2012].  

[20] Eden, A. H., Yehudai, A. and Gil, J. Y. Precise specification 
and automatic application of design patterns. In Proceedings 
of the ASE '97 Proceedings of the 12th international 
conference on Automated software engineering (Incline 
Village, NV). IEEE Computer Society Washington, DC, 
USA, 1997.  

[21] Lano, K., Bicarregui, J. C. and Goldsack, S. Formalising 
Design Patterns. In Proceedings of the Proceeding of BCS-
FACS Northern Formal Methods Workshop, Electronic 
Workshops in Computer Science. British Computer Society 
Swinton, UK, 1996.  

[22] Cortellessa, V., Marco, A. D., Eramo, R., Pierantonio, A. and 
Trubiani, C. Digging into UML models to remove 
performance antipatterns. In Proceedings of the Proceeding 
of  2010 ICSE Workshop on Quantitative Stochastic Models 
in the Verification  and Design of Software Systems (Cape 
Town). ACM New York, NY, 2012.  

100




