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ABSTRACT 
When developing component-based systems, we incorporate 
third-party black-box components. For each component, perfor-
mance contracts have been specified by their developers. If errors 
occur when testing the system built from these components, it is 
very important to find out whether components violate their per-
formance contracts or whether the composition itself is faulty. 
This task is called performance blame analysis. In our previous 
work we presented a performance blame analysis approach that 
blames components based on a comparison of response time 
values from the failed test case to expected values derived from 
the performance contract. In that approach, the system architect 
needs to manually assess if the test data series shows faster or 
slower response times than the data derived from the contract. 
This is laborious as the system architect has to do this for each 
component operation. In this paper we present an automated 
comparison of each pair of data series as decision support. In 
contrast to our work, other approaches do not achieve fully auto-
mated decision support, because they do not incorporate sophisti-
cated contracts. We exemplify our performance blame analysis 
including the automated decision support using the “Common 
Component Modeling Example” (CoCoME) benchmark. 

Categories and Subject Descriptors 
D.2.5 Testing and Debugging, D.2.8 Metrics, G.3 Probability and 
Statistics 

Keywords 
Performance blame analysis, CBSE, data series comparison, 
performance prediction, performance test 

1. INTRODUCTION 
In component-based software engineering, software archi-

tects develop systems by composing third-party black-box com-
ponents. For each component, functional and non-functional 
component contracts have been specified by their developers. 
After composing all components, software architects test the 
composition in test cases before shipping the system to its end-
users. We focus here on a subset of these test cases, which test the 

fulfillment of the system’s performance. If the architect discovers 
errors while executing such a performance test case, she has to 
investigate in a so-called performance blame analysis activity 
whether components violate their performance contracts or 
whether the composition itself is faulty. 

In order to blame components, architects face the problem to 
identify components violating their performance contract. To 
tackle this problem, we have proposed a performance blame 
analysis process in previous work [2] (c.f. Figure 1). It is based on 
the collection of measured component performance metrics from 
the failed performance test case and expected performance metrics 
derived from the component’s performance contract (Step 1). 
Performance contracts are formalized using the Palladio Compo-
nent Model (PCM) [1]. If the measured performance metrics from 
the performance test case violate their performance contract, 
architects must blame the respective component (Step 3). Howev-
er, in order to compare the measurements to the specification, the 
architect currently has to compare both performance metrics of 
each component. The performance metrics are either represented 
as complex raw data sets or statistical characterizations. This 
comparison is tedious and error prone. In this paper, we add a 
novel automated decision support step (Step 2) to our process to 
speed up the performance blame analysis. 

Existing semi-automated decision support approaches for 
component-based performance blame analysis are limited. If they 
use components without performance contracts, decision support 
is restricted to data aggregation only leaving the tedious compari-
son task to the system architect. In case they do support compo-
nent performance contracts, these contracts are not parameterized 
by the component’s context (e.g. [15, 17]). The context of a com-
ponent is defined as the component’s usage, its connected external 
services, and its allocation on execution environments. As the 
context impacts a component’s performance, approaches for non-
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Figure 1: UML 2 activity diagram showing the steps in our 
previous performance blame analysis approach [2] plus the 
novel decision support step (inside the box) 
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parameterized component performance contracts have to replace 
missing context information by manual or heuristically generated 
specifications. Our approach is the first to explicitly consider 
context influences. By exploiting the parameterized component 
performance contracts, we have achieved a sophisticated automat-
ed comparison of performance contracts and performance meas-
urements from failed test cases. 

In this paper, we enhance our existing blame analysis process 
by a novel automated decision support step to drastically reduce 
the manual analysis effort. In order to automate the decision sup-
port step, we have derived a set of statistical indicators that can be 
used in an automated process to identify components with faulty 
performance. Our tool computes these indicators for the data 
collected during the execution of the performance test case and 
the performance metrics derived from a component’s performance 
contract. Computed indicators are mapped to severity levels 
which direct the system architect to components violating their 
contractually specified performance. We include these indicators 
into a novel visualization based on flame graphs [6]. Our extended 
flame graphs use a coloring scheme based on the indicated severi-
ty to highlight contract violations. 

We have validated the novel decision support step on two 
variants of the Common Component Modeling Example (Co-
CoME) [9]. This system has been designed as a benchmark for 
component-based analysis methods. It implements the supply 
chain management of a supermarket chain. Our evaluation shows 
that the automated decision support step helps the software archi-
tect to easily blame the appropriate components. The blamed 
components’ response time during the test case execution violates 
the expected response time specification. We claim that our visu-
alization is a concise and easy-to-grasp tool for software archi-
tects. 

The contribution of this paper is an extension to our perfor-
mance blame analysis process, which semi-automatically identi-
fies components to blame. It uses a set of derived statistical indi-
cators to feed a novel visualization for blame analysis support. We 
provide a case study based on CoCoME giving evidence for the 
effectiveness of our approach. 

The remainder of the paper is structured as follows. Section 2 
introduces a running example that is used throughout the paper. 
Section 3 revisits our previous work, the Palladio-based blame 
analysis for component-based systems. Section 4 derives the 
automated decision support and introduces indicators and visuali-
zations. Moreover, it also discusses necessary changes to the 
result interpretation. Section 5 explains the automated decision 
support and result interpretation in detail. It exemplifies these new 
elements in detail using the running example. Section 6 describes 
the limitations of our approach. Section 7 discusses related work 
from the areas of performance visualization and performance 
blame analysis. Lastly, Section 8 concludes the paper and gives an 
outlook on our future work. 

2. RUNNING EXAMPLE 
Throughout this paper we use a running example. The run-

ning example is used to exemplify certain points in the reasoning 
of this paper. An in-depth evaluation of this example follows in 
Section 5. 

The scenario of the example is the most sophisticated use 
case of the Common Component Modeling Example (Co-
CoME) [9]. The CoCoME was specified as a benchmark system 
to compare different approaches for component-based software 
architecture analysis, such as performance predictions. It specifies 
a trading system for a supermarket chain that was inspired by a 
real example. We refer to the trading system as the CoCoME-

system. The CoCoME-system includes the whole infrastructure 
from the cash desks, where items are sold to customers, to the 
store servers registering those sales and to an enterprise server 
aggregating all the information. This system structure of the Co-
CoME is shown in Figure 2. 

The CoCoME architecture is an archetype of a whole class of 
systems. While the cash desks resemble the embedded system part 
of the overall system the store and enterprise servers make up the 
information system part. In this class of systems the data is pro-
duced by distributed use of embedded system devices. All data are 
then stored and processed in the overlaying information system. 

This paper focuses on the store server and enterprise server 
of the CoCoME-system. These make up the information system 
part of the trading system. In this setting, we investigate the sce-
nario that solely consists of the use case “inter-store exchange” for 
shipping items among the stores of an enterprise. This use case is 
the most sophisticated use case of the CoCoME. It is triggered by 
each sale. A store server checks if the items’ stock falls below a 
minimal threshold. If so, it triggers the enterprise server to cause 
near-by stores to send some of the missing items to the store in 
need. It then optimizes the transports such that no store runs out of 
the transported items and the overall distribution distance is min-
imal. 

Performance blame analysis, as outlined in our previous 
work [2], deals with the response times of component operations. 
Figure 3 outlines the calls of the component operation in our 
running example. Figure 3 shows the participating component 
objects (meaning an instance of a deployed component; cf. 
Cheesman and Daniels [3]) being deployed on several nodes. The 
enterprise server and several store servers participate in the sce-
nario. The solid arrows along the sockets and interfaces represent 
component operation calls and the dashed arrows stand for opera-
tion returns. These messages are numbered in the order of their 
execution. Since most return messages are given directly after the 
corresponding operation call these return messages are not num-
bered. 

The scenario in question starts with a store server (node on 
top in Figure 3) registering a sale (message 1). The origin of 
message 1 is a test driver component (cf. Figure 3). The registered 
sale lowers the store’s stock, such that it crosses the minimal 
threshold for the item stock. The store then finds all missing 
products (message 2) and communicates to the enterprise server 
(message 3) to initiate a transport that replenishes the store’s stock 
for these products. The ProductDispatcher component first 
determines the relevant enterprise information (message 4). The 
enterprise information also contains references that enable the 
ProductDispatcher to contact all stores. The 
ProductDispatcher queries the stock information for each 
missing product in all the other stores (messages 5). Messages 
crossing the border to the multi-node “Other store servers” stand 

Figure 2: System structure of the CoCoME trading system 
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for several messages. One message is sent to each store node in 
consideration. The enterprise server then creates an optimized 
transport plan and lowers the stock for the transported products in 
those stores that need to send products (messages 6). The enter-
prise server then returns the amount of transported products back 
to the initial store server (message 7). Finally, the store then saves 
the products as incoming. 

3. PREVIOUS WORK 
The approach presented in this paper improves our previous-

ly introduced performance blame analysis approach [2]. Our 
previous work is based on comparing performance metrics from 
testing with performance metrics derived from performance con-
tracts. In our previous work and also in this paper, we exclusively 
deal with the performance metric response time. The response 
times are derived from the performance contracts that the compo-
nent developers supply in the form of the Palladio Component 
Model (PCM) [1]. This partial PCM model can then be incorpo-
rated into a system model by the system architect. The first step of 
our approach (cf. Figure 1) is then the collection of response time 
measurements from testing and from the PCM system model for a 
failing test case. To derive expected values from the PCM system 
model, the system architect uses performance prediction, i.e. the 
PCM simulation. Next, these two data series are used to produce a 
histogram. The system architect shall use the histogram to inter-
pret (cf. step 3 in Figure 1) if a particular component operation 
violates its contract and therefore needs to be blamed. The system 
architect decides this by judging if the test data series has overall 
higher response time values than the data series of expected val-
ues. 

Our blame analysis approach relies on several assumptions. 
First, the test case and the performance analysis scenario must be 
equivalent. Our approach does not guarantee this equivalence, but 
we have suggested including PCM models in the test case specifi-
cation [2]. Then, the system architect can draw test cases and 
PCM models for performance prediction from the same source, 

which implies equivalence. Second, the system architects need 
PCM contracts that adequately reflect the component developer’s 
intentions for the performance of each component. The system 
architect must then correctly assemble a system model containing 
those PCM contracts. Moreover, the hardware usages included in 
the PCM contracts must be modeled in a standardized way. Com-
bined with the hardware definitions used in the project they must 
result into response time values that can be easily compared to the 
measurements acquired in testing. 

The following subsections elaborate more on the data collec-
tion and result interpretation of our previous work. Figure 4 gives 
a more detailed overview of the performance blame analysis 
approach. The data collection parts for testing and performance 
prediction as well as the result interpretation are introduced in 
turn. Subsection 3.1 introduces the test part of data collection 
while Subsection 3.2 deals with the performance prediction part. 
The result interpretation is covered in Subsection 3.3. The result 
interpretation is more explicitly explained, because this paper 
introduces an automated decision support speeding up result 
interpretation. 

3.1 Data Collection – Test 
As stated before, blame analysis always starts with a failing 

test case1. The system architect collects the performance meas-
urements for the scenario that are included in the test case results. 
She checks if the data taken while executing the test case are 
sufficient. For our blame analysis approach the system architect 

                                                                 
1 Please note that we assume that failing test cases can be identi-

fied with the help of detailed requirements, which specify the 
expected performance at the system boundary. 

 
Figure 4: Previous performance blame analysis process [2] 

Figure 3: Scenario with all participating components and their
exchanged messages 
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must collect the response times for all component operations that 
are involved in the test case. In our running example she must 
measure the response time of each operation call indicated in 
Figure 3. For message 4 “get enterprise information” she has to 
measure the response time of the call to the operation queryEn-
terpriseByID() in the component EnterpriseQuery. If 
all the needed response time measurements were collected, the 
system architect proceeds, otherwise she must repeat the test case 
and take the necessary measurements while doing so.  

3.2 Data Collection – Performance Prediction 
In our approach, the system architect utilizes the Palladio 

Component Model (PCM) [1] for performance prediction. We 
have chosen the PCM for this because of its role model. The role 
model has an explicit role for the component developer. It speci-
fies which diagrams and model contents have to be delivered by 
the component developer. Moreover, it states how these parame-
terized PCM models have to be completed by the system archi-
tect, such that it reflects a specific system with specific usage 
scenarios. So, the component developers are able to specify their 
components’ performance contracts, such that the specification is 
usable in different systems and for different use cases. This makes 
PCM performance specifications suited for exchanging between 
component developers and system architect. 

In a full PCM model all parameters have been subsequently 
filled in by the various roles creating the model [1]. This PCM 
model explicitly covers the components’ context. I.e. it models the 
system composition including external services, the allocation and 
the system usage. The usage model specifies the workload pro-
duced by virtual users. It includes frequency and order of calls as 
well as optional parameters like think time and input characteriza-
tions (e. g. value or number of elements). 

The system architect must supply predicted response times 
for the failed test case by analyzing such a full PCM model. The 
system architect checks if they already have matching data series 
from performance analysis during the design time (cf. Figure 4). If 
they do not have predicted the performance for this environment 
setting and scenario yet, they must do so now. The system archi-
tect needs the predicted response times for any component opera-
tion participating in this scenario. In our running example the 
system architect must supply a response time data series for each 
of the operation calls in Figure 3, just like in testing. 

For proper comparison, the performance data series from 
testing on one hand and from performance prediction on the other 
hand need to stem from the same scenario. In particular, the input 
workload must be the same performance-wise, and also the de-
ployment must be the same. 

3.3 Result Interpretation 
Finally, the system architect can proceed to result interpreta-

tion (cf. Figure 4). In our previous work, the interpretation of the 
measured performance metrics from test and performance predic-
tion is manual. To decide if a component operation needs to be 
blamed, the system architect has to compare the two response 
time data series. Then, the system architect has to decide whether 
the component operation exhibited higher or lower response time 
values than predicted. In our previous work [2], we have suggest-
ed that the system architect creates histograms with bins of the 
same size (e.g. 125 ms each). Each histogram visualizes the rela-
tive frequencies of the response time data series from testing and 
performance prediction side by side. 

Figure 5 depicts an example histogram showing the response 
time distributions for the component operation queryLow-

StockItems of the component StoreQuery. This operation 
call corresponds to message 2 in Figure 3. The histogram in Fig-
ure 5 shows the relative frequency of the response time values 
from testing and the expected response time values from perfor-
mance prediction. The X-axis exhibits the response time (in ms) 
and the Y-axis depicts the relative frequency how often this re-
sponse time occurred. Figure 5 shows the histogram bins not as 
bars. This is also correct, because all the bins are of the same 
width, i.e. 125 ms wide. The curves for testing (blue) and perfor-
mance prediction (red) each have only one peak. So, in this case it 
is clear that the test response time values are overall lower than 
predicted. However, the decision is not always trivial. In our 
experience the decision is hard to make, when the curves intersect 
more often. Also, if the blue curve had a different shape and had 
far more frequent occurrences of the response time around 1000 
ms, the decision would be quite hard to make. Recognizing that an 
operation has overall slightly lower or higher response time values 
only by looking at a histogram such as this is quite hard. 

The system architect has to construct and interpret one re-
sponse time histogram, as shown in Figure 5, for each component 
operation. In our running example, the system architect needs to 
analyze 6 different component operation calls (cf. Figure 3). Thus, 
the comparison step is quite time consuming and tedious. This 
paper shows how an automated decision support step can look 
like. 

4. DERIVING AN AUTOMATED DECI-
SION SUPPORT SUB-PROCESS 

This section discusses what indicators and visualizations are 
suitable for the automated decision support introduced in this 
paper. Subsection 4.1 discusses statistical indicators that can 
decide whether the response time data series from the test has 
higher values than the response time data series from performance 
prediction. Subsection 4.2 presents visualizations for these statis-
tical indicators. Subsection 4.3 introduces a decision support sub-
process that combines the indicators and visualizations. It also 
deals with how the obtained results of the decision support need to 
be interpreted by the system architect to identify the blamed com-
ponent operations. 

 
Figure 5: response time chart for manual comparison 
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4.1 Decision Criteria for an Automated Deci-
sion 

This subsection develops automatable decision criteria in 
terms of indicators which help to decide whether the values of one 
response time data series exceeds the values of another response 
time data series. The following questions are relevant with respect 
to the decision criteria: 

- Which indicators are suited to automatically decide 
whether a component operation is to be blamed or not? 

- Which of these indicators are most robust (i.e. give the 
correct result in most/all cases)? 

The questions also imply requirements on a suitable indicator 
or decision criterion: 1.) it must work with response time data 
series; 2.) it must be able to decide whether one data series has 
lower or higher values than another one; 3.) the decision must be 
correct in as many cases as possible. The first two requirements 
can be checked by consulting the definition of the indicator. This 
subsection discusses only indicators that match these two re-
quirements. The third and most important requirement can practi-
cally only be decided using example data series. We have used 
data series from our experiments with CoCoME. Our test set 
included 20 pairs of data series. For each pair of data series, we 
manually assessed whether the test data series exhibits higher, 
lower, or about equal values than the performance prediction data 
series. To decide whether an indicator is suited, we tested whether 
it decides the same way that we have decided manually. The more 
often the indicator decides as we would have done, the better it is 
suited for our performance blame analysis approach. We used this 
benchmark for all the indicators (point estimators and statistical 
tests) described in this subsection. We use this example-based 
benchmark to derive a heuristic that works well for CoCoME and 
likely also applications similar to CoCoME. 

The most obvious comparison indicators for data series are 
point estimators. Point estimators summarize a data series with a 
single numerical value. Two data series can then be compared by 
contrasting the point estimator value for each data series. The 
most prominent point estimators are minimum, maximum, mean, 
and the quartiles (i.e. 25%-quartile, the median and the 75%-
quartile) [4, 10]. We have tried all these indicators to compare the 
data series in our test sample. The minimum and maximum are the 
two point estimators whose decision differed from the manual 
decisions most often. The minimum had seven and the maximum 
three false indications. The mean differed less from the manual 
decisions with only two wrong decisions in close cases. In one 
example where the mean fails, the test data series has a long tail, 
i.e. it has a lot of outliers near the maximum. The outliers caused 
the mean to fail, because in that case the mean and median dif-
fered significantly. The 25%-quartile, the median and the 75%-
quartile performed best amongst all point estimators. They only 
failed in one case. 

While some point estimators already qualify as comparison 
indicators, we looked for better indicators in statistical testing. 
The Kolmogorov-Smirnov-Test (KS-Test) [16] is a test that quan-
tifies whether one data series generally has high or low values. 
There are two versions of the KS-Test that test if one data series 
has higher or lower values than another one, respectively. To the 
best of our knowledge the KS-Test is the only test that can test on 
lower and higher values. Other statistical test can only test equali-
ty (e.g. the Chi²-test [4, 16]). 

We use the “less”- and the “greater”-variant of the KS-Test 
(as implemented in R [14]). We investigate the hypotheses wheth-
er the test data series exhibits lower response time measurements 
than the predicted data series and whether test data series has 

higher measurements. As a consequence, we gather more infor-
mation than when using a single test. In a clear case we can reject 
one of the two hypotheses with confidence. When the two data 
series are very close to one another, both tests will show the same 
result indicating that the KS-Test cannot tell them apart. This 
additional information enabled the KS-Test to outperform the 
point estimators. The KS-Test decided according to our manual 
decisions for the test data series. However, in two cases it made 
no decision, i.e. both KS-Tests indicated that their hypothesis 
could be rejected. Manually, we were able to decide one of the 
two cases, but could not do so for the other. As a result, the KS-
Test was undecided in one case where a decision was possible. 
Thus, it did a little better than the quartiles, which made one 
actually wrong decision. 

Altogether, our experiments suggest that the three point-
estimators 25%-quartile, median, and 75%-quartile are reliable 
comparison indicators. The KS-Test seems to the best comparison 
indicator. It does not only decide, but it also indicates cases in 
which a decision is hard and which therefore need human inter-
vention. 

4.2 Visualizations for the Decision Criteria 
Subsection 4.1 identified the 25%-quartiles, median, 75%-

quartile, and the KS-Test as good indicators for performance 
blame analysis. Now, we look for a helpful visualization of these 
indicators. Most importantly, the visualization needs to be easily 
interpretable in terms of blaming. If possible, the visualizations 
shall not only present the indicator in question, but also other 
relevant data. Other relevant data confers to data that quantifies 
performance or that reflects influences on performance. For re-
sponse time data, an important supplement is the call tree, the 
deployment and architecture, and the input data. 

A box-and-whiskers-plot [10] can visualize the quartiles as 
well as the minimum and maximum. Showing two box-and-
whiskers-plots (one for each response time data series) in one 
chart helps comparing whether the values of one of the data series 
exceed the values of the other one. This comparison can be done 
by comparing the position of the boxes of the data series. Each 
box stands for 50% of the measurements. So, if one box is drawn 
above the other, the data series likely has the higher values. As the 
quartiles only serve as a secondary indicator, we did not try to 
couple the quartiles with other relevant data. 

An execution of the two variants of the KS-Test gives one of 
three possible results: 1.) the test data series shows lower response 
times; 2.) the predicted data series shows lower response times; or 
3.) the data series are so close the test cannot decide clearly. These 
three result types stand for three different severity levels. Having 
three different severity levels suggests using a “traffic light indi-
cator”. Green indicates that the test data series has the lower 
values, yellow indicates that the KS-Test is unable to decide, and 
red indicates that the predicted data series has the lower response 
times. Such a traffic light can visualize the KS-Test outcome for 
each component operation that contributed in the test case. This 
traffic light coloring cannot only be used on its own, but it can 
also be incorporated into other visualizations that cover all the 
component operations participating in the test case. 

Profilers are well matured performance analysis tools. Profil-
ers often visualize caller/callee relationships of operations along 
with operation response time (cf. Section 7). This data combina-
tion is the main data that profilers present for analyzing the re-
sponse times. We take this as evidence that this data combination 
can be seen as “other relevant data”. 

Brendan Gregg [6] presented his “Flame Graphs” which are a 
variation of the usual profiler charts. This particular variant shows 
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the mentioned information in a compact form. Figure 6 shows an 
excerpt from a sample Flame Graph [6] presenting data measured 
in a MySQL run. A legend has been added in Figure 6 to give 
additional explanations. The chart shows the CPU-time of func-
tions in MySQL. Each function is represented by a box. The width 
of the box shows the complete CPU time of the function during 
the test. The vertical ordering in the chart stands for the call hier-
archy. A calls B if the box representing B is drawn on top of the 
box representing A. The width of a box that is not covered by a 
box on top of it represents the CPU time consumed by computa-
tions inside this function. In the original Flame Graphs the box 
colors have no meaning. Also the positioning of the boxes from 
left to right conveys no meaning. 

The compact representation of the Flame Graphs requires to 
omit some information. The names of the functions (or opera-
tions) and the exact number for the CPU time cannot be shown in 
each box (cf. Figure 6). The Flame Graphs circumvent this limita-
tion using interactivity. Flame Graphs are interactive SVG charts. 
The missing information for a particular box is shown next to the 
“Function” text at the bottom of Figure 6, when moving the 
mouse cursor over that box. 

We see the call hierarchy in combination with a response 
time metric as performance relevant information. The Flame 
Graphs show these metrics. They have the advantage of being 
compact, when compared with other usual profiler visualizations 
(cf. Section 7). Moreover, we have found that the KS-Test result 
can be sensibly visualized using traffic light colors. Until now, the 
colors in the Flame Graphs have not conveyed meaning. As a 
consequence, we can adapt Flame Graphs with the KS-Test traffic 
light coloring as box colors. Moreover, the box width can repre-
sent the median response time of the component operation in the 
test case. It showed that the median is indicative for our perfor-

mance blame analysis (cf. Subsection 4.1). This way, we get a 
compact diagram that includes the KS-Test results as well as the 
median response time and call hierarchy. We call this adapted 
version of the graph “Blame Graph”. 

In this subsection, we have introduced the Blame Graph that 
couples the KS-Test result in the form of traffic light colors with 
the average response time for each component operation and the 
position in the call tree. The KS-Test results are our prime deci-
sion criterion and are also coupled with other relevant decision 
criteria. Next, we visualize the quartiles using box-and-whiskers-
plots. We have not coupled this secondary indicator with other 
relevant data. 

4.3 Incorporating Decision Support 
This subsection presents our decision support sub-process 

that incorporates the indicators and visualizations that the subsec-
tions 4.1 and 4.2 have introduced. Moreover, this subsection 
discusses how the result interpretation is affected by introducing 
automated decision support into the performance blame analysis. 

The starting point of the decision support sub-process is that 
the system architect has response time data series from testing and 
performance prediction available for the test case in question. 
Figure 7 shows the additional decision support process. It is split 
in two parts. On the left hand side, Figure 7 shows the action that 
the system architect needs to perform and on the right hand side 
Figure 7 shows steps that are automatically computed. We have 
implemented a Python script that uses the R language [14] for 
statistical computations. 

First, the system architect needs to prepare the computation 
by mapping component operations to PCM entities. Then the 
system architect gives conversion factors for the test and the 
predicted data series. These factors will be used to convert the 
response time data series to a common time unit. After that, com-
putation begins. The computation takes the configuration men-
tioned before as well as the various response time data series as 
input and produces two different outcomes. First, it produces the 
Blame Graph which summarizes all the component operations 

Figure 7: the additional decision support sub-process 

 
Figure 6: sample ”Flame Graph“ [6] with additional legend 
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involved in the test case in one chart. This chart shows the median 
response time for each component operation in context of the call 
hierarchy. We chose the median, as it turned out to be indicative 
for performance blame analysis (cf. Subsection 4.1). 

Moreover, the computation produces a performance report 
that consists of two sheets for each of the component operations 
participating in the test case. One sheet shows a box-and-
whiskers-plot for the two response time series associated with it, 
i.e. the data series from test and performance prediction. The next 
sheet exhibits all the point estimators for the two data series as 
well as the KS-Test results. The point estimators covered in the 
performance report are the quartiles, the minimum, the maximum, 
and the mean value. 

The system architect must then look at the blame graph and 
the performance report to find blamed component operations. 
Figure 8 shows the updated result interpretation sub-process. In 
contrast to our previous work (cf. lower part of Figure 4) it relies 
on the Blame Graph and the performance report. The Blame 
Graph shows all the component operations in one sheet. All 
blamed operations are drawn in red. In addition, the system archi-
tect can also prioritize the blamed operations by call hierarchy 
(vertical box order) and median response time (box width). So, the 
blame graph supplies the system architect with three different 
relevant decision criteria. The system architect can then look into 
the performance report for more detailed figures about each com-
ponent operation. If the system architect is still in doubt whether 
or not to blame the component operation in question, the system 
architect should of course make her own analyses. 

5. EXEMPLIFIED AUTOMATED DECI-
SION SUPPORT 
This section exemplifies the automated decision support as de-
picted in Figure 7. It covers the configuration by the system archi-
tect as well as the automated analysis. This analysis results in the 
Blame Graph and the performance report. Next, this section dis-
cusses how to interpret these two artifacts in terms of blaming (cf. 
Figure 8). Also, it illustrates how each step of the decision support 
and the result interpretation has been performed in our running 
example (cf. Section 2) and its results. Please note that you can 
find all example data and analysis results along with our analysis 
scripts on this paper’s companion website2. 

Subsection 5.1 first introduces the implementations and the 
test bed that have been used in the case studies with both Co-
CoME implementations. This includes the instrumentation used to 
produce the response time measurements. The Subsections 5.2 to 
5.5 introduce the automated decision support and the result inter-
pretation showing the results produced with the CoCoME refer-
ence implementation. Subsection 5.2 introduces the mapping from 
the component operations in the implementation to their counter-
parts in the model (cf. steps 1 and 2 in Figure 7). It also covers the 
subsequent conversion of the values of the data rows into a com-
mon time unit (cf. steps 3 and 4 in Figure 7). Subsection 5.3 pre-
sents the performance report and the statistical computations 
related to it. That subsection covers the steps 5, 6, 7, 8 and 10 in 
Figure 7. Subsection 5.4 comprises the creation of the Blame 
Graph and the related statistical computation. It covers the steps 8, 
9 and 10 in Figure 7. Subsection 5.5 discusses the result interpre-
tation by the system architect (cf. Figure 8). Finally, Subsection 
5.6 covers the lessons learned from the case study with the Co-
CoME 2 implementation. 

                                                                 
2 http://homepages.uni-paderborn.de/bruesie/icpe2013/ 

5.1 Tested Implementation and Test Bed 
We have chosen CoCoME as our running example, because 

it is a good representative of an information system that is fed by 
data generated by embedded system devices. It consists of several 
subsystems. The information system that we focus on consists of 
nine different components. These components are deployed on 
four different types of nodes, i.e. store server, store client, enter-
prise client, and enterprise server. Each store servers hosts five 
component objects and the enterprise server hosts six component 
objects. The clients are not participating in the test case used in 
the running example. 

The CoCoME was originally released with a reference im-
plementation3 written in Java. We have fixed some bugs in the 
reference implementation, such that it can execute the scenario of 
our running example (cf. Section 2). This fixed CoCoME imple-
mentation comprises 6320 lines of Java code. The following refers 
to this implementation as CoCoME RI. Subsections 5.2 to 5.5 deal 
with the CoCoME RI case study in detail. Additionally, the origi-
nal reference implementation has been fixed, improved and re-
leased as CoCoME 24. The Karlsruhe Institute of Technology 
(KIT) created this version for the same reasons which made us 
develop a fixed version of the reference implementation. The KIT 
still maintains this version for further usage. This improved im-
plementation comprises 9788 lines of Java code. Subsection 5.6 
briefly summarizes the lesson learned in the CoCoME 2 case 
study. 

To test the use case “exchange products among stores”, in-
troduced in Section 2, we have adapted the test bed to our needs. 
We have introduced a load test driver and response time measur-
ing using bytecode instrumentation in both implementations. The 
instrumented bytecode measures the time between method en-
trance and return on the server side. This metric also includes 
possible queuing delays. This is consistent with the performance 
prediction of the PCM. The measurement bytecode writes this 
response time to a file and it also includes other important infor-
mation, namely, the method name, the current time, the current 
stack trace, and the thread identifier. BTrace5 supplies the actual 
bytecode instrumentation, data query, and file writing facilities. 
We created a short program using BTrace to enable response time 
measuring. While this custom measurement solution could be 
more efficient and also could trace cross-process control flow, it 
suits our purpose. Our measurement solution adds an overhead to 
                                                                 
3 see http://cocome.org/  
4 see http://sdqweb.ipd.kit.edu/wiki/CoCoME2 and 

http://sourceforge.net/projects/cocome/  
5 see http://kenai.com/projects/btrace 

Figure 8: the updated result interpretation sub-process 
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the response time of the tested methods. The method directly 
called by the test driver shows about 34.6 ms (i.e. 6%) slower 
response times when instrumented. This overhead is tolerable. 

The test setup was very simplistic. The test setup was used 
for either implementation, i.e., CoCoME RI and CoCoME 2. A 
single dedicated PC (Pentium D 3 GHz single core CPU with two 
threads, 2 GB RAM, Windows 7 with 64 bit) was used to execute 
the CoCoME system and also the load test driver. The executed 
CoCoME system consisted of three store servers and an enterprise 
server as well as the necessary infrastructure, i.e. the RMI regis-
try, the Active MQ JMS messaging server, and the Apache Derby 
database included in each CoCoME implementation. The load test 
driver simulated eight parallel users. Each user queries the same 
store server 125 times (1000 requests total). This setup should 
produce a certain amount of contention in the system. However, 
we did not quantify contention (e.g. by measuring queue length). 

5.2 Map Operations and Unit Conversion 
First the system architect needs to prepare some configura-

tion data for the Python/R script, which computes the performance 
report and the Blame Graph. The system architect needs to ensure 
that there exists a mapping from the component operations in the 
implementation to their representation in the performance model. 
The mapping needs to consider each operation and its complete 
call hierarchy at operation level. The contents of the mapping 
need to reflect this. The testing side of the mapping consists of all 
the Java stack traces from the test case that indicate the call of a 
component operation. On the performance prediction side, the 
system architect enters the file name of a set of data for this opera-
tion invocation. In the PCM, calls to operations are modeled as 
part of a component’s control flow. So, the PCM can distinguish 
different invocations of the same operation. The PCM’s perfor-
mance prediction yields a separate set of values for each different 
invocation of an operation. 

Because the mapping takes the call hierarchy of a component 
into account, the mapping needs to be individually constructed for 
any system. The system architect may use information from the 
component developers that states what method in the implementa-
tion correspond to which model element, but she needs to add 
information from the component context. 

Both the response time measurements from the CoCoME test 
and also from the PCM need to be represented in a comma-
separated values (CSV) file. One line in the CSV file from the test 
must consist of the response time and the full stack trace. Having 
both data series in CSV format, we can easily process the data 
with our analysis. 

For better readability, we have compressed the different Java 
stack traces by numbering them and added a short text for descrip-
tiveness. In the following, we will only exhibit this short form. 
Table 1 displays an example of the mapping from the compressed 
Java stack trace to the CSV file with predicted response time 
values. 

As a next step, the system architect needs to convert the re-
sponse time values from both sources (test and performance pre-
diction) to a common time unit. The system architect gives two 

conversion factors to the Python/R script, one for the test data 
series and one for the performance prediction data series. In our 
running example, the measurements from testing and performance 
prediction are converted from nanoseconds and seconds to the 
common unit milliseconds respectively. 

The manual steps (cf. steps 1 to 3 in Figure 7) were finished 
in about one hour for each implementation of CoCoME in the 
example. These manual steps have not been automated due to the 
prototype status of our tooling, but are partly automatable. The 
measurement export and the computation of conversion factors (if 
the time units are known) can be automated. Creating the mapping 
can be semi-automated. 

5.3 Performance Report 
While the Blame Graph is the primary analysis tool, the per-

formance report is the secondary analysis tool that the automated 
decision support delivers. The performance report gives a detailed 
overview of each pair of response time data series for all the 
component operations. It contains the point estimators, the KS-
Test results, and a box-and-whiskers-plot for each operation. 
Specifically, it comprises all computed point estimators: maxi-
mum, minimum, quartiles, and mean. In addition, it visualizes the 
quartiles in a box-and-whiskers-plot that shows the test and per-
formance analysis data series side by side. 

After finishing the configuration (cf. Subsections 5.2), the 
Python/R script computes the point estimators for each component 
operation. Table 2 lists the point estimators for the method “(8) 
otherStoreInterchange”. The system architect can compare the 
point estimator values to get an impression, which data series has 
higher values. In Table 2, all the point estimators in the test data 
series have higher values than in the performance prediction data 
series. The Python/R script also draws a box-and-whiskers plot 
that shows the test and performance analysis response time data 
series side by side. Figure 9 depicts this box plot. For better read-
ability the box plot does not include the highest 1% of the meas-
urements of each data series, because the test data series has a few 

Table 1: mapping between implementation and PCM 

Java stack trace CSV-file from PCM 

(9) overall bookSale0.csv 

(8) otherStoreInterchange orderProductsAvailableAtOtherStores0.csv

(7) markStock markProductsUnavailableInStock1.csv 

(6) solveOptimization solveOptimization0.csv 

Figure 9:example box-and-whiskers plot 
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outliers that are way higher than most of the measurements. Fig-
ure 9 shows that the box for the test data series (which represents 
50% of the measurements) lies above the box of the performance 
prediction data series. This indicates that the values in the test data 
series are higher than those of the performance prediction data 
series. 

The result of the KS-Test is also shown in the performance 
report. The report comprises the probability value (p-value [16]) 
that the “less” and the “greater” variant of the KS-Test result in. 
Section 5.4 deals with the KS-Test in more detail. 

5.4 Blame Graph 
The performance report is the secondary indicator for analyz-

ing performance blame, while the Blame Graph is the primary 
indicator. The Blame Graph depicts operations that are slower 
than expected as red boxes. The box colors stand for the result of 
the KS-Test (cf. Subsection 4.3). The KS-Test implementation in 
R takes both data series as input and results in the p-value [16]. 
The Python/R script executes the KS-Test and accepts the hypoth-
esis when the p-value is at most 5%. This 5% threshold is a start-
ing value which we will evaluate in future experiments. 

The Blame Graph visualizes the results of the KS-tests. It al-
so visualizes the call relationships in the tested implementation 
and the median response times of each component operation in the 
test. For the example test case, our script produces the result 
presented in Figure 10. We added a legend to Figure 10 for better 
readability. The method names in the Blame Graph are given in 
terms of the Java implementation of CoCoME. The boxes in 
Figure 10 are not labeled with fully qualified class names due to 
the restricted width of the boxes (even the short names may be cut 
off in small boxes). The fully qualified class name is shown next 
to the “Function”-text in the original SVG Blame Graph, when 
moving the mouse over the box representing the operation. In the 
given Blame Graph the system architect can identify that three 
methods are blamed, because they are drawn as red boxes. Details 

on how to interpret the Blame Graph are discussed in Subsec-
tion 5.5. 

5.5 Result Interpretation 
The system architect first looks at the Blame Graph. The sys-

tem architect identifies the red boxes in the Blame Graph repre-
senting the operations that are slower than expected. In our exam-
ple Blame Graph (cf. Figure 10), there are three blame operations: 

 StoreImpl.bookSale(..) 
(also known as “(8) otherStoreInterchange”) 

 ProductDispatch-
er.orderProductsAvailableAtOtherStores(..) 

 StoreImpl.markProductsUnavailableInStock(..) 

Then, the system architect can prioritize the order in which 
the blamed operations are analyzed by either call hierarchy (verti-
cal box order) or by median response time (box width). For exam-
ple, the system architect could decide to prioritize the operation 
“StoreImpl.markProductsUnavailableInStock”, as this operation 
does not call other operations. 

The system architect can check the performance report to in-
vestigate if the KS-Test has blamed the operations correctly. 
Using the performance report, the system architect can also priori-
tize the order to investigate the blamed operations differently. For 
instance, the system architect could decide to prioritize the com-
ponent operations according to the difference between the test 
values and the expected values. If the system architect is still not 
satisfied, she needs to perform her own analyses. 

Compared to the manual process in our previous work, the 
system architect only needs to configure the Python/R script and 
can then already interpret the generated results. This saves the 
system architect the trouble to create the chart by herself. Moreo-
ver, the results of the automated decision support can be interpret-
ed easier. The indicators produced by the automated decision 
support are tailored to judge whether the test data series exhibits 
the higher values than the performance prediction data series. In 
our previous work, the system architect needed to judge whether 
the test data series has the higher values by looking at a specific 
histogram. 

5.6 Case Study: CoCoME 2 
While the Subsections 5.2 to 5.5 deal with our running ex-

ample in the CoCoME RI, this subsection summarizes what we 
learned in the case study with the CoCoME 2. In this second case 
study, we could largely confirm what we learned in the CoCoME 
RI case study. The system architect could employ the automated 
decision support to get the Blame Graph and the performance 
report. The Python/R-script quickly produced this result. The 

Table 2: point estimators for the operation 
“(8) otherStoreInterchange” 

 PCM – resp. time Test – resp. time 

minimum 163.1 ms 760.7 ms 

25%-quartile 1120.8 ms 2528.6 ms 

median 1506.2 ms 3279.6 ms 

75%-quartile 1952.4 ms 4012.1 ms 

maximum 3186.0 ms 24595.4 ms 

   

mean 1500.3 ms 3248.7 ms 

Figure 10: blame graph for the example test case 
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effort for the analysis was considerably lower than the effort for 
implementing the test driver and measurement solution. 

The Blame Graph for CoCoME 2 gives a quick overview 
which methods exceed the response time values derived from the 
PCM contract. But this Blame Graph also shows undecided opera-
tion calls that the KS-Test cannot clearly decide. The performance 
report confirms the results of the Blame Graph, but also shows 
that one of the undecided results can actually be decided with the 
performance report (cf. Subsection 4.1). This shows that it is 
important to also include the performance report as a decision 
support result. Moreover, the Blame Graph also shows that our 
current monitoring solution is unable to track requests crossing 
process boundaries. Operation calls in other processes are drawn 
just as operations called directly from the test driver. 

6. LIMITATIONS 
Our approach is currently limited to analyzing the response 

times of component operations. It can only detect errors in specif-
ic component operations. If there are no deviations found for any 
component operations, our approach assumes that the error is in 
the composition. However, our approach does not help to detect 
defects in the architecture, the deployment, etc. 

In addition, this approach is based on the differences in the 
performance contract compared to the actual implementation. If 
the contracts were correct, comparison between the testing values 
and expected values from performance prediction will always 
result in equal values. This is why this approach assumes that the 
contracts reflect the component developer’s intentions of the 
component’s performance. 

The approach depends on the quality of the performance con-
tracts that are delivered by the component developers. The com-
ponent developers could deliver overly simple contracts. Such 
contracts are only viable in very specific cases and will evaluate 
to unrealistic expected values in the majority of cases. Moreover, 
the component developer can betray us with wrong contracts. 
They could either deliver “safe contracts” or “flattering con-
tracts”. “Safe contracts” always result in higher response time 
values than the values measured in test. This would render this 
approach useless, but would also lower the chance system archi-
tects acquire that component from the market. “Flattering con-
tracts” indicate that the component is performing better than it 
actually is. Such components are more likely to be acquired from 
the market, but our approach will also blame such components in 
case of performance issues. If our approach blames all compo-
nents, the result is not useful as well. Even when the component 
developers deliver contracts as intended, the contracts still may 
not be completely accurate. It is very hard for the component 
developers to foresee every possible context a component may be 
used in and to design an according and accurate contract. 

The test measurements considered in our analysis are gained 
with an instrumentation that implies an overhead (cf. Subsec-
tion 5.1). This overhead may cause false positives, because it adds 
to the values in the test data series. 

Only measuring response times leaves out certain aspects of 
the middleware that is used to execute the components. For exam-
ple the measurements do not differentiate queuing delays and the 
response time also includes the response time of called compo-
nents. That means that the blame may travel down the blame 
graph along the call chain towards the callers. In this case our 
approach may blame more components than necessary. 

The visualization introduced in this paper can also be im-
proved. The Blame Graph does not show process or host bounda-
ries. This is partly due to the monitored data that it visualizes. Our 
current monitoring solution cannot track requests that cross pro-

cess boundaries. Thus, the Blame Graph shows internally called 
methods from another host or process on the same level as calls 
that are called directly from the test driver. Moreover, the Blame 
Graph shows the median response time as box-width. It does not 
cover the amount of times an operation was called and may there-
fore be deceiving. The number of calls is omitted due to the proto-
type status of our tooling, but can be easily added to the Blame 
Graph. 

7. RELATED WORK 
This paper introduces an automated decision support for per-

formance blame analysis. This decision support delivers the 
Blame Graph that take the context of the component operations 
into account. So, Subsection 7.1 discusses other performance 
blame analysis approaches in terms of their decision support. It 
evaluates for each approach what their decision support looks like 
and to what degree it is automated. Moreover, it presents what 
results the decision support for each approach yields. The set of 
results shall be easily interpretable and it shall take the context of 
the results into account. 

One contribution of this paper is to present performance met-
rics visually embedded in the component operation context. Sub-
section 7.2 presents several visualization techniques from other 
areas, because visual result presentation is seldom used in perfor-
mance blame analysis. It covers the areas of performance profiling 
and software cartography. 

7.1 Performance Blame Analysis 
One approach that does come from the field of performance 

blame analysis in component-based systems is presented by Srini-
vas and Srinivasan [17]. The approach analyzes the call tree of 
component-based software to perform blame analysis. The call 
tree is annotated with cumulated percentage costs. The costs in the 
call tree can be any performance metric such as response times or 
CPU usages, which are expressed using percentages. The analysis 
then converts the cumulated costs to absolute costs. The cost 
conversion takes only a user-defined set of components into ac-
count. Calls to other components are defined as in-method compu-
tation, and are hence not differentiated in the analysis. Then the 
analysis computes if there are calls in the altered call tree that 
exceeds a chosen cost threshold. The result of this approach is a 
list of component methods with their absolute percentage costs. 
The threshold can be used to scale the number of results given. 

Compared to our approach the approach by Srinivas and 
Srinivasan [17] has a slightly lower degree of automation. On one 
hand, the user has to supply several complex configuration set-
tings. The user has to specify a threshold and the set of classes and 
methods, which are considered in the analysis, as substitute for the 
contract and the component context, respectively. The configura-
tion settings have massive influence on the quality of results. On 
the other hand, the decision support as such is automated. The 
decision support is the computation of the final cost percentages 
that are higher than the user-defined threshold. The decision 
support results in an ordered list of methods and cost percentages. 
In the list the system architect can easily identify the most costly 
methods. This kind of analysis relies on the observation that often 
times high cost of a method means that it needs to be improved. 
However, if the methods that need to be improved are not at the 
top of the list, they are hard to find. The list can be very extensive 
if the threshold is set too low. In such a case an additional visuali-
zation would be helpful. The cost-metric is not so much depend-
ent on the call tree as pure response time measurements. The 
algorithm internalizes calls into calling methods, as specified by 
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the user. Then it computes absolute cost values. These absolute 
values can be interpreted independent of the call tree. 

Another approach that deals with performance blame analy-
sis is exhibited by Rutar and Hollingsworth [15]. The approach 
computes the blame for variables and data structures on the basis 
of data flow. Every operation on a variable like a simple assign-
ment or an addition of another variable increases the blame of this 
variable. This is also the case if the variable is used in loops or 
branches. The blame is also aggregated in data structures. These 
blame data are gathered by static analysis and by runtime monitor-
ing. The result of this approach is a list of variables and their 
blame factor. 

The approach by Rutar and Hollingsworth works on a differ-
ent abstraction level than our approach. They are doing a white-
box analysis covering the variables and are therefore working on 
very detailed level. This implies that the source code of all com-
ponents needs to be available, since static analysis works on the 
source code. The static analysis is not fully automated and needs 
to be assisted in complicated cases. Moreover, the result list does 
neither cover blamed component operations nor components. 
Therefore, the system architect has to manually map the variables 
to components and component operation in order to find the 
blamed components or component operations. This means that the 
approach has no decision support. 

The last approach tests the conformance of a component im-
plementation to its performance specification. Groenda’s ap-
proach [7, 8] is also based on the PCM. On one hand, Groenda 
measures the performance of the implementation during test cases 
derived from PCM instances. On the other hand, he derives per-
formance measurements from PCM performance prediction. 
These two data series are then compared in terms of equality. The 
comparison is done on component operation level. 

In contrast to our approach Groenda [7, 8] investigates 
whether the data series for a component operation in a specific 
test case from testing matches an equivalent data series from 
performance prediction. He statistically tests the hypotheses 
whether the two data series deviate or match. He interprets the test 
result as “yes” or “no” with the help of a user-defined error 
threshold. While this approach exemplifies the automated use of 
statistical testing as part of the decision support, it does not elabo-
rate further on this topic. In particular, Groeda does not mention 
how the single results of the repeated tests are aggregated and 
how the result is presented. 

7.2 Performance Visualization 
This subsection deals with the areas of performance profiling 

and software cartography. It describes which visualizations are 
used in these areas and how they compare to the Blame Graph. 
The Blame Graph is the prime visualization introduced in this 
paper. 

The popular open source profiler JFluid [5] (also known as 
Netbeans Profiler) exhibits a tabular representation based upon the 
Calling Context Tree. This presentation consists of a table of 
methods that incorporates a tree view. Each row stands for a 
called method. The methods it calls are drawn with more indenta-
tion in the table rows underneath and the called method’s name is 
connected by a line to its caller’s row. Each row is annotated with 
the information how many times the method was invoked as well 
as its net and total response time. 

The commercial profiler JProfiler [11] exhibits a similar 
view than JFluid. JProfiler does not have the tree included in a 
table, but it exhibits a call tree view drawn with vertices and 
arrows between them. Each vertex carries the same information as 

the table rows in the JFluid view. It is worth noting that JProfiler 
features a similar view for memory usage. 

The JFluid and JProfiler visualizations are both similar to the 
blame graph. They display a similar set of metrics. However, the 
Blame Graph additionally includes the KS-Test result that is 
visualized using a color code. The Blame Graph also is more 
compact. Especially when compared to the JProfiler view. Be-
cause of its compactness the Blame Graph does not include each 
method name and operations with very short response time are 
barely visible. 

The “j2eeprof” approach [12] presented by Kłaczewski and 
Wytrębowicz introduces another view of the call tree. In this view 
every method called is represented by a box. A box for the meth-
od B() is drawn on top of the box for method A() if A calls B. The 
width of each box then resembles the response time of each re-
spective method. This view is essentially identical to the Blame 
Graph. The Blame Graph defines the box width as median re-
sponse time of the test data series and adds the box color as visu-
alization of the KS-Test result. 

Software cartography describes how the techniques of car-
tography, e.g. used for city maps, can be carried over to software. 
Krogmann et al. [13] have shown that this approach is well suited 
for the presentation of performance metrics. They have focused on 
the presentation of resource usages in the context of a component-
based system. They have created several views that use the data 
from several scenarios as overlays. The overlays can be switched 
on and off at will to allow rapid comparison. 

While Krogmann et al. show that the concepts of software 
cartography are very advanced and allow for good result represen-
tation, we cannot directly use their results as they focus on re-
source usage. However, concepts such as overlays are also desira-
ble for our result representation. For example, the Blame Graph 
can use overlays in terms of different color codes that stand for 
different metrics. 

8. CONCLUSIONS AND FUTURE WORK 
In this paper we have extended our previously introduced 

performance blame analysis process [2] with an automated deci-
sion support step. The decision support step statistically and au-
tomatically decides whether the test data series has the overall 
higher response time values in comparison with the expected 
values derived from the component’s performance contract. The 
decision support evaluates this by the KS-Test and by comparing 
point estimators. The automated decision support results in the 
Blame Graph and the performance report. The Blame Graph 
concisely presents the blame (from the KS-Test results) for each 
component operations along with the call hierarchy and the medi-
an response time. The Blame Graph is the main tool for the sys-
tem architect to determine blame. She uses the performance report 
to back her decision up with detailed results for the KS-Test and 
the point estimators. 

The automated decision support helps the system architect to 
interpret performance measurements in terms of performance 
blame analysis. Instead of looking directly at the raw data series 
or the complex statistical characterizations, the system architect 
can work with the Blame Graph and the performance report. Both 
artifacts make it easy to judge whether the test data series has 
higher or lower response time values compared to the expected 
values. The Blame Graph exhibits this directly using a color code 
that stands for the KS-Test results and the performance report 
visualizes point estimators for both data series side by side. 

In the future we will continue to work on the approach pre-
sented in this paper. As a next step, we want to evaluate the rea-
soning of our automated blame analysis with an even more realis-
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tic example system. We want to assess if the Blame Graph and the 
performance report are sufficient decision criteria or if we have to 
add more criteria (like the difference between the values of the 
two data series) to form a decision tree. Moreover, we want to set 
up an empirical case study testing if the proposed visualization is 
user-friendly and adequate in all circumstances. We might need to 
add different views to our visualization using the overlay concept 
from software cartography [13]. In addition, we are developing a 
test case notation that incorporates PCM instances. Such enriched 
test cases constructively ensure that the test case scenario is al-
ways compatible to the PCM simulation scenario. 
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