
Decision Support via Automated Metric Comparison
for the Palladio-based Performance Blame Analysis

Frank Brüseke

s-lab – Software Quality Lab
University of Paderborn
Paderborn, Germany

fbrueseke@s-lab.upb.de

Gregor Engels
s-lab – Software Quality Lab

University of Paderborn
Paderborn, Germany

engels@s-lab.upb.de

Steffen Becker
Heinz Nixdorf Institute

University of Paderborn
Paderborn, Germany

steffen.becker@upb.de

ABSTRACT
When developing component-based systems, we incorporate
third-party black-box components. For each component, perfor-
mance contracts have been specified by their developers. If errors
occur when testing the system built from these components, it is
very important to find out whether components violate their per-
formance contracts or whether the composition itself is faulty.
This task is called performance blame analysis. In our previous
work we presented a performance blame analysis approach that
blames components based on a comparison of response time
values from the failed test case to expected values derived from
the performance contract. In that approach, the system architect
needs to manually assess if the test data series shows faster or
slower response times than the data derived from the contract.
This is laborious as the system architect has to do this for each
component operation. In this paper we present an automated
comparison of each pair of data series as decision support. In
contrast to our work, other approaches do not achieve fully auto-
mated decision support, because they do not incorporate sophisti-
cated contracts. We exemplify our performance blame analysis
including the automated decision support using the “Common
Component Modeling Example” (CoCoME) benchmark.

Categories and Subject Descriptors
D.2.5 Testing and Debugging, D.2.8 Metrics, G.3 Probability and
Statistics

Keywords
Performance blame analysis, CBSE, data series comparison,
performance prediction, performance test

1. INTRODUCTION
In component-based software engineering, software archi-

tects develop systems by composing third-party black-box com-
ponents. For each component, functional and non-functional
component contracts have been specified by their developers.
After composing all components, software architects test the
composition in test cases before shipping the system to its end-
users. We focus here on a subset of these test cases, which test the

fulfillment of the system’s performance. If the architect discovers
errors while executing such a performance test case, she has to
investigate in a so-called performance blame analysis activity
whether components violate their performance contracts or
whether the composition itself is faulty.

In order to blame components, architects face the problem to
identify components violating their performance contract. To
tackle this problem, we have proposed a performance blame
analysis process in previous work [2] (c.f. Figure 1). It is based on
the collection of measured component performance metrics from
the failed performance test case and expected performance metrics
derived from the component’s performance contract (Step 1).
Performance contracts are formalized using the Palladio Compo-
nent Model (PCM) [1]. If the measured performance metrics from
the performance test case violate their performance contract,
architects must blame the respective component (Step 3). Howev-
er, in order to compare the measurements to the specification, the
architect currently has to compare both performance metrics of
each component. The performance metrics are either represented
as complex raw data sets or statistical characterizations. This
comparison is tedious and error prone. In this paper, we add a
novel automated decision support step (Step 2) to our process to
speed up the performance blame analysis.

Existing semi-automated decision support approaches for
component-based performance blame analysis are limited. If they
use components without performance contracts, decision support
is restricted to data aggregation only leaving the tedious compari-
son task to the system architect. In case they do support compo-
nent performance contracts, these contracts are not parameterized
by the component’s context (e.g. [15, 17]). The context of a com-
ponent is defined as the component’s usage, its connected external
services, and its allocation on execution environments. As the
context impacts a component’s performance, approaches for non-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Figure 1: UML 2 activity diagram showing the steps in our
previous performance blame analysis approach [2] plus the
novel decision support step (inside the box)

77

ICPE’13, March 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/03 ...$15.00.

parameterized component performance contracts have to replace
missing context information by manual or heuristically generated
specifications. Our approach is the first to explicitly consider
context influences. By exploiting the parameterized component
performance contracts, we have achieved a sophisticated automat-
ed comparison of performance contracts and performance meas-
urements from failed test cases.

In this paper, we enhance our existing blame analysis process
by a novel automated decision support step to drastically reduce
the manual analysis effort. In order to automate the decision sup-
port step, we have derived a set of statistical indicators that can be
used in an automated process to identify components with faulty
performance. Our tool computes these indicators for the data
collected during the execution of the performance test case and
the performance metrics derived from a component’s performance
contract. Computed indicators are mapped to severity levels
which direct the system architect to components violating their
contractually specified performance. We include these indicators
into a novel visualization based on flame graphs [6]. Our extended
flame graphs use a coloring scheme based on the indicated severi-
ty to highlight contract violations.

We have validated the novel decision support step on two
variants of the Common Component Modeling Example (Co-
CoME) [9]. This system has been designed as a benchmark for
component-based analysis methods. It implements the supply
chain management of a supermarket chain. Our evaluation shows
that the automated decision support step helps the software archi-
tect to easily blame the appropriate components. The blamed
components’ response time during the test case execution violates
the expected response time specification. We claim that our visu-
alization is a concise and easy-to-grasp tool for software archi-
tects.

The contribution of this paper is an extension to our perfor-
mance blame analysis process, which semi-automatically identi-
fies components to blame. It uses a set of derived statistical indi-
cators to feed a novel visualization for blame analysis support. We
provide a case study based on CoCoME giving evidence for the
effectiveness of our approach.

The remainder of the paper is structured as follows. Section 2
introduces a running example that is used throughout the paper.
Section 3 revisits our previous work, the Palladio-based blame
analysis for component-based systems. Section 4 derives the
automated decision support and introduces indicators and visuali-
zations. Moreover, it also discusses necessary changes to the
result interpretation. Section 5 explains the automated decision
support and result interpretation in detail. It exemplifies these new
elements in detail using the running example. Section 6 describes
the limitations of our approach. Section 7 discusses related work
from the areas of performance visualization and performance
blame analysis. Lastly, Section 8 concludes the paper and gives an
outlook on our future work.

2. RUNNING EXAMPLE
Throughout this paper we use a running example. The run-

ning example is used to exemplify certain points in the reasoning
of this paper. An in-depth evaluation of this example follows in
Section 5.

The scenario of the example is the most sophisticated use
case of the Common Component Modeling Example (Co-
CoME) [9]. The CoCoME was specified as a benchmark system
to compare different approaches for component-based software
architecture analysis, such as performance predictions. It specifies
a trading system for a supermarket chain that was inspired by a
real example. We refer to the trading system as the CoCoME-

system. The CoCoME-system includes the whole infrastructure
from the cash desks, where items are sold to customers, to the
store servers registering those sales and to an enterprise server
aggregating all the information. This system structure of the Co-
CoME is shown in Figure 2.

The CoCoME architecture is an archetype of a whole class of
systems. While the cash desks resemble the embedded system part
of the overall system the store and enterprise servers make up the
information system part. In this class of systems the data is pro-
duced by distributed use of embedded system devices. All data are
then stored and processed in the overlaying information system.

This paper focuses on the store server and enterprise server
of the CoCoME-system. These make up the information system
part of the trading system. In this setting, we investigate the sce-
nario that solely consists of the use case “inter-store exchange” for
shipping items among the stores of an enterprise. This use case is
the most sophisticated use case of the CoCoME. It is triggered by
each sale. A store server checks if the items’ stock falls below a
minimal threshold. If so, it triggers the enterprise server to cause
near-by stores to send some of the missing items to the store in
need. It then optimizes the transports such that no store runs out of
the transported items and the overall distribution distance is min-
imal.

Performance blame analysis, as outlined in our previous
work [2], deals with the response times of component operations.
Figure 3 outlines the calls of the component operation in our
running example. Figure 3 shows the participating component
objects (meaning an instance of a deployed component; cf.
Cheesman and Daniels [3]) being deployed on several nodes. The
enterprise server and several store servers participate in the sce-
nario. The solid arrows along the sockets and interfaces represent
component operation calls and the dashed arrows stand for opera-
tion returns. These messages are numbered in the order of their
execution. Since most return messages are given directly after the
corresponding operation call these return messages are not num-
bered.

The scenario in question starts with a store server (node on
top in Figure 3) registering a sale (message 1). The origin of
message 1 is a test driver component (cf. Figure 3). The registered
sale lowers the store’s stock, such that it crosses the minimal
threshold for the item stock. The store then finds all missing
products (message 2) and communicates to the enterprise server
(message 3) to initiate a transport that replenishes the store’s stock
for these products. The ProductDispatcher component first
determines the relevant enterprise information (message 4). The
enterprise information also contains references that enable the
ProductDispatcher to contact all stores. The
ProductDispatcher queries the stock information for each
missing product in all the other stores (messages 5). Messages
crossing the border to the multi-node “Other store servers” stand

Figure 2: System structure of the CoCoME trading system

78

for several messages. One message is sent to each store node in
consideration. The enterprise server then creates an optimized
transport plan and lowers the stock for the transported products in
those stores that need to send products (messages 6). The enter-
prise server then returns the amount of transported products back
to the initial store server (message 7). Finally, the store then saves
the products as incoming.

3. PREVIOUS WORK
The approach presented in this paper improves our previous-

ly introduced performance blame analysis approach [2]. Our
previous work is based on comparing performance metrics from
testing with performance metrics derived from performance con-
tracts. In our previous work and also in this paper, we exclusively
deal with the performance metric response time. The response
times are derived from the performance contracts that the compo-
nent developers supply in the form of the Palladio Component
Model (PCM) [1]. This partial PCM model can then be incorpo-
rated into a system model by the system architect. The first step of
our approach (cf. Figure 1) is then the collection of response time
measurements from testing and from the PCM system model for a
failing test case. To derive expected values from the PCM system
model, the system architect uses performance prediction, i.e. the
PCM simulation. Next, these two data series are used to produce a
histogram. The system architect shall use the histogram to inter-
pret (cf. step 3 in Figure 1) if a particular component operation
violates its contract and therefore needs to be blamed. The system
architect decides this by judging if the test data series has overall
higher response time values than the data series of expected val-
ues.

Our blame analysis approach relies on several assumptions.
First, the test case and the performance analysis scenario must be
equivalent. Our approach does not guarantee this equivalence, but
we have suggested including PCM models in the test case specifi-
cation [2]. Then, the system architect can draw test cases and
PCM models for performance prediction from the same source,

which implies equivalence. Second, the system architects need
PCM contracts that adequately reflect the component developer’s
intentions for the performance of each component. The system
architect must then correctly assemble a system model containing
those PCM contracts. Moreover, the hardware usages included in
the PCM contracts must be modeled in a standardized way. Com-
bined with the hardware definitions used in the project they must
result into response time values that can be easily compared to the
measurements acquired in testing.

The following subsections elaborate more on the data collec-
tion and result interpretation of our previous work. Figure 4 gives
a more detailed overview of the performance blame analysis
approach. The data collection parts for testing and performance
prediction as well as the result interpretation are introduced in
turn. Subsection 3.1 introduces the test part of data collection
while Subsection 3.2 deals with the performance prediction part.
The result interpretation is covered in Subsection 3.3. The result
interpretation is more explicitly explained, because this paper
introduces an automated decision support speeding up result
interpretation.

3.1 Data Collection – Test
As stated before, blame analysis always starts with a failing

test case1. The system architect collects the performance meas-
urements for the scenario that are included in the test case results.
She checks if the data taken while executing the test case are
sufficient. For our blame analysis approach the system architect

1 Please note that we assume that failing test cases can be identi-

fied with the help of detailed requirements, which specify the
expected performance at the system boundary.

Figure 4: Previous performance blame analysis process [2]

Figure 3: Scenario with all participating components and their
exchanged messages

79

must collect the response times for all component operations that
are involved in the test case. In our running example she must
measure the response time of each operation call indicated in
Figure 3. For message 4 “get enterprise information” she has to
measure the response time of the call to the operation queryEn-
terpriseByID() in the component EnterpriseQuery. If
all the needed response time measurements were collected, the
system architect proceeds, otherwise she must repeat the test case
and take the necessary measurements while doing so.

3.2 Data Collection – Performance Prediction
In our approach, the system architect utilizes the Palladio

Component Model (PCM) [1] for performance prediction. We
have chosen the PCM for this because of its role model. The role
model has an explicit role for the component developer. It speci-
fies which diagrams and model contents have to be delivered by
the component developer. Moreover, it states how these parame-
terized PCM models have to be completed by the system archi-
tect, such that it reflects a specific system with specific usage
scenarios. So, the component developers are able to specify their
components’ performance contracts, such that the specification is
usable in different systems and for different use cases. This makes
PCM performance specifications suited for exchanging between
component developers and system architect.

In a full PCM model all parameters have been subsequently
filled in by the various roles creating the model [1]. This PCM
model explicitly covers the components’ context. I.e. it models the
system composition including external services, the allocation and
the system usage. The usage model specifies the workload pro-
duced by virtual users. It includes frequency and order of calls as
well as optional parameters like think time and input characteriza-
tions (e. g. value or number of elements).

The system architect must supply predicted response times
for the failed test case by analyzing such a full PCM model. The
system architect checks if they already have matching data series
from performance analysis during the design time (cf. Figure 4). If
they do not have predicted the performance for this environment
setting and scenario yet, they must do so now. The system archi-
tect needs the predicted response times for any component opera-
tion participating in this scenario. In our running example the
system architect must supply a response time data series for each
of the operation calls in Figure 3, just like in testing.

For proper comparison, the performance data series from
testing on one hand and from performance prediction on the other
hand need to stem from the same scenario. In particular, the input
workload must be the same performance-wise, and also the de-
ployment must be the same.

3.3 Result Interpretation
Finally, the system architect can proceed to result interpreta-

tion (cf. Figure 4). In our previous work, the interpretation of the
measured performance metrics from test and performance predic-
tion is manual. To decide if a component operation needs to be
blamed, the system architect has to compare the two response
time data series. Then, the system architect has to decide whether
the component operation exhibited higher or lower response time
values than predicted. In our previous work [2], we have suggest-
ed that the system architect creates histograms with bins of the
same size (e.g. 125 ms each). Each histogram visualizes the rela-
tive frequencies of the response time data series from testing and
performance prediction side by side.

Figure 5 depicts an example histogram showing the response
time distributions for the component operation queryLow-

StockItems of the component StoreQuery. This operation
call corresponds to message 2 in Figure 3. The histogram in Fig-
ure 5 shows the relative frequency of the response time values
from testing and the expected response time values from perfor-
mance prediction. The X-axis exhibits the response time (in ms)
and the Y-axis depicts the relative frequency how often this re-
sponse time occurred. Figure 5 shows the histogram bins not as
bars. This is also correct, because all the bins are of the same
width, i.e. 125 ms wide. The curves for testing (blue) and perfor-
mance prediction (red) each have only one peak. So, in this case it
is clear that the test response time values are overall lower than
predicted. However, the decision is not always trivial. In our
experience the decision is hard to make, when the curves intersect
more often. Also, if the blue curve had a different shape and had
far more frequent occurrences of the response time around 1000
ms, the decision would be quite hard to make. Recognizing that an
operation has overall slightly lower or higher response time values
only by looking at a histogram such as this is quite hard.

The system architect has to construct and interpret one re-
sponse time histogram, as shown in Figure 5, for each component
operation. In our running example, the system architect needs to
analyze 6 different component operation calls (cf. Figure 3). Thus,
the comparison step is quite time consuming and tedious. This
paper shows how an automated decision support step can look
like.

4. DERIVING AN AUTOMATED DECI-
SION SUPPORT SUB-PROCESS

This section discusses what indicators and visualizations are
suitable for the automated decision support introduced in this
paper. Subsection 4.1 discusses statistical indicators that can
decide whether the response time data series from the test has
higher values than the response time data series from performance
prediction. Subsection 4.2 presents visualizations for these statis-
tical indicators. Subsection 4.3 introduces a decision support sub-
process that combines the indicators and visualizations. It also
deals with how the obtained results of the decision support need to
be interpreted by the system architect to identify the blamed com-
ponent operations.

Figure 5: response time chart for manual comparison

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 250 500 750 1000 1250 1500 1750 2000 2250

re
la
ti
ve
 f
re
q
u
e
n
cy

response time (ms)

StoreQuery.queryLowStockItems()

test data series performance prediction data series

80

4.1 Decision Criteria for an Automated Deci-
sion

This subsection develops automatable decision criteria in
terms of indicators which help to decide whether the values of one
response time data series exceeds the values of another response
time data series. The following questions are relevant with respect
to the decision criteria:

- Which indicators are suited to automatically decide
whether a component operation is to be blamed or not?

- Which of these indicators are most robust (i.e. give the
correct result in most/all cases)?

The questions also imply requirements on a suitable indicator
or decision criterion: 1.) it must work with response time data
series; 2.) it must be able to decide whether one data series has
lower or higher values than another one; 3.) the decision must be
correct in as many cases as possible. The first two requirements
can be checked by consulting the definition of the indicator. This
subsection discusses only indicators that match these two re-
quirements. The third and most important requirement can practi-
cally only be decided using example data series. We have used
data series from our experiments with CoCoME. Our test set
included 20 pairs of data series. For each pair of data series, we
manually assessed whether the test data series exhibits higher,
lower, or about equal values than the performance prediction data
series. To decide whether an indicator is suited, we tested whether
it decides the same way that we have decided manually. The more
often the indicator decides as we would have done, the better it is
suited for our performance blame analysis approach. We used this
benchmark for all the indicators (point estimators and statistical
tests) described in this subsection. We use this example-based
benchmark to derive a heuristic that works well for CoCoME and
likely also applications similar to CoCoME.

The most obvious comparison indicators for data series are
point estimators. Point estimators summarize a data series with a
single numerical value. Two data series can then be compared by
contrasting the point estimator value for each data series. The
most prominent point estimators are minimum, maximum, mean,
and the quartiles (i.e. 25%-quartile, the median and the 75%-
quartile) [4, 10]. We have tried all these indicators to compare the
data series in our test sample. The minimum and maximum are the
two point estimators whose decision differed from the manual
decisions most often. The minimum had seven and the maximum
three false indications. The mean differed less from the manual
decisions with only two wrong decisions in close cases. In one
example where the mean fails, the test data series has a long tail,
i.e. it has a lot of outliers near the maximum. The outliers caused
the mean to fail, because in that case the mean and median dif-
fered significantly. The 25%-quartile, the median and the 75%-
quartile performed best amongst all point estimators. They only
failed in one case.

While some point estimators already qualify as comparison
indicators, we looked for better indicators in statistical testing.
The Kolmogorov-Smirnov-Test (KS-Test) [16] is a test that quan-
tifies whether one data series generally has high or low values.
There are two versions of the KS-Test that test if one data series
has higher or lower values than another one, respectively. To the
best of our knowledge the KS-Test is the only test that can test on
lower and higher values. Other statistical test can only test equali-
ty (e.g. the Chi²-test [4, 16]).

We use the “less”- and the “greater”-variant of the KS-Test
(as implemented in R [14]). We investigate the hypotheses wheth-
er the test data series exhibits lower response time measurements
than the predicted data series and whether test data series has

higher measurements. As a consequence, we gather more infor-
mation than when using a single test. In a clear case we can reject
one of the two hypotheses with confidence. When the two data
series are very close to one another, both tests will show the same
result indicating that the KS-Test cannot tell them apart. This
additional information enabled the KS-Test to outperform the
point estimators. The KS-Test decided according to our manual
decisions for the test data series. However, in two cases it made
no decision, i.e. both KS-Tests indicated that their hypothesis
could be rejected. Manually, we were able to decide one of the
two cases, but could not do so for the other. As a result, the KS-
Test was undecided in one case where a decision was possible.
Thus, it did a little better than the quartiles, which made one
actually wrong decision.

Altogether, our experiments suggest that the three point-
estimators 25%-quartile, median, and 75%-quartile are reliable
comparison indicators. The KS-Test seems to the best comparison
indicator. It does not only decide, but it also indicates cases in
which a decision is hard and which therefore need human inter-
vention.

4.2 Visualizations for the Decision Criteria
Subsection 4.1 identified the 25%-quartiles, median, 75%-

quartile, and the KS-Test as good indicators for performance
blame analysis. Now, we look for a helpful visualization of these
indicators. Most importantly, the visualization needs to be easily
interpretable in terms of blaming. If possible, the visualizations
shall not only present the indicator in question, but also other
relevant data. Other relevant data confers to data that quantifies
performance or that reflects influences on performance. For re-
sponse time data, an important supplement is the call tree, the
deployment and architecture, and the input data.

A box-and-whiskers-plot [10] can visualize the quartiles as
well as the minimum and maximum. Showing two box-and-
whiskers-plots (one for each response time data series) in one
chart helps comparing whether the values of one of the data series
exceed the values of the other one. This comparison can be done
by comparing the position of the boxes of the data series. Each
box stands for 50% of the measurements. So, if one box is drawn
above the other, the data series likely has the higher values. As the
quartiles only serve as a secondary indicator, we did not try to
couple the quartiles with other relevant data.

An execution of the two variants of the KS-Test gives one of
three possible results: 1.) the test data series shows lower response
times; 2.) the predicted data series shows lower response times; or
3.) the data series are so close the test cannot decide clearly. These
three result types stand for three different severity levels. Having
three different severity levels suggests using a “traffic light indi-
cator”. Green indicates that the test data series has the lower
values, yellow indicates that the KS-Test is unable to decide, and
red indicates that the predicted data series has the lower response
times. Such a traffic light can visualize the KS-Test outcome for
each component operation that contributed in the test case. This
traffic light coloring cannot only be used on its own, but it can
also be incorporated into other visualizations that cover all the
component operations participating in the test case.

Profilers are well matured performance analysis tools. Profil-
ers often visualize caller/callee relationships of operations along
with operation response time (cf. Section 7). This data combina-
tion is the main data that profilers present for analyzing the re-
sponse times. We take this as evidence that this data combination
can be seen as “other relevant data”.

Brendan Gregg [6] presented his “Flame Graphs” which are a
variation of the usual profiler charts. This particular variant shows

81

the mentioned information in a compact form. Figure 6 shows an
excerpt from a sample Flame Graph [6] presenting data measured
in a MySQL run. A legend has been added in Figure 6 to give
additional explanations. The chart shows the CPU-time of func-
tions in MySQL. Each function is represented by a box. The width
of the box shows the complete CPU time of the function during
the test. The vertical ordering in the chart stands for the call hier-
archy. A calls B if the box representing B is drawn on top of the
box representing A. The width of a box that is not covered by a
box on top of it represents the CPU time consumed by computa-
tions inside this function. In the original Flame Graphs the box
colors have no meaning. Also the positioning of the boxes from
left to right conveys no meaning.

The compact representation of the Flame Graphs requires to
omit some information. The names of the functions (or opera-
tions) and the exact number for the CPU time cannot be shown in
each box (cf. Figure 6). The Flame Graphs circumvent this limita-
tion using interactivity. Flame Graphs are interactive SVG charts.
The missing information for a particular box is shown next to the
“Function” text at the bottom of Figure 6, when moving the
mouse cursor over that box.

We see the call hierarchy in combination with a response
time metric as performance relevant information. The Flame
Graphs show these metrics. They have the advantage of being
compact, when compared with other usual profiler visualizations
(cf. Section 7). Moreover, we have found that the KS-Test result
can be sensibly visualized using traffic light colors. Until now, the
colors in the Flame Graphs have not conveyed meaning. As a
consequence, we can adapt Flame Graphs with the KS-Test traffic
light coloring as box colors. Moreover, the box width can repre-
sent the median response time of the component operation in the
test case. It showed that the median is indicative for our perfor-

mance blame analysis (cf. Subsection 4.1). This way, we get a
compact diagram that includes the KS-Test results as well as the
median response time and call hierarchy. We call this adapted
version of the graph “Blame Graph”.

In this subsection, we have introduced the Blame Graph that
couples the KS-Test result in the form of traffic light colors with
the average response time for each component operation and the
position in the call tree. The KS-Test results are our prime deci-
sion criterion and are also coupled with other relevant decision
criteria. Next, we visualize the quartiles using box-and-whiskers-
plots. We have not coupled this secondary indicator with other
relevant data.

4.3 Incorporating Decision Support
This subsection presents our decision support sub-process

that incorporates the indicators and visualizations that the subsec-
tions 4.1 and 4.2 have introduced. Moreover, this subsection
discusses how the result interpretation is affected by introducing
automated decision support into the performance blame analysis.

The starting point of the decision support sub-process is that
the system architect has response time data series from testing and
performance prediction available for the test case in question.
Figure 7 shows the additional decision support process. It is split
in two parts. On the left hand side, Figure 7 shows the action that
the system architect needs to perform and on the right hand side
Figure 7 shows steps that are automatically computed. We have
implemented a Python script that uses the R language [14] for
statistical computations.

First, the system architect needs to prepare the computation
by mapping component operations to PCM entities. Then the
system architect gives conversion factors for the test and the
predicted data series. These factors will be used to convert the
response time data series to a common time unit. After that, com-
putation begins. The computation takes the configuration men-
tioned before as well as the various response time data series as
input and produces two different outcomes. First, it produces the
Blame Graph which summarizes all the component operations

Figure 7: the additional decision support sub-process

Figure 6: sample ”Flame Graph“ [6] with additional legend

82

involved in the test case in one chart. This chart shows the median
response time for each component operation in context of the call
hierarchy. We chose the median, as it turned out to be indicative
for performance blame analysis (cf. Subsection 4.1).

Moreover, the computation produces a performance report
that consists of two sheets for each of the component operations
participating in the test case. One sheet shows a box-and-
whiskers-plot for the two response time series associated with it,
i.e. the data series from test and performance prediction. The next
sheet exhibits all the point estimators for the two data series as
well as the KS-Test results. The point estimators covered in the
performance report are the quartiles, the minimum, the maximum,
and the mean value.

The system architect must then look at the blame graph and
the performance report to find blamed component operations.
Figure 8 shows the updated result interpretation sub-process. In
contrast to our previous work (cf. lower part of Figure 4) it relies
on the Blame Graph and the performance report. The Blame
Graph shows all the component operations in one sheet. All
blamed operations are drawn in red. In addition, the system archi-
tect can also prioritize the blamed operations by call hierarchy
(vertical box order) and median response time (box width). So, the
blame graph supplies the system architect with three different
relevant decision criteria. The system architect can then look into
the performance report for more detailed figures about each com-
ponent operation. If the system architect is still in doubt whether
or not to blame the component operation in question, the system
architect should of course make her own analyses.

5. EXEMPLIFIED AUTOMATED DECI-
SION SUPPORT
This section exemplifies the automated decision support as de-
picted in Figure 7. It covers the configuration by the system archi-
tect as well as the automated analysis. This analysis results in the
Blame Graph and the performance report. Next, this section dis-
cusses how to interpret these two artifacts in terms of blaming (cf.
Figure 8). Also, it illustrates how each step of the decision support
and the result interpretation has been performed in our running
example (cf. Section 2) and its results. Please note that you can
find all example data and analysis results along with our analysis
scripts on this paper’s companion website2.

Subsection 5.1 first introduces the implementations and the
test bed that have been used in the case studies with both Co-
CoME implementations. This includes the instrumentation used to
produce the response time measurements. The Subsections 5.2 to
5.5 introduce the automated decision support and the result inter-
pretation showing the results produced with the CoCoME refer-
ence implementation. Subsection 5.2 introduces the mapping from
the component operations in the implementation to their counter-
parts in the model (cf. steps 1 and 2 in Figure 7). It also covers the
subsequent conversion of the values of the data rows into a com-
mon time unit (cf. steps 3 and 4 in Figure 7). Subsection 5.3 pre-
sents the performance report and the statistical computations
related to it. That subsection covers the steps 5, 6, 7, 8 and 10 in
Figure 7. Subsection 5.4 comprises the creation of the Blame
Graph and the related statistical computation. It covers the steps 8,
9 and 10 in Figure 7. Subsection 5.5 discusses the result interpre-
tation by the system architect (cf. Figure 8). Finally, Subsection
5.6 covers the lessons learned from the case study with the Co-
CoME 2 implementation.

2 http://homepages.uni-paderborn.de/bruesie/icpe2013/

5.1 Tested Implementation and Test Bed
We have chosen CoCoME as our running example, because

it is a good representative of an information system that is fed by
data generated by embedded system devices. It consists of several
subsystems. The information system that we focus on consists of
nine different components. These components are deployed on
four different types of nodes, i.e. store server, store client, enter-
prise client, and enterprise server. Each store servers hosts five
component objects and the enterprise server hosts six component
objects. The clients are not participating in the test case used in
the running example.

The CoCoME was originally released with a reference im-
plementation3 written in Java. We have fixed some bugs in the
reference implementation, such that it can execute the scenario of
our running example (cf. Section 2). This fixed CoCoME imple-
mentation comprises 6320 lines of Java code. The following refers
to this implementation as CoCoME RI. Subsections 5.2 to 5.5 deal
with the CoCoME RI case study in detail. Additionally, the origi-
nal reference implementation has been fixed, improved and re-
leased as CoCoME 24. The Karlsruhe Institute of Technology
(KIT) created this version for the same reasons which made us
develop a fixed version of the reference implementation. The KIT
still maintains this version for further usage. This improved im-
plementation comprises 9788 lines of Java code. Subsection 5.6
briefly summarizes the lesson learned in the CoCoME 2 case
study.

To test the use case “exchange products among stores”, in-
troduced in Section 2, we have adapted the test bed to our needs.
We have introduced a load test driver and response time measur-
ing using bytecode instrumentation in both implementations. The
instrumented bytecode measures the time between method en-
trance and return on the server side. This metric also includes
possible queuing delays. This is consistent with the performance
prediction of the PCM. The measurement bytecode writes this
response time to a file and it also includes other important infor-
mation, namely, the method name, the current time, the current
stack trace, and the thread identifier. BTrace5 supplies the actual
bytecode instrumentation, data query, and file writing facilities.
We created a short program using BTrace to enable response time
measuring. While this custom measurement solution could be
more efficient and also could trace cross-process control flow, it
suits our purpose. Our measurement solution adds an overhead to

3 see http://cocome.org/
4 see http://sdqweb.ipd.kit.edu/wiki/CoCoME2 and

http://sourceforge.net/projects/cocome/
5 see http://kenai.com/projects/btrace

Figure 8: the updated result interpretation sub-process

83

the response time of the tested methods. The method directly
called by the test driver shows about 34.6 ms (i.e. 6%) slower
response times when instrumented. This overhead is tolerable.

The test setup was very simplistic. The test setup was used
for either implementation, i.e., CoCoME RI and CoCoME 2. A
single dedicated PC (Pentium D 3 GHz single core CPU with two
threads, 2 GB RAM, Windows 7 with 64 bit) was used to execute
the CoCoME system and also the load test driver. The executed
CoCoME system consisted of three store servers and an enterprise
server as well as the necessary infrastructure, i.e. the RMI regis-
try, the Active MQ JMS messaging server, and the Apache Derby
database included in each CoCoME implementation. The load test
driver simulated eight parallel users. Each user queries the same
store server 125 times (1000 requests total). This setup should
produce a certain amount of contention in the system. However,
we did not quantify contention (e.g. by measuring queue length).

5.2 Map Operations and Unit Conversion
First the system architect needs to prepare some configura-

tion data for the Python/R script, which computes the performance
report and the Blame Graph. The system architect needs to ensure
that there exists a mapping from the component operations in the
implementation to their representation in the performance model.
The mapping needs to consider each operation and its complete
call hierarchy at operation level. The contents of the mapping
need to reflect this. The testing side of the mapping consists of all
the Java stack traces from the test case that indicate the call of a
component operation. On the performance prediction side, the
system architect enters the file name of a set of data for this opera-
tion invocation. In the PCM, calls to operations are modeled as
part of a component’s control flow. So, the PCM can distinguish
different invocations of the same operation. The PCM’s perfor-
mance prediction yields a separate set of values for each different
invocation of an operation.

Because the mapping takes the call hierarchy of a component
into account, the mapping needs to be individually constructed for
any system. The system architect may use information from the
component developers that states what method in the implementa-
tion correspond to which model element, but she needs to add
information from the component context.

Both the response time measurements from the CoCoME test
and also from the PCM need to be represented in a comma-
separated values (CSV) file. One line in the CSV file from the test
must consist of the response time and the full stack trace. Having
both data series in CSV format, we can easily process the data
with our analysis.

For better readability, we have compressed the different Java
stack traces by numbering them and added a short text for descrip-
tiveness. In the following, we will only exhibit this short form.
Table 1 displays an example of the mapping from the compressed
Java stack trace to the CSV file with predicted response time
values.

As a next step, the system architect needs to convert the re-
sponse time values from both sources (test and performance pre-
diction) to a common time unit. The system architect gives two

conversion factors to the Python/R script, one for the test data
series and one for the performance prediction data series. In our
running example, the measurements from testing and performance
prediction are converted from nanoseconds and seconds to the
common unit milliseconds respectively.

The manual steps (cf. steps 1 to 3 in Figure 7) were finished
in about one hour for each implementation of CoCoME in the
example. These manual steps have not been automated due to the
prototype status of our tooling, but are partly automatable. The
measurement export and the computation of conversion factors (if
the time units are known) can be automated. Creating the mapping
can be semi-automated.

5.3 Performance Report
While the Blame Graph is the primary analysis tool, the per-

formance report is the secondary analysis tool that the automated
decision support delivers. The performance report gives a detailed
overview of each pair of response time data series for all the
component operations. It contains the point estimators, the KS-
Test results, and a box-and-whiskers-plot for each operation.
Specifically, it comprises all computed point estimators: maxi-
mum, minimum, quartiles, and mean. In addition, it visualizes the
quartiles in a box-and-whiskers-plot that shows the test and per-
formance analysis data series side by side.

After finishing the configuration (cf. Subsections 5.2), the
Python/R script computes the point estimators for each component
operation. Table 2 lists the point estimators for the method “(8)
otherStoreInterchange”. The system architect can compare the
point estimator values to get an impression, which data series has
higher values. In Table 2, all the point estimators in the test data
series have higher values than in the performance prediction data
series. The Python/R script also draws a box-and-whiskers plot
that shows the test and performance analysis response time data
series side by side. Figure 9 depicts this box plot. For better read-
ability the box plot does not include the highest 1% of the meas-
urements of each data series, because the test data series has a few

Table 1: mapping between implementation and PCM

Java stack trace CSV-file from PCM

(9) overall bookSale0.csv

(8) otherStoreInterchange orderProductsAvailableAtOtherStores0.csv

(7) markStock markProductsUnavailableInStock1.csv

(6) solveOptimization solveOptimization0.csv

Figure 9:example box-and-whiskers plot

84

outliers that are way higher than most of the measurements. Fig-
ure 9 shows that the box for the test data series (which represents
50% of the measurements) lies above the box of the performance
prediction data series. This indicates that the values in the test data
series are higher than those of the performance prediction data
series.

The result of the KS-Test is also shown in the performance
report. The report comprises the probability value (p-value [16])
that the “less” and the “greater” variant of the KS-Test result in.
Section 5.4 deals with the KS-Test in more detail.

5.4 Blame Graph
The performance report is the secondary indicator for analyz-

ing performance blame, while the Blame Graph is the primary
indicator. The Blame Graph depicts operations that are slower
than expected as red boxes. The box colors stand for the result of
the KS-Test (cf. Subsection 4.3). The KS-Test implementation in
R takes both data series as input and results in the p-value [16].
The Python/R script executes the KS-Test and accepts the hypoth-
esis when the p-value is at most 5%. This 5% threshold is a start-
ing value which we will evaluate in future experiments.

The Blame Graph visualizes the results of the KS-tests. It al-
so visualizes the call relationships in the tested implementation
and the median response times of each component operation in the
test. For the example test case, our script produces the result
presented in Figure 10. We added a legend to Figure 10 for better
readability. The method names in the Blame Graph are given in
terms of the Java implementation of CoCoME. The boxes in
Figure 10 are not labeled with fully qualified class names due to
the restricted width of the boxes (even the short names may be cut
off in small boxes). The fully qualified class name is shown next
to the “Function”-text in the original SVG Blame Graph, when
moving the mouse over the box representing the operation. In the
given Blame Graph the system architect can identify that three
methods are blamed, because they are drawn as red boxes. Details

on how to interpret the Blame Graph are discussed in Subsec-
tion 5.5.

5.5 Result Interpretation
The system architect first looks at the Blame Graph. The sys-

tem architect identifies the red boxes in the Blame Graph repre-
senting the operations that are slower than expected. In our exam-
ple Blame Graph (cf. Figure 10), there are three blame operations:

 StoreImpl.bookSale(..)
(also known as “(8) otherStoreInterchange”)

 ProductDispatch-
er.orderProductsAvailableAtOtherStores(..)

 StoreImpl.markProductsUnavailableInStock(..)

Then, the system architect can prioritize the order in which
the blamed operations are analyzed by either call hierarchy (verti-
cal box order) or by median response time (box width). For exam-
ple, the system architect could decide to prioritize the operation
“StoreImpl.markProductsUnavailableInStock”, as this operation
does not call other operations.

The system architect can check the performance report to in-
vestigate if the KS-Test has blamed the operations correctly.
Using the performance report, the system architect can also priori-
tize the order to investigate the blamed operations differently. For
instance, the system architect could decide to prioritize the com-
ponent operations according to the difference between the test
values and the expected values. If the system architect is still not
satisfied, she needs to perform her own analyses.

Compared to the manual process in our previous work, the
system architect only needs to configure the Python/R script and
can then already interpret the generated results. This saves the
system architect the trouble to create the chart by herself. Moreo-
ver, the results of the automated decision support can be interpret-
ed easier. The indicators produced by the automated decision
support are tailored to judge whether the test data series exhibits
the higher values than the performance prediction data series. In
our previous work, the system architect needed to judge whether
the test data series has the higher values by looking at a specific
histogram.

5.6 Case Study: CoCoME 2
While the Subsections 5.2 to 5.5 deal with our running ex-

ample in the CoCoME RI, this subsection summarizes what we
learned in the case study with the CoCoME 2. In this second case
study, we could largely confirm what we learned in the CoCoME
RI case study. The system architect could employ the automated
decision support to get the Blame Graph and the performance
report. The Python/R-script quickly produced this result. The

Table 2: point estimators for the operation
“(8) otherStoreInterchange”

 PCM – resp. time Test – resp. time

minimum 163.1 ms 760.7 ms

25%-quartile 1120.8 ms 2528.6 ms

median 1506.2 ms 3279.6 ms

75%-quartile 1952.4 ms 4012.1 ms

maximum 3186.0 ms 24595.4 ms

mean 1500.3 ms 3248.7 ms

Figure 10: blame graph for the example test case

85

effort for the analysis was considerably lower than the effort for
implementing the test driver and measurement solution.

The Blame Graph for CoCoME 2 gives a quick overview
which methods exceed the response time values derived from the
PCM contract. But this Blame Graph also shows undecided opera-
tion calls that the KS-Test cannot clearly decide. The performance
report confirms the results of the Blame Graph, but also shows
that one of the undecided results can actually be decided with the
performance report (cf. Subsection 4.1). This shows that it is
important to also include the performance report as a decision
support result. Moreover, the Blame Graph also shows that our
current monitoring solution is unable to track requests crossing
process boundaries. Operation calls in other processes are drawn
just as operations called directly from the test driver.

6. LIMITATIONS
Our approach is currently limited to analyzing the response

times of component operations. It can only detect errors in specif-
ic component operations. If there are no deviations found for any
component operations, our approach assumes that the error is in
the composition. However, our approach does not help to detect
defects in the architecture, the deployment, etc.

In addition, this approach is based on the differences in the
performance contract compared to the actual implementation. If
the contracts were correct, comparison between the testing values
and expected values from performance prediction will always
result in equal values. This is why this approach assumes that the
contracts reflect the component developer’s intentions of the
component’s performance.

The approach depends on the quality of the performance con-
tracts that are delivered by the component developers. The com-
ponent developers could deliver overly simple contracts. Such
contracts are only viable in very specific cases and will evaluate
to unrealistic expected values in the majority of cases. Moreover,
the component developer can betray us with wrong contracts.
They could either deliver “safe contracts” or “flattering con-
tracts”. “Safe contracts” always result in higher response time
values than the values measured in test. This would render this
approach useless, but would also lower the chance system archi-
tects acquire that component from the market. “Flattering con-
tracts” indicate that the component is performing better than it
actually is. Such components are more likely to be acquired from
the market, but our approach will also blame such components in
case of performance issues. If our approach blames all compo-
nents, the result is not useful as well. Even when the component
developers deliver contracts as intended, the contracts still may
not be completely accurate. It is very hard for the component
developers to foresee every possible context a component may be
used in and to design an according and accurate contract.

The test measurements considered in our analysis are gained
with an instrumentation that implies an overhead (cf. Subsec-
tion 5.1). This overhead may cause false positives, because it adds
to the values in the test data series.

Only measuring response times leaves out certain aspects of
the middleware that is used to execute the components. For exam-
ple the measurements do not differentiate queuing delays and the
response time also includes the response time of called compo-
nents. That means that the blame may travel down the blame
graph along the call chain towards the callers. In this case our
approach may blame more components than necessary.

The visualization introduced in this paper can also be im-
proved. The Blame Graph does not show process or host bounda-
ries. This is partly due to the monitored data that it visualizes. Our
current monitoring solution cannot track requests that cross pro-

cess boundaries. Thus, the Blame Graph shows internally called
methods from another host or process on the same level as calls
that are called directly from the test driver. Moreover, the Blame
Graph shows the median response time as box-width. It does not
cover the amount of times an operation was called and may there-
fore be deceiving. The number of calls is omitted due to the proto-
type status of our tooling, but can be easily added to the Blame
Graph.

7. RELATED WORK
This paper introduces an automated decision support for per-

formance blame analysis. This decision support delivers the
Blame Graph that take the context of the component operations
into account. So, Subsection 7.1 discusses other performance
blame analysis approaches in terms of their decision support. It
evaluates for each approach what their decision support looks like
and to what degree it is automated. Moreover, it presents what
results the decision support for each approach yields. The set of
results shall be easily interpretable and it shall take the context of
the results into account.

One contribution of this paper is to present performance met-
rics visually embedded in the component operation context. Sub-
section 7.2 presents several visualization techniques from other
areas, because visual result presentation is seldom used in perfor-
mance blame analysis. It covers the areas of performance profiling
and software cartography.

7.1 Performance Blame Analysis
One approach that does come from the field of performance

blame analysis in component-based systems is presented by Srini-
vas and Srinivasan [17]. The approach analyzes the call tree of
component-based software to perform blame analysis. The call
tree is annotated with cumulated percentage costs. The costs in the
call tree can be any performance metric such as response times or
CPU usages, which are expressed using percentages. The analysis
then converts the cumulated costs to absolute costs. The cost
conversion takes only a user-defined set of components into ac-
count. Calls to other components are defined as in-method compu-
tation, and are hence not differentiated in the analysis. Then the
analysis computes if there are calls in the altered call tree that
exceeds a chosen cost threshold. The result of this approach is a
list of component methods with their absolute percentage costs.
The threshold can be used to scale the number of results given.

Compared to our approach the approach by Srinivas and
Srinivasan [17] has a slightly lower degree of automation. On one
hand, the user has to supply several complex configuration set-
tings. The user has to specify a threshold and the set of classes and
methods, which are considered in the analysis, as substitute for the
contract and the component context, respectively. The configura-
tion settings have massive influence on the quality of results. On
the other hand, the decision support as such is automated. The
decision support is the computation of the final cost percentages
that are higher than the user-defined threshold. The decision
support results in an ordered list of methods and cost percentages.
In the list the system architect can easily identify the most costly
methods. This kind of analysis relies on the observation that often
times high cost of a method means that it needs to be improved.
However, if the methods that need to be improved are not at the
top of the list, they are hard to find. The list can be very extensive
if the threshold is set too low. In such a case an additional visuali-
zation would be helpful. The cost-metric is not so much depend-
ent on the call tree as pure response time measurements. The
algorithm internalizes calls into calling methods, as specified by

86

the user. Then it computes absolute cost values. These absolute
values can be interpreted independent of the call tree.

Another approach that deals with performance blame analy-
sis is exhibited by Rutar and Hollingsworth [15]. The approach
computes the blame for variables and data structures on the basis
of data flow. Every operation on a variable like a simple assign-
ment or an addition of another variable increases the blame of this
variable. This is also the case if the variable is used in loops or
branches. The blame is also aggregated in data structures. These
blame data are gathered by static analysis and by runtime monitor-
ing. The result of this approach is a list of variables and their
blame factor.

The approach by Rutar and Hollingsworth works on a differ-
ent abstraction level than our approach. They are doing a white-
box analysis covering the variables and are therefore working on
very detailed level. This implies that the source code of all com-
ponents needs to be available, since static analysis works on the
source code. The static analysis is not fully automated and needs
to be assisted in complicated cases. Moreover, the result list does
neither cover blamed component operations nor components.
Therefore, the system architect has to manually map the variables
to components and component operation in order to find the
blamed components or component operations. This means that the
approach has no decision support.

The last approach tests the conformance of a component im-
plementation to its performance specification. Groenda’s ap-
proach [7, 8] is also based on the PCM. On one hand, Groenda
measures the performance of the implementation during test cases
derived from PCM instances. On the other hand, he derives per-
formance measurements from PCM performance prediction.
These two data series are then compared in terms of equality. The
comparison is done on component operation level.

In contrast to our approach Groenda [7, 8] investigates
whether the data series for a component operation in a specific
test case from testing matches an equivalent data series from
performance prediction. He statistically tests the hypotheses
whether the two data series deviate or match. He interprets the test
result as “yes” or “no” with the help of a user-defined error
threshold. While this approach exemplifies the automated use of
statistical testing as part of the decision support, it does not elabo-
rate further on this topic. In particular, Groeda does not mention
how the single results of the repeated tests are aggregated and
how the result is presented.

7.2 Performance Visualization
This subsection deals with the areas of performance profiling

and software cartography. It describes which visualizations are
used in these areas and how they compare to the Blame Graph.
The Blame Graph is the prime visualization introduced in this
paper.

The popular open source profiler JFluid [5] (also known as
Netbeans Profiler) exhibits a tabular representation based upon the
Calling Context Tree. This presentation consists of a table of
methods that incorporates a tree view. Each row stands for a
called method. The methods it calls are drawn with more indenta-
tion in the table rows underneath and the called method’s name is
connected by a line to its caller’s row. Each row is annotated with
the information how many times the method was invoked as well
as its net and total response time.

The commercial profiler JProfiler [11] exhibits a similar
view than JFluid. JProfiler does not have the tree included in a
table, but it exhibits a call tree view drawn with vertices and
arrows between them. Each vertex carries the same information as

the table rows in the JFluid view. It is worth noting that JProfiler
features a similar view for memory usage.

The JFluid and JProfiler visualizations are both similar to the
blame graph. They display a similar set of metrics. However, the
Blame Graph additionally includes the KS-Test result that is
visualized using a color code. The Blame Graph also is more
compact. Especially when compared to the JProfiler view. Be-
cause of its compactness the Blame Graph does not include each
method name and operations with very short response time are
barely visible.

The “j2eeprof” approach [12] presented by Kłaczewski and
Wytrębowicz introduces another view of the call tree. In this view
every method called is represented by a box. A box for the meth-
od B() is drawn on top of the box for method A() if A calls B. The
width of each box then resembles the response time of each re-
spective method. This view is essentially identical to the Blame
Graph. The Blame Graph defines the box width as median re-
sponse time of the test data series and adds the box color as visu-
alization of the KS-Test result.

Software cartography describes how the techniques of car-
tography, e.g. used for city maps, can be carried over to software.
Krogmann et al. [13] have shown that this approach is well suited
for the presentation of performance metrics. They have focused on
the presentation of resource usages in the context of a component-
based system. They have created several views that use the data
from several scenarios as overlays. The overlays can be switched
on and off at will to allow rapid comparison.

While Krogmann et al. show that the concepts of software
cartography are very advanced and allow for good result represen-
tation, we cannot directly use their results as they focus on re-
source usage. However, concepts such as overlays are also desira-
ble for our result representation. For example, the Blame Graph
can use overlays in terms of different color codes that stand for
different metrics.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have extended our previously introduced

performance blame analysis process [2] with an automated deci-
sion support step. The decision support step statistically and au-
tomatically decides whether the test data series has the overall
higher response time values in comparison with the expected
values derived from the component’s performance contract. The
decision support evaluates this by the KS-Test and by comparing
point estimators. The automated decision support results in the
Blame Graph and the performance report. The Blame Graph
concisely presents the blame (from the KS-Test results) for each
component operations along with the call hierarchy and the medi-
an response time. The Blame Graph is the main tool for the sys-
tem architect to determine blame. She uses the performance report
to back her decision up with detailed results for the KS-Test and
the point estimators.

The automated decision support helps the system architect to
interpret performance measurements in terms of performance
blame analysis. Instead of looking directly at the raw data series
or the complex statistical characterizations, the system architect
can work with the Blame Graph and the performance report. Both
artifacts make it easy to judge whether the test data series has
higher or lower response time values compared to the expected
values. The Blame Graph exhibits this directly using a color code
that stands for the KS-Test results and the performance report
visualizes point estimators for both data series side by side.

In the future we will continue to work on the approach pre-
sented in this paper. As a next step, we want to evaluate the rea-
soning of our automated blame analysis with an even more realis-

87

tic example system. We want to assess if the Blame Graph and the
performance report are sufficient decision criteria or if we have to
add more criteria (like the difference between the values of the
two data series) to form a decision tree. Moreover, we want to set
up an empirical case study testing if the proposed visualization is
user-friendly and adequate in all circumstances. We might need to
add different views to our visualization using the overlay concept
from software cartography [13]. In addition, we are developing a
test case notation that incorporates PCM instances. Such enriched
test cases constructively ensure that the test case scenario is al-
ways compatible to the PCM simulation scenario.

9. REFERENCES
[1] Becker, S. et al. 2009. The Palladio component model for

model-driven performance prediction. Journal of Systems
and Software. 82, 1 (Jan. 2009), 3–22.

[2] Brüseke, F. et al. 2011. Palladio-based performance blame
analysis. Proceedings of the 16th International Workshop
on Component-oriented programming - WCOP ’11 (Boul-
der, Colorado (USA), 2011), 25–32.

[3] Cheesman, J. and Daniels, J. 2000. UML Components: A
Simple Process for Specifying Component-Based Software.
Addison-Wesley Longman, Amsterdam.

[4] Devore, J.L. and Berk, K.N. 2012. Modern Mathematical
Statistics with Applications. Springer.

[5] Dmitriev, M. 2004. Selective profiling of Java applications
using dynamic bytecode instrumentation. Performance
Analysis of Systems and Software, 2004 IEEE International
Symposium on - ISPASS. (2004), 141–150.

[6] Gregg, B. 2011. Flame Graphs:
http://dtrace.org/blogs/brendan/2011/12/16/flame-graphs/.
Accessed: 2012-10-04.

[7] Groenda, H. 2011. An Accuracy Information Annotation
Model for Validated Service Behavior Specifications.
Models in Software Engineering. J. Dingel and A. Solberg,
eds. Springer Berlin / Heidelberg. 369–383.

[8] Groenda, H. 2010. Usage profile and platform independent
automated validation of service behavior specifications.
Proceedings of the 2nd International Workshop on the
Quality of Service-Oriented Software Systems (New York,
NY, USA, 2010), 6:1–6:6.

[9] Herold, S. et al. 2008. CoCoME - The Common Compo-
nent Modeling Example. The Common Component Model-
ing Example. A. Rausch et al., eds. Springer Berlin / Hei-
delberg. 16–53.

[10] Jain, R. 1991. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measure-
ment, Simulation, and Modeling. John Wiley & Sons.

[11] Java Profiler - JProfiler: http://www.ej-
technologies.com/products/jprofiler/overview.html.
Accessed: 2012-03-23.

[12] Kłaczewski, P. and Wytrębowicz, J. 2007. j2eeprof — a
tool for testing multitier applications. Software Engineer-
ing Techniques: Design for Quality. Springer Boston. 199–
210.

[13] Krogmann, K. et al. 2009. Improved Feedback for Archi-
tectural Performance Prediction Using Software Cartog-
raphy Visualizations. Architectures for Adaptive Software
Systems. Springer Berlin / Heidelberg. 52–69.

[14] R Development Core Team 2011. R: A Language and
Environment for Statistical Computing. http://www.R-
project.org.

[15] Rutar, N. and Hollingsworth, J.K. 2009. Assigning Blame:
Mapping Performance to High Level Parallel Programming
Abstractions. Euro-Par 2009 Parallel Processing. H. Sips
et al., eds. Springer Berlin Heidelberg. 21–32.

[16] Shao, J. 2003. Mathematical Statistics. Springer.

[17] Srinivas, K. and Srinivasan, H. 2005. Summarizing appli-
cation performance from a components perspective. ACM
SIGSOFT Software Engineering Notes (New York, NY,
USA, 2005), 136–145.

88

