
On Load Balancing: A Mix-Aware Algorithm for
Heterogeneous Systems

Sebastiano Spicuglia
University of Lugano
Lugano, Switzerland

sebastiano.spicuglia@usi.ch

Mathias Björkqvist
IBM Research Zurich Lab

Switzerland
mbj@zurich.ibm.com

Lydia Y. Chen
IBM Research Zurich Lab

Switzerland
yic@zurich.ibm.com

Giuseppe Serazzi
Politecnico di Milano

Milano, Italy
serazzi@elet.polimi.it

Walter Binder
University of Lugano
Lugano, Switzerland

walter.binder@usi.ch

Evgenia Smirni
College of William and Mary

Virginia, US

esmirni@cs.wm.edu

ABSTRACT

Today’s web services are commonly hosted on clusters of servers
that are often located within computing clouds, whose computa-
tional and storage resources can be highly heterogeneous. The
workload served typically exhibits disparate computation patterns
(e.g., CPU-intensive or IO-intensive), that fluctuate both in terms of
volume and mix. The system heterogeneity together with workload
diversity further exacerbates the challenge of effective distribution
of load within a computing cloud. This paper presents a novel, mix-
aware load-balancing algorithm, which aims to distribute requests
sent by multiple applications in heterogeneous servers such that
the application response times are minimized and system resources
(e.g., CPU and IO) are equally utilized. To this end, the presented
algorithm tries to not only balance the total number of requests
seen by each server, but also to shape the requests received by each
server into a certain “mix", that is analytically shown to be opti-
mal for response time minimization. Our experimental results—
based both on simulation and on a prototype implementation—
show that the mix-aware algorithm achieves robust performance in
most workload mixes as well as a consistent performance improve-
ment in comparison with one of the most robust load-balancing
schemes of the Apache server.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Performance evaluation—Algo-

rithms; Experimentation; Measurement

Keywords

Load balancing algorithm; Heterogeneous system; Cloud comput-
ing; Simulation; Prototype

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, March 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/03 ...$15.00.

1. INTRODUCTION
To ensure scalability, today’s web services are replicated and

hosted on distributed systems that experience regular resource up-
grades and are thus comprised of heterogeneous components. Web
service applications are characterized not only by disparate re-
source requirements (e.g., a CPU-intensive browsing mix versus
an I/O-intensive transaction mix), but also by time-varying request
workloads [4, 17]. Consequently, the overall system workloads
fluctuate in terms of mixes of dissimilar applications and their vol-
ume of requests [16]. The heterogeneity of servers, together with
the workload heterogeneity, further exacerbate the challenges of
load balancing. Load balancing within a compute cloud is critical
for performance and effectiveness of the compute cloud paradigm,
see for example the elastic load balancer in Amazon EC2 [1].

There is a large body of load balancing studies [3, 6, 8, 17] that
focus on mainly homogeneous systems and consider a single bottle-
neck resource where queues build up. Dispatching requests to the
servers with the least number of outstanding requests, the so-called
Join the Shortest Queue (JSQ) policy, has been shown to be theo-
retically robust [10] and is also used in practice [12] for distribut-
ing the entire load across distributed servers. In a heterogeneous
system experiencing a time-varying workload mix, such a policy
can potentially lead to the situation where servers receive similar
amounts of requests but servers with powerful CPU (resp. IO) pro-
cess a lot of IO- (resp. CPU-) intensive requests. Such unantic-
ipated behavior can be detrimental for the overall system perfor-
mance as well as for the individual application response times. It
is therefore imperative for the load-balancing scheduler to evolve
such that it becomes aware of both of the heterogeneity of the work-
load (e.g., is it IO- or CPU-intensive) but also on the heterogeneity
of the architecture of the back-end servers.

In this paper, we aim to provide a robust load balancing solution
in a heterogeneous compute cloud. We first focus on the following
questions: Is there an optimal application mix for each server which
can lead to a low response time such that all resource types equally
utilized? Moreover, is there a load-dispatching policy to control
the received application mix for each server such that an optimal
value is reached? Last, as JSQ has been shown to be very effective
in balancing the overall loads on homogeneous servers, can one
leverage JSQ when designing a mix-aware load dispatching policy
to further balance resource loads on heterogeneous servers?

To this end, we develop a novel mix-aware load-balancing al-
gorithm, which aims to balance the server loads as well as bal-
ance bottleneck across the various server resources such that the

71

global response time averaged over all applications is minimized.
We explore the JSQ policy and the analytical results in [15], which
illustrate via a closed queueing network model that there is an op-
timal application mix for each server. Our algorithm distributes
requests based on two criteria: the number of outstanding requests
per server and the desire to balance the load across each resource
of each server, by eliminating the existence of a single bottleneck,
e.g., CPU or IO. A balance metric, that measures the variability
of queue lengths for outstanding requests across servers, is used
to decide whether it is more beneficial to balance the number of
outstanding requests per server using JSQ or to slightly violate the
JSQ conditions by aiming to eliminate single resource bottlenecks
in each server by directing requests such that each server serves
an “optimal" load. The threshold value of the balance metric that
triggers the above activity is based on a bound analysis of the po-
tential queue lengths at the various servers. We use an event-driven
simulator to evaluate the scalability of the proposed algorithm and
a prototype implementation to support the applicability of the pro-
posed algorithm on a real system.
The contributions of this paper are both analytical and practical.

Our proposed load-balancing algorithm is designed for distributing
time-varying requests from multiple applications, hosted on a set
of heterogeneous systems with multiple resources. Being aware
of the queue length of the servers and of the application mix, our
algorithm is able to achieve consistent performance improvements
when compared to the standard load-balancing policy available on
Apache web server, i.e., the bybusyness policy.
This paper is organized as follows: The system architecture is

explained in Section 2. The proposed mix-aware load-balancing
algorithm is explained in Section 3. Section 4 presents experimen-
tal results. Related studies are summarized in Section 5. Section 6
concludes this paper.

2. SYSTEMMODEL

Figure 1: System model

We consider a service hosting system consisting of K heteroge-
neous servers and one load balancer, as well as two types of appli-
cations, that we classify as CPU-intensive and IO-intensive. These
two classes of applications are referred with the index j = {1,2}.
We model each server as a two-station queueing model shown in
Fig. 1, see also [2,7] for the effectiveness of such queuing network
models in capturing the performance of non-trivial application co-
location. The first station marked “CPU" represents the aggregate
computational capacity of the available cores in the server, and the
second station marked “IO" corresponds to the disk of the server.
These two stations are referred with the index i= {CPU, IO}. The
available computational and IO capacity is different across servers.
As a result, the execution times of the same application on each
server may vary. The threads at the load balancer are concurrently

dispatched to the servers, based on a load balancing scheme. Per-
formance statistics (e.g., response times and the characteristics of
the workload mix) are collected at the load balancer. We consider
that the network delay of dispatching requests from the load bal-
ancer to servers to be negligible.

Clients generate requests, which are sent to the load balancer.
We assume that the interarrival times of requests follow an expo-
nential distribution with parameter λ . The percentage of the two
application classes in the arriving flow of requests is {β1,β2} with
β1+β2 = 1. Both types of requests can be executed on any server;
the execution of a request needs certain CPU time and IO time.
Once requests complete execution in both stations, they leave the
system.

The cumulative time an application spends on the CPU station
includes any memory and cache accessing times. Yet, as shown
in [2, 7], although the memory and caches are not explicitly mod-
eled, if the CPU execution times without any queueing are correctly
measured, then the performance effects of memory and cache are
captured via the queueing delays at the CPU station. The cumula-
tive time spent on the CPU or on the IO resources by an application
in the absence of any queueing is referred to as resource demand.
CPU and IO demands are assumed to be exponentially distributed
with mean Ri j, with the subscript i referring to the resource and
the subscript j referring to the application. Note that the resource
demands do not reflect any waiting nor queueing times due to re-
source contention with other applications.

Resource demands vary on different servers, because of the
server heterogeneity. Consequently, to capture the variability of
CPU and IO demands on different servers, we introduce the scal-
ing factors γi,k, corresponding to each resource i on server k =
{1 . . .K}. In a homogeneous system, the scaling factors equal to
one for all servers, implying that the average resource demands of
an application are the same across all servers. Based on this con-
vention, the average resource demands of application j on server k
are Ri j · γi,k. Because services are replicated, i.e., each server may
be able to execute any application, we assume that it serves a per-
centage of requests β j of application j. The application mix re-
ceived by each server depends on the load-balancing policy, and
this mix may be very different from the one that is observed by the
load balancer (or alternatively, the one generated by the clients).

3. LOAD BALANCING SCHEME
In this section, we first introduce some theoretical background

regarding optimization of application mixes for single server sys-
tems and load-balancing schemes for multiple servers. Motivated
by the advantages of balancing server loads and resource loads on
a single server, we propose a new, mix-aware, load-balancing algo-
rithm.

3.1 Background

3.1.1 Optimal Application Mix in a Single Server

Rosti et. al [15] showed that there is an optimal application mix,
which can minimize response time while maximizing throughput.
The authors of [15] focus on a single server closed system with
multiple resources and provide a closed form formula on the appli-
cation mix, which is derived from the equal utilization point for all
system resources.

Intuitively, a system operates at the best performance when the
global utilization of the resources is maximized. According to their
methodology, in a system with two stations and two classes of ap-
plications, the optimal mix of application class j on server k, is:

72

β ∗1,k =
log

RIO,2γIO,k
RCPU,2γCPU,k

log
RCPU,1γCPU,k RIO,2γIO,k
RCPU,2γCPU,k RIO,1γIO,k

, (1)

β ∗2,k = 1−β ∗1,k.

This optimal mix refers to a single server k. Here the problem
we are addressing is significantly more complex because to mini-
mize response times in a system consisting of multiple heteroge-
neous servers, one needs to reach not only the optimal mix of Eq. 1
for each server, but also minimal queue lengths of outstanding re-
quests across all servers. Clearly, joining the server with the short-
est queue of outstanding requests is not a sufficient condition to
optimize performance.

3.1.2 Load Balancing on Multiple Servers

There is a large body of literature on how to balance loads on
multiple servers, especially for web systems. The Apache web
server provides three default policies, namely bybusyness, byre-
quest, and bytraffic. The byrequest policy is very similar to
the round-robin policy. The bybusyness policy is almost iden-
tical to JSQ, except when handling the situation where multiple
servers have the same number of outstanding requests. Indeed,
JSQ is a simple yet powerful policy for balancing homogeneous
server loads, its optimality has been shown theoretically [10]. The
bytraffic policy tries to balance number of bytes transmitted by
each server.

3.2 Mix-Aware Algorithm
We now develop a mix-aware policy, leveraging the advantages

of the optimal application mix on a single server and the JSQ policy
on multiple servers. We first illustrate some bound analysis of the
servers which provides us guidance to tune the algorithm parame-
ters and we then present the mix-aware load balancing algorithm.

3.2.1 Overview

The proposed mix-aware algorithm tries to balance the queue
length of outstanding requests on servers using JSQ and the re-
source loads on each server by achieving the optimal application
mix that equalizes the utilization IO and CPU resources. When
servers have very different queue lengths, it is imperative to balance
the outstanding requests across servers. When queues of servers
are balanced, then the algorithm slightly “unbalances" the queues
by aiming to reach the optimal mix as shown by Eq. (1) on each
server and achieve equiutilization across its resources. Straddling
between the above two competing targets, the mix-aware algorithm
aims to achieve overall better performance.
We definite a metric called balance that quantifies the degree of

(un)balancing across the K servers. We start by defining this metric
and discuss its usefulness.

3.2.2 Balance and Threshold

The queue length of outstanding requests is an indicator of the
server load. The higher the variability of queue length, the higher
the performance improvement that can be achieved with JSQ. To
identify the best opportunity for applying JSQ, we propose a met-
ric, called balance, defined as follows:

balance= 1−
Qmin

∑K
k=1Qk

×K. (2)

Qk denotes the queue length of server k and Qmin is the minimum
queue length across all servers, i.e., Qmin =min{Qk,∀k}. The rea-
soning behind this is that when comparing Qmin to the average

queue length, one can obtain not only a rough estimate of the vari-
ability but also of the potential performance improvement using
JSQ. When all servers have the same queue lengths, Qmin is equal
to the average value and thus the balance value is 0. In contrast,
whenQmin is significantly lower than the average queue length, bal-
ance is approaching one and thus using JSQ can improve the over-
all system performance. A higher balance value indicates greater
variability across queues as well as the advantage of applying JSQ.
The mix-aware algorithm dispatches requests primarily using JSQ
but when the balance value is low, as a second step it attempts to
unbalance the queues at the servers by aiming to equally utilized
the CPU and IO resources at the servers. This unbalancing action
is bringing higher performance gains on a per-server basis, which
is also positively reflected in the overall system performance.

Since balance is a metric between zero and one, it is not clear
what is its value that should trigger using JSQ or instead the unbal-
ancing the queue lengths while aiming equiutilization of individual
server resources. To calculate this threshold B̄, we use the upper
bound of the queue length variability across servers. Let Var[Q]
present the variance of queue lengths.

COROLLARY 1. The upper bound of Var[Q] is a function of

balance:

Var[Q]≤
(K− (1−balance)(K−1))2−1

K2

(

K

∑
k=1

Qk

)2

. (3)

PROOF. Based on the definition of variance, one can write

Var[Q] =
∑K
k=1Q

2
k

K
−

(

∑K
k=1Qk

K

)2

. (4)

Following simple algebraic manipulations, one can write the upper
bound of the queue length of server k as

Qk ≤
K

∑
h=1

Qh− (K−1)Qmin,k ∈ {1 . . .K} (5)

As Qmin is bounded by the average queue length, then Qmin ∈

{0 . . . ∑K
k=1Qk

K }. We further relax the discrete property of Qmin and

express Qmin as a continuous variable using α ∈ [0,1],

Qmin = α×
∑K
k=1Qk

K
,α ∈ [0,1] . (6)

Substituting Eq. 6 in Eq. 5, we obtain Eq. 7

Qk ≤

(

K−α(K−1)

K

) K

∑
k=1

Qk . (7)

Substituting Eq. 7 in Eq. 4 we obtain Eq. 8

Var[Q]≤
(K−α(K−1))2−1

K2

(

K

∑
k=1

Qk

)2

. (8)

Combining Eq. 6 and Eq. 2, we straightforwardly obtain

balance= 1−α ,α ∈ [0,1] . (9)

Substituting Eq. 9 in Eq. 8, we thus can express the upper bound
of Var[Q] as a function of balance

To quantitatively gauge the relationship between the queue
length variability and balance, we plot the upper bound of Var[Q]
in Figure 2, assuming a scenario of three servers, i.e., K = 3.
Clearly, the upper bound of the queue length variability increases
as balance increases. We can observe that when balance values are

73

small, e.g., less than 0.1, such upper bounds are constantly low, in-
dependently of the values of (∑K

k=1Qk)
2, as shown by the flat area

on the left corner of Figure 2. On the other hand, when balance is
greater than 0.2, the upper bound varies a lot due to the multipli-
cation of (∑K

k=1Qk)
2 in Eq. 3. We conjecture that a small balance

value ensures the similarity of queue lengths across servers. Our
extensive evaluation of the numerical results of Eq. 3 leads us to
set the balance threshold, B̄, very low, i.e., between 0.05 to 0.1, so
as to capture the cases where the queue lengths of all servers are
very similar.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20
40
60
80
100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Q
u
eu
e-
le
n
g
th
s
v
ar
ia
n
ce

balance

(

∑K
k=1 Qi

)2

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Figure 2: The upper bound of queue length variability of a

three server case

3.2.3 Unbalance by Equiutilizing

When dispatching a particular request, the aim is to search for
a server, whose optimal application mix (i.e., server equiutiliza-
tion, as expressed by Eq. 1) can be reached as quickly as possible.
When a request from application j arrives, we check the difference
between the current application mix, β j,k, including this request,
and the optimal mix on server k, β ∗j,k, for all servers:

S j,k = β j,k−β ∗j,k .

We chose the server with the minimum S j,k value. When this value
is negative, it implies that there is not a sufficient number of re-
quests from application j on server k. The resource utilizations
(loads) on server k can be better balanced by processing an extra
request from application j. When all servers have positive S val-
ues, it implies that all servers have more application j requests than
their optimal values, at the time instant the new request arrives. In
such a case, choosing a server with the minimum S value can min-
imize the deviation from the optimal one.

3.2.4 Combining JSQ and Unbalance by Equiuti-
lization

Combining together JSQ and Unbalance by Equiutilizing, we
obtain the Mix-Aware Load Balancing Policy. As a first step, the
algorithm calculates the balance metric and compares it to the B̄

threshold. If the value is larger than B̄, then the incoming request
from application class j is scheduled using JSQ. Otherwise, the
S j,k values are computed for all k servers and the server than can
best improve its optimal value in Eq. 1 is selected. The required
inputs of the algorithm are the class of the current request, the cur-
rent queue lengths on all servers, and the current application mixes
on all servers. The load balancer computes these inputs by keep-
ing counters of outstanding requests for both application classes on
each server. When a request arrives or leaves the cluster, the load
balancer retrieves its application type from the request header and
increments or decrements the corresponding counter. The load bal-
ancer is assumed to know the optimal application mix listed in Eq. 1
for all servers. The output of the algorithm is the server to which

the arriving request should be dispatched. We assume that the re-
source demands and scaling factors required in Eq. 1 can be ob-
tained via statistical profiling methods, although the development
of such profilers is out of the scope of this paper. We summarize all
this in Alg. 1.

Algorithm 1Mix-Aware load-balancing algorithm.

// j is the class o f the arriving request
function MIX-AWARE(j)

Q←{Qi, . . . , Qk}
S j←{(β j,1−β ∗j,1), . . . , (β j,K −β ∗j,K)}

server← k such that Qk =min(Q),k ∈ {1 . . .K} //JSQ

balance← 1− Qres

∑K
k=1Qk

×K

if balance< B̄ then //Unbalance by Equiutilizing
server← k such that (β j,k−β ∗j,k) =min{S j,k},∀k

end if

return server //send request to the selected server
end function

4. EVALUATION
In this section, we evaluate the proposed mix-aware algorithm

for service systems, using event driven simulation and a proto-
type. The performance metrics evaluated are the response times,
and difference between CPU and disk utilization of servers. We
benchmark the mix-aware load balancing algorithm against purely
JSQ and bybusyness, under different system sizes and workload
mixes.

4.1 Simulation Results
To evaluate the scalability of the mix-aware algorithm on differ-

ent system sizes, we built an event driven simulator of the model
shown in Figure 1 and also a discrete event simulator for JSQ. We
simulate the systems with 10, 20 and 30 replicated servers. The
workload is generated using the following traffic intensities: inter-
arrival rates are exponentially distributed with λ = 9, 18 and 27 per
second, for the scenarios with 10, 20 and 30 replicas, respectively.
We assumed a two-class workload, with 55% of the requests are
from class one, and the remaining requestst are from class two. The
CPU and disk demands for both applications are also exponentially
distributed with averages being RCPU,1 = 0.75s, RCPU,2 = 0.64s,
RIO,1 = 0.48s, and RIO,2 = 1.25s. To enforce server heterogeneity,
the scaling factors γi,k, are uniformly distributed in [0.8,1.2].

Our mix-aware algorithm computes the optimal β ∗j,k for applica-

tion class j in server k, see Eq. 1. With the above inputs, this value
is in [0.37,0.89]. Note that we assume that the resource demands
are known and are obtained via a profiling methodology, see [?,?].
The threshold value of balance, B̄, is set to 0.1.

We summarize the simulation results in Figure 3. Compared
to JSQ, the mix-aware algorithm can achieve a significantly lower
(roughly 35%) average response time. As expected, the average re-
sponse times of mix-aware decreases with an increasing number of
servers, whereas JSQ seems to not scale well with the cluster size,
as shown by the increase in the response times from the scenario
of 10 servers to 20 servers. Focusing on equiutilizing the loads on
the server resources is expected to be more effective when there
is a larger number of servers, because of a higher chance to attain
the optimal mix on individual servers. To validate this reasoning,
we compute the difference of average CPU and disk utilization per
server and plot the maximum values among all servers, see Fig-
ure 3(b). The plotted values show the worst case of unbalance re-
source utilizations, which results in resource bottlenecks, overall

74

higher queue lengths, and thus higher response times. Clearly, the
mix-aware algorithm can achieve more “balanced "resource utiliza-
tions than JSQ.

 0

 1

 2

 3

 4

 5

 6

 7

K=10 K=20 k=30

re
s
p

o
n

s
e

 t
im

e
 [

s
]

JSQ
Mix−Aware

(a) Response times

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

K=10 K=20 K=30

u
ti
liz

a
ti
o

n
 [

%
]

JSQ
Mix−Aware

(b) Maximum difference of
cpu and disk utilization

Figure 3: Simulation results: comparison of JSQ and mix-

aware algorithm on systems with different numbers of servers.

4.2 Prototype
We built a prototype system, consisting of three servers and one

load balancer, in the IBM Research Cloud. Each component is
based on a virtual instance, equipped with 4GB of RAM, 4 x86_64
CPUs, 55GB of disk, and Fedora 14 the operating system distribu-
tion. Requests are generated from the client servers, located at the
IBM Zurich Research Laboratory, using the httperf load generation
tool [13], and forwarded to the load-balancer, which is based on
the Apache web server version 2.4.2. Naturally, we present here
experiments with bybusyness, the standard Apache load balanc-
ing policy that resembles JSQ and our mix-aware policy.
We consider a two-class workload. Class one consists of the fop

benchmark in the Dacapo suite [11], a CPU intensive benchmark
producing PDF documents from XSL-FO files. Class two consists
of luindex, a disk intensive benchmark that indexes a set of doc-
uments. The average inter-arrival rate of arriving requests (fop or
luindex) is λ = 2 applications per second. We consider two work-
load scenarios: (1) the two-class mix is stationary and kept at 0.5,
and the total number of requests (i.e., applications sent for execu-
tion) is 2000; (2) the workload mix is non-stationary, i.e., changes
across time as shown in Figure 4(a).
The challenge of applying the proposed mix-aware algorithm on

a real system lies in deciding the optimal application mix for each
server. Within a server, the optimal mix is 0.4, i.e., 40% of fop and
60% of luindex, see [2] for the methodology to compute ths mix.
As in the simulation experiments, the threshold value of balance,
B̄, is set to 0.1.

4.2.1 Stationary Workload

In Table 1, we summarize the average, 90th, 95th, 99th percentile
and maximum response times for both bybusyness and mix-aware
algorithms. To accommodate high performance variability in the

computing cloud [5], we present the results of two separate experi-
mental runs. One can see that the statistics of the higher percentiles
for a given policy have higher differences from one experimental
run to the other. Moreover, one can observe that the average re-
sponse times of mix-aware are lower than bybusyness by roughly
10%, for all presented statistics. The performance improvement
of mix-aware is particularly visible for the higher percentiles of re-
sponse times. For example, in run one, the maximum response time
of mix-aware is lower than bybusyness by roughly 24%, whereas
the performance gain of the 90th−percentile of the mix-aware algo-
rithm is only 10%. This experiment illustrates that the mix-aware
algorithm is able to achieve lower response times, especially for
the higher percentiles, meaning that the worse performance is bet-
ter mitigated.

4.2.2 Non-stationary Workload

In this subsection, we evaluate our proposed algorithm on a non-
stationary workload mix, as shown in Figure 4(a). Here we fo-
cus on presenting the higher percentile of response times computed
from 2 minute windows, see Figure 4 (b), (c), and (d). One can
observe that mix-aware is able to achieve lower response times,
especially for the 99th percentile. Another observation worth men-
tioning is that the performance gain of the mix-aware algorithm
compared to bybusyness, is lower in our cloud prototype than in
simulation. This can be attributed to applying inaccurate values of
optimal application mix on virtual servers, which are known to be
highly variable [5], i.e., resource demands may change across time.
In our future work, we will address the profiling methodology that
is able to compute the optimal mix on the fly. Nonetheless, given
the inherent inaccuracy of optimal values applied in the mix-aware
algorithm in the cloud environment, we are still able to mitigate the
worse performance, compared to the bybusyness algorithm.

5. RELATEDWORK
There is a large body of related studies of load balancing for var-

ious conventional service systems [6, 8, 14, 17] and modern cloud
systems [9]. As a detailed survey of the extensive related work
is not possible here, we only outline some particularly relevant
work. Cardellini et. al [6] qualitatively classified existing load
balancing schemes for web server systems into four approaches,
namely server-based, client-based, DNS-based, and dispatcher-
based. They quantitatively compared the maximum utilization of
clusters, via simulation. Cherkasova and Ponnekanti [8] developed
FLEX, a locality-aware load balancing solution, especially for effi-
cient memory usage. Zhang et. al [14,17] proposed ADAPTLOAD
for rapidly fluctuating workloads that are characterized in terms of
arrival rates and document popularity. Via simulation, they showed
that ADAPTLOAD can achieve a low slowdown and resource uti-
lization on a cluster of homogeneous web servers. Björkqvist et.
al [3] used a lottery balancing algorithm for distributed stateful ser-
vice systems. Dejun et. al [9] focused on balancing requests among
a set of heterogeneous machine instances in the cloud, based on the
profile of response times and request rates for each server.

Singh et. al [16] leveraged the idea of application mixes and
proposed a mix-aware resource allocation for data centers. They
used a k-means clustering algorithm to automatically determine the
workload mix and allocate servers. However, they did not explore
the workload mix in their load balancing scheme.

Most of the aforementioned studies focus on balancing loads on
homogeneous servers with a single resource type, i.e., CPU. In con-
trast, our mix-aware algorithm considers multiple resources on a set
of heterogeneous servers, and aims at balancing the overall server
loads as well as their resource load.

75

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30d
a

c
a

p
o

−
fo

p
 r

e
q

u
e

s
ts

 [
%

]

time [min]

Workload mix

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

re
s
p

o
n

s
e

 t
im

e
 [

s
]

time [min]

Bybusyness
Mix−Aware

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

re
s
p

o
n

s
e

 t
im

e
 [

s
]

time [min]

Bybusyness
Mix−Aware

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30

re
s
p

o
n

s
e

 t
im

e
 [

s
]

time [min]

Bybusyness
Mix−Aware

(a) workload mix, βge (b) 90th percentile (c) 95th percentile (d) 99th percentile

Figure 4: Non-stationary workload mix: comparison of bybusyness and mix-aware algorithm on 90th, 95th and 99th response times

over the time.

Statistics mean[s] 90th[s] 95th[s] 99th[s] Max[s]

Algorithm bybusy. m-w bybusy. m-w bybusy. m-w bybusy. m-w bybusy. m-w

run 1 16.40 15.01 19.70 17.30 20.60 17.90 21.80 18.60 24.10 19.54

run 2 16.46 15.08 19.10 17.30 19.90 17.90 21.10 18.80 22.93 19.96

Table 1: Response times statistics of stationary workload mix: comparison of bybusyness and mix-aware load balancing.

6. CONCLUSION
In this paper, we propose a mix-aware load-balancing algorithm

for web services that are hosted on heterogeneous servers and cater
for requests from a dynamically varying application mix. Our al-
gorithm aims at minimizing the response times by dispatching re-
quests in a way that optimizes the application mix for each server.
We evaluate the how well the variability of outstanding requests
across servers and based on this metric we balance the outstanding
requests using JSQ or unbalance the server queues by aiming to
equally utilize CPU and disk resources on the servers. Our results
obtained with simulation and with a cloud prototype show that our
proposed algorithm can scale with an increasing system size, and
improve on the worst response times compared to the bybusyness
policy, one of the most robust default load-balancing algorithms in
the Apache web server. Regarding ongoing research, we are ex-
ploring efficient on-line profiling methodologies to obtain the opti-
mal application mix, as well as extending our algorithm to a larger
number of applications.

7. ACKNOWLEDGMENTS
The research presented in this paper has been supported by the

Swiss National Science Foundation (project 200021_141002) and
by the European Commission (Seventh Framework Programme
grant 287746). The research presented in this paper was conducted
while the first author was with IBM Research Zurich Lab. Evge-
nia Smirni is partially supported by NSF grants CCF-0937925 and
CCF-1218758.

8. REFERENCES
[1] Amazon EC2. http://www.amazon.com/.

[2] D. Ansaloni, L. Y. Chen, E. Smirni, and W. Binder.
Model-driven Consolidation of Java Workloads on
Multicores. In Proceedings of IEEE/IFIP DSN, pages 1–12,
2012.

[3] M. Björkqvist, L. Y. Chen, and W. Binder. Load-balancing
dynamic service binding in composition execution engines.
In Proceedings of APSCC, pages 67–74, 2010.

[4] M. Björkqvist, L. Y. Chen, and W. Binder. Dynamic
replication in service-oriented systems. In IEEE/ACM
International Symposium on Cluster, Cloud and Grid

Computing (CCgrid), pages 531–538, 2012.

[5] M. Björkqvist, L. Y. Chen, and W. Binder. Opportunistic
service provisioning in the cloud. In Proceedings of IEEE
Cloud, pages 237–244, 2012.

[6] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load
balancing on web-server systems. IEEE Internet Computing,
3(3):28–39, 1999.

[7] L. Y. Chen, D. Ansaloni, E. Smirni, A. Yokokawa, and
W. Binder. Achieving Application-Centric Performance
Targets via Consolidation on Multicores: Myth or Reality?
In Proceedings of HPDC, pages 37–48, 2012.

[8] L. Cherkasova and S. Ponnekanti. Optimizing a
’content-aware’ load balancing strategy for shared web
hosting service. In Proceedings of MASCOTS, pages 492–,
2000.

[9] J. Dejun, G. Pierre, and C.-H. Chi. Resource provisioning of
web applications in heterogeneous clouds. In Proceedings of
the 2nd USENIX conference on Web application

development, pages 5–5, 2011.

[10] V. Gupta, K. Sigman, M. Harchol-Balter, and W. Whitt.
Insensitivity for ps server farms with jsq routing.
SIGMETRICS Performance Evaluation Review, 35(2):24–26,
2007.

[11] http://dacapobench.org/. Dacapo suite.

[12] http://httpd.apache.org/. Apache.

[13] http://www.hpl.hp.com/research/linux/httperf/. httperf.

[14] A. Riska, W. Sun, E. Smirni, and G. Ciardo. Adaptload:
Effective balancing in custered web servers under transient
load conditions. In Proceedings of ICDCS, pages 104–111,
2002.

[15] E. Rosti, F. Schiavoni, and G. Serazzi. Queueing Network
Models with Two Classes of Customers. In Proceedings

MASCOTS, pages 229–234, 1997.

[16] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic
mix-aware provisioning for non-stationary data center
workloads. In Proceedings of ICAC, pages 21–30, 2010.

[17] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo.
Workload-aware load balancing for clustered web servers.
IEEE Trans. Parallel Distrib. Syst., 16(3):219–233, 2005.

76

