
When Spatial and Temporal Locality Collide:
The Case of the Missing Cache Hits

[Experience Paper]

Mattias De Wael
Software Languages Lab
Vrije Universiteit Brussel

madewael@vub.ac.be

David Ungar
Watson Research Center

IBM Research
dungar@ibm.com

Tom Van Cutsem
Software Languages Lab
Vrije Universiteit Brussel
tvcutsem@vub.ac.be

ABSTRACT
Even the simplest hardware, running the simplest programs,
can behave in the strangest of ways. Tracking down the
cause of a performance anomaly without the complete hard-
ware reference of a processor is a prime example of black-
box architectural exploration. When doubling the work of a
simple benchmark program, that was run on a single core of
Tilera’s TILEPro64 processor, did not double the number of
consumed cycles, a mystery was unveiled. After ruling out
different levels of optimization for the two programs, a cycle-
accurate simulation attributed the sub-optimal performance
to an abnormally high number of L1 data cache misses. Fur-
ther investigation showed that the processor stalled on every
Read-After-Write instruction sequence when the following
two conditions were met: 1) there are 0 or 1 instructions
between the write and the read instruction and 2) the read
and the write instructions target distinct memory locations
that share an L1 cache line. We call this performance pitfall
a RAW hiccup. We describe two countermeasures, memory
padding and the explicit introduction of pipeline bubbles,
that sidestep the RAW hiccup.

This experience paper serves as a useful troubleshooting
guide for uncovering anomalous performance issues when the
hardware design under study is unavailable.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures

Keywords
L1 data cache, TilePro64, padding, pipeline bubble

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

1. INTRODUCTION
In the context of our research in parallel algorithms for

many-core architectures, we chose to explore the TilePro64
processor by writing a simple program and measuring its
absolute and relative performance on a single core. To verify
the measured results, we doubled the work of our program
expecting the running time to double as well.

The experiment, however, revealed that duplicating the
work did not double the execution time. What could possi-
bly be causing this anomalous performance? And how does
one track down such changes in performance efficiency? We
conducted a series of experiments, timing and simulating
different code sequences. Each step answered one question
only to ask another. Finally, we were able to pinpoint the
instruction and memory reference sequence that was respon-
sible. Our hunt for the performance anomaly is a nice ex-
ample of black-box architectural exploration, as we did not
have a access to a complete hardware design reference.

The rest of this paper is organized as follows: First the
used hardware is discussed, followed by the presentation of
the two benchmark programs that are used throughout the
text. Section 4 elaborates on the expected and measured
performance of both programs, revealing a significant dis-
crepancy between the two. In Section 5 the compiler gener-
ated instruction sequences of the benchmark programs are
discussed. Section 6 focusses on processors stalls and how
they map to the source code. Section 7 and 8 each de-
scribe a countermeasure that sidesteps the RAW hiccup in
the benchmark programs. Finally, in Section 9 we compare
the RAW hiccup to similar performance pitfalls.

1 2 3 4 5

Fetch RF EX0 EX1 WB

(a) 5 Stage Pipeline of the TILEPro64
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TC FetchTC Nxt IP Drive Alloc Rename Que Sch DispSch Sch Disp RF RF Ex Figs DriveBr Ck

(b) 20 Stage pipeline of the Intel Pentium IV.

Figure 1: The Tilera TilePro64 processor has a much more
shallow pipeline than for instance Intel’s Pentium IV. There-
fore, understanding programs and predicting instruction
timings on the TilePro64 processor should be relatively easy

63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 2: Two simple benchmark programs, Program 1 and Program 2 respectively, where the second program has exactly
twice the work to do compared to the first program. Program 2 is expected to consume twice as many cycles as Program 1.

2. THE PLATFORM:
TILEPRO64 PROCESSOR

At first sight, Tilera’s TILEPro64 [9] might look like a
complex many-core processor chip. Its 8x8 mesh network
connects 64 processing cores, keeps two levels of distributed
cache coherent, and supports inter-core communication. Each
core utilizes a three-way Very Long Instruction Word (VLIW)
architecture to support explicit Instruction Level Parallelism
(ILP) by executing up to three bundled instructions simul-
taneously by one of the three pipelines of a single core.

But, when looked at in isolation, a single pipeline of a sin-
gle core of the TILEPro64 processor has a relatively simple
architecture. The in-order pipelines execute an instruction
in 5 stages (Figure 1a): a rather shallow pipeline compared
to contemporary hardware that have pipelines as deep as
20 stages (Figure 1b) [5]. With this short, in-order pipeline
the TILEPro64 aims at low branch and low load-to-use la-
tencies. Thus when considering a single pipeline on a single
core, the TILEPro64 can arguably be described as simple
hardware and performance prediction of any sequential pro-
grams it runs should be fairly easy. But even the simplest
hardware running the simplest programs, can behave in the
strangest of ways. How simple could those programs be?

3. THE PROGRAM:
TETRAHEDRAL NUMBERS

We chose a very simple algorithm for our benchmark: the
computation of the nth tetrahedral number. To compute
the nth tetrahedral number it suffices to accumulate the n
first triangular numbers [7]. And to compute the nth tri-
angular number it suffices to accumulate the n first non-
zero integers [8]. Mathematically this could be written as∑N

i=0

∑i
j=0 j and Program 1 (Figure 2) is the straightfor-

ward translation of this formula into C-code. Thus, Program
1 consists of one outer loop (lines 1-14 in Figure 2) with one
inner loop (lines 4-10 in Figure 2), of which the body con-
sists of a single statement accumulating a counter (line 8

in Figure 2). Program 2 (Figure 2) just about doubles the
work of Program 1 by repeating the inner loop (lines 4-10
and lines 15-21 in Figure 2). When measurements revealed
that doubling the work did not double the execution time, we
were mystified.

4. MEASURED PERFORMANCE

Figure 3: Cycles consumed by Program 1 and Program 2,
compared to the number of expected cycles for Program 2.

“To measure is to know”, but in this case measuring the
performance of both benchmark programs raised more ques-
tions than it resolved. We measured the absolute perfor-
mance of both programs in cycles needed to complete the
outer loop. Computing the 1000th tetrahedral number by
running Program 1 requires 14 × 106 cycles. Doubling the
work by running Program 1 twice, requires 28× 106 cycles.
Surprisingly, when running Program 2 which also does twice
the work as Program 1, only 25×106 cycles were consumed.
The difference of 3×106 cycles between expected and mea-
sured performance, depicted as the lighter colored box in 3,

64

Program 1 Program 2

Cycles needed to execute a single inner loop

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Figure 4: Average number of cycles needed by Program 1
and Program 2 to compute a single inner loop. Surprisingly,
Program 2 needs fewer cycles than Program 1.

is too large to be attributed to the overhead of running two
outer loops when running Program 1 twice.

Put differently, as depicted in Figure 4, when looking at
the average number of cycles needed to complete a single
inner loop, we see that Program 1 needs 14 × 106 cycles,
as opposed to the 12.5 × 106 cycles needed by Program 2.
These data suggest that the loops in Program 2 run more
efficiently. But why would the same source code run faster?

5. COMPARING INSTRUCTION
SEQUENCES

The execution of the inner loops require quadratic time,
actually the number of additions needed to compute the nth
tetrahedral number is equal to the nth triangular number,
and thus indeed quadratic in function of N. Since the outer
loops induce only linear overhead, the inner loops dominate
the overall performance of the benchmark programs, and we
focused on these.

Could it be that the compiler was generating different in-
struction sequences for syntactically equal inner loops? If
this were true, the assumption that Program 2 did exactly
twice the work of Program 1 would be false, and the unex-
pected execution times could be explained. So the first step
in unraveling the mystery was to guarantee that the gen-
erated machine instruction sequences for the two programs
were similar for all inner loops.

We used Tilera’s gcc compiler 2.0.2 with optimization flag
-O0 which compiled the inner loop of Program 1 into the 21
instructions shown in Figure 5. The first two instructions
initialize the inner loop and are only executed a linear num-
ber of times. More interesting were the remaining 19 in-
structions, which formed the heart of the computation and

were executed N×(N−1)
2

times each. Ignoring the small con-
stant and linear overhead induced by the inner and outer

loops, 19 × N×(N−1)
2

was a fair approximation of the total
number of executed instructions for Program 1 when N was
sufficiently large.

This instruction sequence can be further optimized. The
most invasive and effective optimization would be to reduce

the program to compute the formula N×(N+1)×(N+2)
N

which
would be semantically equivalent to Program 1 but would
require only constant time for any input. But even if we
wanted to keep the structure of the computation, many op-
timizations were possible. For example, the computation

(2)

(6)

(7)

(6)

(19)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Figure 5: The inner loop of Program 1 compiled into as-
sembler code (-O0). The last 19 instructions dominate

the performance of Program 1, and are executed N×(N−1)
2

times.

in Program 1 used only 4 variables and the value of the
stack pointer (register) is not changed during the execu-
tion. Therefore it would be possible to compute the ab-
solute addresses of the four variables once and store them
in a dedicated register. This optimization could save 7 addi
instructions in each iteration. The difference in relative per-
formance would be accounted for if the compiler had applied
this or any other optimization to the inner loops of Program
2, but not to the inner loop of Program 1. But a com-
parison of the generated assembler instruction sequences for
both Program 1 and Program 2 revealed that all three inner
loops were compiled into the same 21 instructions. The in-
struction sequences for each loop differed only in the relative
addresses of the variables. At this point, it was clear that
twice as many assembler instructions were executed for Pro-
gram 2, than for Program 1. Yet, Program 2 was executing
those instructions more efficiently. What could explain this
behavior?

If an instruction sequence gets more densely packed into
instruction bundles such that the instruction level paral-
lelism supported by the VLIW architecture gets exploited, it
will run faster. Could it be possible that the instructions of
Program 2 got bundled more efficiently than those for Pro-
gram 1? The assembly-level instruction sequence, as shown
in Figure 5, did not make these bundles explicit. And since
the processor cores operate in-order they are not responsi-
ble for any implicit instruction level parallelism themselves.
When we decompiled the machine instructions back into as-
sembler code we saw that all instructions were wrapped in
a single bundle and thus issued to be executed sequentially
without any instruction level parallelism. Bundles were not
the answer.

65

Program 1 Program 2

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Figure 6: Relative to the amount of work, Program 1 suf-
fered from many more L1 data cache misses than Program
2. This discrepancy explained the difference in performance,
but left us wondering about the cause of the discrepancy.

Because all executed bundles were single-instructions, the
processor executed the exact same instruction sequence once
for Program 1 and twice for Program 2. Why did the pro-
cessor work at different speeds in each program?

6. CACHE MISSES CAUSED THE PROCES-
SOR TO STALL

If a processor consumes a different amount of cycles for
equal instruction sequences, it must be stalling somewhere.
A cycle-accurate simulated execution of the applications re-
ported that the processor was indeed stalling, and attributed
these stalls to L1 and L2 instruction- and data-cache misses,
to pipeline hazards, and to mispredicted branches. Of these
categories, only the L1 data cache misses and the pipeline
hazards were numerous enough to observably impact the
performance. If these stalls were the true culprits, then the
anomalous increase in efficiency of Program 2 over Program
1 should also have been reflected in the number of corre-
sponding stalls. For stalls attributed to pipeline hazards,
doubling the work also doubled the number of stalls. A reg-
ular evolution, so that category was exonerated. Remark-
ably, the number of stalls caused by L1 data cache misses
was not affected by doubling the work.

Even considering each program in isolation, the number
of L1 data cache misses was unexpectedly high. Because
both benchmark programs used only 4 and 6 variables re-
spectively, we expected no misses at all. But the clue to the
mystery was in the observation that the number of L1 data
cache misses did not increase when the amount of work was
doubled. Figure 6 shows these data relative to the number
of inner loops: on average a single inner loop of Program 2
suffered from half as many L1 data cache stalls as the loop
of Program 1. Why was Program 2 more efficient?

More rigorous simulation revealed that all the L1 data
cache misses were read misses. This commonality limited
the instructions where the misses could occur to the lw (load
word) instructions of the program (lines 6, 8, 13, 15, and 21
in Figure 5). On the C-code level, the cycle-accurate simula-
tor indicated that the loop-increment operations on j0 (line
6 in Figure 7a) in Program 1, and on j1 (line 17 in Figure
7b) in Program 2 were responsible for almost all stalls, as

Program 1
with padding

Program 2
with padding

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Figure 8: Adaptations of Program 1 and Program 2 that
add padding around the inner loop counters make all L1
data cache misses disappear. Consequently, also the change
in efficiency is gone and both programs behave as expected.

is shown in Figure 7 where the source lines of Program 1
and Program 2 are annotated with the number of observed
cache misses. The synthesis of these two pieces of evidence
allowed us to identify the slow instruction in each program.
In Program 1 this would be the load instruction lw r7 r7
shown on line 21 of Figure 5. When N is 1000, the num-
ber of inner loop iterations is 4950 which was exactly the
number of observed L1 data cache misses on line 6 and 17
of Program 1 and Program 2 respectively.

What we know now is that the inner loop of Program 1 ran
slowly because every iteration induced a cache miss. One of
the inner loops of Program 2 ran equally slowly for the same
reason, but on average Program 2 was more efficient because
the other inner loop never suffered from a cache miss. But
why did the processor have to wait for data that should have
been in its L1 cache in the first place?

7. PADDING RESOLVES THE
CACHE MISSES

Recall that the difference in performance of our two bench-
mark programs was caused by an abnormally large number
of L1 data cache misses that were not expected and more-
over did not increase with the amount of work. A cache miss
occurs when a processing unit fails to access a piece of data
in the cache which results in a much more expensive opera-
tion that reroutes the memory instruction to the next level
of memory. In this case reading from the L1 data cache fails,
causing a load from the L2 cache which is 7 cycles away on
the TILEPro64.

Consider Program 1, which used only 4 variables for its
entire computation. By the time the instruction on line 15 in
Figure 5 had been executed for the first time, we expected all
the variables to reside in the L1 cache and to stay there for
the remainder of the computation. This expectation arose
because 8KB of L1 data cache is plenty of room for storing
4 values of 4 bytes each: they even fit on a single cache line
as the TILEPro64’s L1 cache lines are 16 bytes wide [9].
Even for the 6 variables of Program 2 the 8KB should have
more than sufficed. Thus any L1 data cache line that was

66

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

199

4950

(a) Program 1: The bulk of L1 data cache misses occur on the incre-
ment of the only inner loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

4950

101

(b) Program 2: The bulk of L1 data cache misses occur on the in-
crement of the second inner loop.

Figure 7: To understand the reason for all these cache misses, a better view is needed on where they actually occur. Program
2 has one normal and one affected loop. Since these are syntactically equivalent, memory layout of variables is a probable
culprit of the discrepancy.

invalidated in the execution of either program qualified as
unanticipated behavior.

In parallel computing, a case of unanticipated cache in-
validation, called false sharing occurs when a computation
writes to a memory location that resides on the same cache
line of a distinct memory location used by a concurrent com-
putation [6]. False sharing can be reduced by padding the
memory layout of variables so that the memory locations
used by concurrent computations do not share cache lines [1].
Padding is a low-level programming technique in which, usu-
ally unused, memory is allocated around variables to ob-
tain a more suitable layout of variables in the caches and/or
memory. Although this line of inquiry seems far-fetched in
the case of a sequential program using only 4 variables, we
experimented with memory layout anyway because the dis-
tributions of variables over cache lines can affect the number
of misses.

Figure 9 shows four possible layouts of the variables over
different cache lines when padding is introduced. Each line
shows three cache lines (alternating colors) of four times 4
bytes each. The first line in Figure 9 shows the memory lay-
out as observed for Program 1 without any padding: the first
cache line (white) contains the variables total and i, the con-
secutive cache line (gray) contains the variables sum0 and
j0, finally the third cache line (white) contains no variables
relevant to our case. The others three layouts in Figure 9
show how introducing padding before j0 moved j0 into a
different cache line than the other 3 variables.

Program 1, when adapted such that j0 resided in its own
cache line, consumed only 11 × 106 cycles, as opposed to
the 14 × 106 cycles it had consumed before. The cycle-
accurate simulation showed that the padding eliminated all
the L1 data cache misses. Further, when we moved the vari-
able j1 of Program 2 to a separate cache line, the number
of cycles consumed by Program 2 dropped from 25×106 to

22 × 106 . The import of this performance improvement
is that neither benchmark program suffered from unantici-
pated L1 data cache misses when a change in the memory
layout places the inner loop counter and the inner loop ac-
cumulator on different L1 data cache lines.

Summarized, the lw instruction (line 21 in Figure 5) causes
the processor to stall if the preceding sw instruction (line
18 in Figure 5) targets the same L1 data cache line. For
this reason we call this behavior a read-after-write hiccup,
or RAW hiccup for short. In our example, the sw and lw
instructions are separated by an addi instruction (line 20 in
Figure 5) which raised the question if, besides the memory
layout, also the addi instruction plays a role in the RAW
hiccup?

8. INJECTING PIPELINE BUBBLES
Isolating the missed variable in a different cache line side-

stepped the RAW hiccup, but could instruction reordering
accomplish the same?

Data hazards occur when subsequent instructions have
data dependencies and are executed at the same time in a
pipeline. Many contemporary processors use out-of-order
execution to avoid these dependencies [4]. The TILEPro64
processor, however, supports only in-order execution. In
that case the only way to avoid the data hazard is by intro-
ducing a pipeline bubble. Pipeline bubbling is an instruction
scheduling technique that prevents data hazards from oc-
curring by delaying the execution of dependent instructions
in the pipeline. Typically this is done by the processor’s
logic by stalling the execution of the depending instruction.
A compiler could simulate this behavior by inserting a no-
operation instruction (NOP), but what if we hardcoded such
a NOP in the slow running inner loops of Program 1 and
Program 2?

67

total i sum0 j0

j0total i sum0

j0total i sum0

j0total i sum0

0

1

2

3

same

same

same

different

5,050

5,050

5,050

100

Words
of

Padding
Layout of Variables in Memory

Cache line
of

sum0 and j0

L1
data cache

Misses

Figure 9: With as few as 4 variables there is no reason to suffer from cache eviction. In parallel computing padding is a tried
and true approach to tackle false sharing, a phenomenon where cache eviction is also unanticipated. Adding padding between
sum0 and j0, such that they reside on different cache lines, causes a significant drop in L1 data cache misses.

Program 1
with NOPs

Program 2
with NOPs

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

5x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

Figure 10: Adding NOPs to the bodies of the slow inner
loops of Program 1 and Program 2 make all L1 data cache
misses disappear. Consequently, also the change in efficiency
is gone and both programs behave as expected.

In our benchmark programs there was no actual data de-
pendency between the memory instructions on lines 18 and
21 (see Figure 5), the targeted memory locations only shared
a cache line. Thus, adding a NOP in the body of the slow
running inner loop should have made the program run even
slower because the inner loop now consisted out of 20 instead
of 19 instructions. Perversely, the measured performance
was closer to that of the fast programs with padding, than
to the execution time of the original benchmark programs
with all the cache misses. The cycle-accurate simulator indi-
cated that adding a NOP to the body of the slow inner loops
removed all L1 data cache misses.

Synthesizing the effects observed when either padding or
pipeline bubbles were introduced, allowed us to conclude
that on the TILEPro64 a RAW hiccup occurs in a read-after-
write instruction sequence if two conditions are met. First,
if both the store and the load instruction target distinct mem-
ory locations that share an L1 data cache line, and second
if at most one instruction separates the store and the load.
If either condition is eliminated, the RAW hiccup is gone.
To overcome this pitfall on the hardware level, a much more
complicated power and area consuming micro-architecture

Fetch

WB

Register File
Ex1
Ex2

Clock Cycle
0 1 2 3 4 5 6 7

(a) Pipelined execution of 3
instructions where the pro-
cessor stalls on the Ex1 stage
of the second instruction.

Fetch

WB

Register File
Ex1
Ex2

Clock Cycle
0 1 2 3 4 5 6 7

(b) Pipelined execution of 2
instructions, a NOP, and an-
other instruction where the
processor does not stall.

Figure 11: The overall performance of a processor stalling
for one cycle in a sequence of three instructions, is equivalent
to the performance of executing that same sequence with an
additional NOP instruction if the processor does not stall.

would be needed in order to work around the store word
inefficiencies.

9. SIMILAR PERFORMANCE PITFALLS
From the software perspective, pinpointing the origin of

anomalous performance to a specific instruction and memory
reference sequence suffices to render a program more perfor-
mant simply by avoiding that sequence. From a hardware
perspective, the question remains what architectural design
choices caused the anomalous performance. To the best of
our knowledge the details of hardware implementations we
are hitting in this concrete example are not documented by
the chip producer. Without these details we can only make
an educated guess about the concrete origin of the stalls.

However, three well know performance pitfalls exist that
look similar to the RAW hiccup:false sharing, load-hit-store,
and write misses.

False sharing False sharing only occurs in the case of con-
current processes, and thus does not apply in the case
of a RAW hiccup which occurs in a single thread of
control [1]. But, besides the number of processes the
commonalities are omnipresent: both performance pit-
falls occur when a sequence of memory instructions,
with at least one write, target unrelated variables that
share a cache line.

Load-hit-Store A single process can suffer from the per-
formance pitfall load-hit-store (LHS) when a read is

68

issued too soon after a write to read the new value [3].
The RAW hiccup also issues a read too soon after a
write, but as opposed to a LHS, the memory instruc-
tions target distinct memory locations.

Write Stall Finally, when a processor must wait for writes
to complete during write through, the processor is said
to write stall [4]. The L1 data cache of the TILEPro64
uses the write-through policy, thus what we called a
RAW hiccup could actually be a write stall. Other lit-
erature, however, refines the definition of write stalls in
the context of write-through caches as the delay caused
when a write encounters another write in progress [2].
Thus excluding read instructions as the origin of a
write stall. This makes the instruction sequence caus-
ing a RAW hiccup different from the instruction se-
quence causing a write stall.

Identifying the actual implementation details that caused
the RAW hiccup is notoriously difficult without a complete
hardware reference. We recognized false sharing, load-hit-
stores, and write misses as performance pitfalls similar to
the RAW hiccup. They differ, however, from the RAW hic-
cup in either number of processes, targeted memory loca-
tions, or instruction sequence.

10. CONCLUSIONS
A simple C program exhibited a significant discrepancy

between its expected and measured performance. The origin
of the anomaly was found to be a counter-intuitive multi-
cycle processor stall that occurred whenever a store instruc-
tion was followed within two instructions by a load instruc-
tion targeting the same L1 data cache line. We called this
performance pitfall a RAW hiccup. Eliminating either of the
two conditions caused the RAW hiccup to disappear: The
introduction of sufficient padding on the one hand and the
introduction of a manual pipeline bubble on the other hand
removed all anomalous L1 data cache misses.

This experience paper reports on the hunt for a perfor-
mance anomaly observed when studying the behavior of a
trivially simple sequential program. The exact instruction
and memory reference sequence that was responsible was
found only after performing various experiments and simu-
lations each one a step down the ladder of abstraction. This
experience raises the question that if we can not predict the
performance of trivially simple sequential code on a simple
processing unit, how can we hope to understand the per-
formance of parallel applications running on an 8x8 mesh
network-on-chip?

11. ACKNOWLEDGMENTS
Mattias De Wael is supported by a doctoral scholarship

granted by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT Vlaan-
deren), Belgium.

Tom Van Cutsem is a Postdoctoral Fellow of the Research
Foundation, Flanders (FWO).

This research has been partially supported by IBM Re-
search.

12. REFERENCES
[1] S. J. Eggers and T. E. Jeremiassen. Eliminating false

sharing. In ICPP (1), pages 377–381, 1991.

[2] J. S. Emer and D. W. Clark. A characterization of
processor performance in the vax-11/780. SIGARCH
Comput. Archit. News, 12(3):301–310, Jan. 1984.

[3] B. Heineman. Common performance issues in game
programming, June 2008.

[4] J. L. Hennessy and D. A. Patterson. Computer
Architecture, Fourth Edition: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2006.

[5] G. Hinton, D. Sager, M. Upton, D. Boggs, D. P. Group,
and I. Corp. The microarchitecture of the pentium 4
processor. Intel Technology Journal, 1:2001, 2001.

[6] D. A. Patterson and J. L. Hennessy. Computer
Organization and Design, Fourth Edition, Fourth
Edition: The Hardware/Software Interface (The
Morgan Kaufmann Series in Computer Architecture
and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 4th edition, 2008.

[7] N. J. A. Sloane. Tetrahedral (or triangular pyramidal)
numbers, Oct. 2012.

[8] N. J. A. Sloane. Triangular numbers, Oct. 2012.

[9] Tilera. Tile Processor User Architecture Manual, June
2010.

69

APPENDIX
A. TRIPLING THE WORK

Besides the experiments with Program 1 and Program 2,
those presented in this paper, six similar programs also con-
tributed to the discovery of the RAW hiccup. Program 2
was our attempt to double the work of Program 1 by du-
plicating its single inner loop, the remaining four programs
were our attempt to multiply the work of Program 1 by 3
trough 8, also by replicating the inner loop. Figure 12 shows
what Program 3 looks like.

Recall that the first clue towards the discovery of the RAW
hiccup was that number of L1 data cache misses did not in-
crease when the amount of work was doubled. However,
when we tripled the work of Program 1 the number of L1
data cache misses did double. Adding a fourth inner loop
again left the number of L1 data cache misses unchanged.
This step-wise increase continued for all eight programs, as
is shown in Figure 13. The number of cycles stalled because
of pipeline hazards on the other hand increased linearly with
the number of inner loops. When considering these data rel-
ative to the number of inner loops, as is shown in Figure 14,
we see that consecutive programs alternate between being
less efficient and more efficient.

At the level of C-source code, this translates to one inner
loop suffering from the RAW hiccup for every two inner
loops in the program (

⌈
#inner loops

2

⌉
). Since all inner loops

are compiled into the same instruction sequences (Figure
5) the memory layout must be causing the RAW hiccup.
Consider a layout of variables where sum0 and j0 share a
cache line as in line 2 of Figure 9. Introducing a new inner
loop consequently introduces also two new variables (e.g.
sum1 and j1) that do not share a cache line. Again adding
two new variables (e.g. sum2 and j2) gives rise to a new
RAW hiccup because sum2 and j2 do share a L1 data cache
line. This explains why the number of cache misses only
increases when adding a new inner loop to a program with
an even number of inner loops.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35

36

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 12: Program 3 (right) triples the work of Program 1
(left).

1 2 3 4 5 6 7 8

stalled because of L1 data cache misses
stalled because of pipeline hazards

Cycles stalled when computing a
Tetrahedral Number

10x106

15x106

5x106C
yc

le
s

St
al

le
d

Figure 13: The number of cycles stalled caused by pipeline
hazards increases linearly with the amount of work. Re-
markably, the number of stalls caused by L1 data cache
misses increases in steps.

1 2 3 4 5 6 7 8

Number of Inner Loops

... of which stalled due to pipeline hazards

... of which stalled due to L1 data cache misses
Cycles needed to execute a single inner loop ...

Cycles needed per Inner Loop
to Compute the 1000th Tetrahedral Number

10x106

15x106

C
yc

le
s

pe
r I

nn
er

 L
oo

ps

5x106

Figure 14: Comparing number of cycles needed to compute a
single inner loop shows that programs with an even number
of inner loops are more efficient because they suffer from less
L1 data cache misses..

70

