
MockTell: Exploring Challenges of User Emulation in
Interactive Voice Response Testing

Siddhartha Asthana
Indraprastha Institute of

Information Technology, Delhi
New Delhi, India

siddharthaa@iiitd.ac.in

Pushpendra Singh
Indraprastha Institute of

Information Technology, Delhi
New Delhi, India

psingh@iiitd.ac.in

Amarjeet Singh
Indraprastha Institute of

Information Technology, Delhi
New Delhi, India

amarjeet@iiitd.ac.in

ABSTRACT
Increasing use of telephone devices has made the Interactive Voice
Response (IVR), a technology for accessing information over phone,
popular among the commercial organizations. IVR systems are
used for critical applications like flight reservation, tele-banking,
etc. which requires to have well tested IVR systems. Manual test-
ing of an IVR application requires dialing number, listening and
responding to voice prompts through key-press or speech.
Automating the tests for IVR applications requires mimicking the
user behavior. We present MockTell, a generic tool for call emula-
tion with ability to mimic user behavior. MockTell uses data gener-
ated from real world calls for call emulation that helps in optimiz-
ing and evaluating the performance of IVR applications. MockTell
also allows simulation of calls to provide further testing of system.

Keywords
emulators, IVR, voice application, testing

Categories and Subject Descriptors
H.1.2 [User/Machine Systems:]: Human factors

General Terms
Design, Experimentation, Human Factors

1. INTRODUCTION
An Interactive Voice Response (IVR) system provides informa-

tion and service through telephones and is used for automating the
call handling in several commercial organizations. Many critical
applications runs on IVR systems, so it is essential to have well
tested IVR applications with all the necessary optimization done
by the IVR developer.
IVR testing can be classified into infrastructure, system, and appli-
cation level testing. At present, various industrial tools1 are avail-
able to test the performance of IVR applications at infrastructure
(voice gateway, routers) and system (Telephony servers, database
servers) level, which helps to maintain the quality. However, ap-
plication level tests like program flow test and error condition test
require giving different user inputs to application under test. This
requires testing tool to have the ability to mimic user behavior. Cur-
rently available testing tools lack the ability to mimic user behavior,
1http://www.tmcnet.com/voip/0506/
tech-roundup-voip-testing-tools.htm

Copyright is held by the author/owner(s).
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
ACM 978-1-4503-1636-1/13/04.

many application level tests are usually done manually or through
customized test scripts written by IVR developers. Moreover, IVR
systems are evolving [1, 4, 2] and it will become increasingly dif-
ficult to test and optimize future IVR applications. MockTell ad-
dresses these challenges by mimicking user behavior in different
contexts.

2. DESIGN AND FEATURES
MockTell has five functional components and two user models:

Logic Processor: This module co-ordinates with other modules
and takes various decisions for emulating a call e.g. call initiation,
responding to voice prompt etc. Two user models for emulation
process are embedded into this and can be modified to emulate dif-
ferent user behavior for scenarios of different complexities.
Visualizer: This dedicated module handles graphical user interface
of the MockTell. Tasks like taking user input for configuring dif-
ferent parameters of emulation process, showing current status of
emulation etc. are done by this module.
SIP utility: This module provides API for initiating and releasing
a call, generating a DTMF key-press and sending the audio file as
speech utterance for communication with IVR under test.
Status Monitor: This module gathers the information about present
state of IVR by communicating with IP-PBX software hosting the
IVR application. This information helps MockTell to adjust the
timing and value of events to be regenerated in testing dynamic
IVR systems.
Data Handler: This module load and read the logs of IVR us-
age into a Java based object representing user model for emulation.
Each object contains information about responses made by a user
and their corresponding contextual information in a call. Logic Pro-
cessor uses the information stored in these objects for emulation.
In MockTell, calls are emulated using two modes: emulation using
previous call records and testing using random DTMF.

2.1 Emulation using previous call records
In this mode, MockTell reads the call logs, stored in XML files,

which may be obtained from a real world deployment. MockTell
supports two formats that capture user models:
Simple user emulation: This user emulation works for currently
available IVR systems. MockTell replicates the call events like key-
press and speech recording, as they happened in corresponding ac-
tual call. Real data stored for this emulation contains a time-stamp
for each event relative to the start of the call. The events are gener-
ated based on the time-stamp captured in this model.
Intricate user emulation: With intricate user emulation model,
MockTell can emulate calls for upcoming IVR systems where menu
options sequence may change in order to give better services. Each
menu option is a state which is assumed to be announced by IVR

427

http://www.tmcnet.com/voip/0506/tech-roundup-voip-testing-tools.htm
http://www.tmcnet.com/voip/0506/tech-roundup-voip-testing-tools.htm

application over the IPPBX console as they occur. In the current
implementation, MockTell connects to command line interface of
FreeSWITCH using fs_cli utility which comes with pre-installed
FreeSWITCH binaries to capture the state information announced
by IVR application. MockTell generates user responses to these
states based on the data stored in the user model.
In both of the modes, MockTell can reorder the call sequence which
changes the number of past calls and past system usage for a par-
ticular call. This helps in studying IVR system which adapts after
every call based on the system usage. MockTell can also vary num-
ber of telephone lines to IVR application. With this feature, the
number of telephone line connections can be increased to analyze
the behavior of IVR application in handling multiple connections
(e.g. accessing the same audio file for reading or writing the log).

2.2 Emulation using Random DTMF
In this mode, MockTell performs tests that are independent of

user models and can be used to test IVR system’s parameters. It
generates events like key-press or speech utterance based on test
parameters specified by the user. It supports 3 types of IVR testing.
Call Load Test: This test helps in measuring the number of simul-
taneous calls an IVR application can process and reports the integer
value at which IVR application crashed. In our test, we found that
FreeSWITCH was able to process 123 simultaneous calls for our
sample IVR application. The 124th call failed because of too many
connections open to the database (MySQL).
Sequence Test: In this test, MockTell generates random DTMF
digits, each with a constant time delay between each generated digit
and reports the sequence test case, if any, at which IVR application
fails to respond. An IVR developer needs to specify the time delay
and number of digits in the sequence (e.g. 4 digits). In our test,
MockTell was able to check 100 sequence in 2,504 seconds of se-
quence length 5 and delay of 5 seconds. Initial 4 seconds out of
2,504 were taken by MockTell in setting up the call.
Sequence test with random delay: This test helps to detect erro-
neous DTMF input in more complex manner i.e. when the duration
of played voice prompts varies for the announcement of menu op-
tions. This test generates random DTMF with different time gaps
between each successive generated DTMF. The time gap is ran-
domly decided in the range of t1 and t2 values specified by the
tester. Ideally t1 should correspond to the length of minimum voice
prompt and t2 be the length of maximum voice prompt in IVR.

3. PERFORMANCE EVALUATION
In this section, we evaluate the performance of MockTell through

an experiment conducted using call load Test feature. For this ex-
periment, we setup an IVR application written in JAVA and hosted
on FreeSwitch. The FreeSwitch and MockTell were running on
two different machines referred as Machine-I (HP Compaq dx7400:
Ubuntu 10.04, Intel core 2 Duo, 3GB DDR2) and Machine-II (HP
Probook 4520s: Ubuntu 12.04, Intel Core i5, 2GB DDR3) respec-
tively, with IP connectivity (100Mbps) between them. We started
call load test feature of the MockTell. It initiated a call every 2
seconds while keeping previously initiated calls alive till the end of
experiment or terminated by FreeSwitch. A call in this experiment
was always in one of the 3 states: active, dropped and timed-out.
Active State: refers to a call that is connected to FreeSwitch and
is not being terminated.
Dropped State: refers to a call that was previously connected but
terminated by FreeSwitch.
Timed-out: state refers to a call released by MockTell as it was
not able to connect to FreeSwitch.
In total, we initiated 1024 real calls through MockTell. Initially,

we did not observe dropped calls till 233rd call as the load was low
on Machine-I. But after this, FreeSwitch started dropping calls at
a higher rate which reduces the count of active calls and stabilizes
around 145 calls that shows that the rate of dropping the calls be-
comes equal to rate of accepting the new calls. Our results for num-
ber of active calls (i.e. concurrent calls) for FreeSwitch running on
hardware having configuration of Machine-I are conforming the re-
sults obtained by other developers as available on FreeSwitch web-
site2. We measured the CPU and Memory load of Machine-I and
found that it was saturated around 233rd call because rate of call
dropping became nearly equal to rate of accepting new call. We
also found that 3 calls were timed-out at 110th call because of net-
work congestion between the two machines.
MockTell Load: We measured and categorized the CPU and mem-
ory usage of MockTell (running on Machine-II) in two categories:
static load and running load. Static load refers to CPU usage in
creating and holding the call objects. Running load refers to CPU
load incurred due to handling of underlying SIP communication.
We found that static load gradually increased from 8.1% to 9.1%
(i.e. 1% increase) for emulating 1024 calls. Similarly running load
varied from 17.9% to 18.5% for emulating 1024 real calls. Thus it
shows initiating each call in MockTell has memory load of 20 KB
(calculated as 1% of 2 GB system memory divided by 1024 calls).

4. CONCLUSION
We presented MockTell with two user models for testing IVR ap-

plications. Simple user model allows testing of currently available
static IVR while Intricate user model enables testing of upcom-
ing dynamic IVR applications. User model based testing provides
characteristic to model different users easily [3].
User model based approach in MockTell helps in reducing man-
ual investigation of IVR applications. The approach presented in
this paper is independent of any voice or speech processing which
eventually helps in avoiding any semantic processing as well. Ex-
periences with trial run of MockTell for testing our basic IVR ap-
plication suggests that apart from application level issues it can also
help developers to find some system level issues like too many con-
nections opened to MySQL.

5. ACKNOWLEDGMENTS
We acknowledge the support of Tata Consultancy Services (TCS)

for this research.

6. REFERENCES
[1] Asthana, S., Singh, P., Kumaraguru, P., Singh, A., and Naik,

V. Tring! tring! - an exploration and analysis of interactive
voice response systems. 4th International Conference on
Human Computer Interaction (IndiaHCI), Pune, India (2012).

[2] Asthana, S., Singh, P., and Singh, A. A case for adaptive
interface for interactive voice response system. ACM DEV’13:
Proceedings of the 3rd ACM Symposium on Computing for
Development (2013).

[3] Eckert, W., Levin, E., and Pieraccini, R. User modeling for
spoken dialogue system evaluation. In Proc. IEEE ASR
Workshop (1997), 80–87.

[4] Perugini, S., Anderson, T. J., and Moroney, W. F. A study of
out-of-turn interaction in menu-based, IVR, voicemail
systems. In Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’07, ACM (New York, NY,
USA, 2007), 961–970.

2 http://wiki.freeswitch.org/wiki/Real-world_
results

428

 http://wiki.freeswitch.org/wiki/Real-world_results
 http://wiki.freeswitch.org/wiki/Real-world_results

	1 Introduction
	2 Design and Features
	2.1 Emulation using previous call records
	2.2 Emulation using Random DTMF

	3 Performance evaluation
	4 Conclusion
	5 Acknowledgments
	6 References

