
Model-Based Performance Testing in the Cloud Using the
MBPeT Tool

Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, Ivan Porres
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
[Fredrik.Abbors, Tanwir.Ahmad, Dragos.Truscan, Ivan.Porres]@abo.fi

ABSTRACT
We present an approach for performance testing of software
services. We use Probabilistic Timed Automata to model
the workload of the system, by describing how different user
types interact with the system. We use these models to gen-
erate load in real-time and we measure different performance
indicators. An in-house developed tool, MBPeT, is used to
support our approach. We exemplify with an auction web
service case study and show how performance information
about the system under test can be collected.

Categories and Subject Descriptors
D.4.8 [Software]: performance—measurement, modeling,
monitors

Keywords
Model-Based Performance Testing, Workload Model, Load
Generation, Probabilistic Timed Automata.

1. INTRODUCTION
The goal of performance testing is to validate the sys-

tem under test (SUT) in terms of responsiveness, stability,
and resource utilization when it is put under a certain syn-
thetic workload [3]. The syntectic workload should mimic
the real workload as generated when real users interact with
the system, as closely as possible [5]. Traditionally, the
synthetic workload is generated by simulating virtual user
(VU) behavior with scripts or pre-recorded scenarios. How-
ever, real users do not behave like static scripts. Further-
more, these scrips or scenarios can be tedious to create and
maintain. Therefore, we propose an approach, supported by
the MBPeT tool [1], where load is generated from abstract
graphical models describing VU behavior. As such, the mod-
els are on the one hand easier to create and update, and on
the other hand easier to comprehend compared to scripts,
due to their abstract and graphical nature, respectively.

2. PROBABILISTIC TIMED AUTOMATA
The MBPeT tool uses models described as probabilistic

timed automata (PTA) [4] to generate synthetic workload.
A PTA consist of locations and transitions. The transitions

Copyright is held by the author/owner(s).
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
ACM 978-1-4503-1636-1/13/04.

Figure 1: Example of a probabilistic timed automata

can be labeled with three different values: a probability
value, an action, and a clock. The probability indicates the
chance of that transition being taken. The action describes
what action to take when the transition is fired, and the
clock indicates how long to wait before firing the transition.

Figure 1 shows an example of a PTA describing a user
profile for an online-auctioning system. Transitions have as-
sociated either a probability (e.g., 0.1) or a clock and a ac-
tion to be executed. The former transitions can be used for
making probabilistic choices between different paths in the
graph. The later are used to send the actions correspond-
ing to a given transition to the SUT. When a response is
received, the clock is reset to zero and the next transition is
fired. With the help of the probability values defined in the
PTA some actions (or sequence of actions) are more likely
to be chosen by MBPeT over another actions, whenever a
choice is encountered in the PTA. Using PTA allows for a
certain level of randomness in the generated workload which
makes the later closer to the real workload.

3. MBPET TOOL
The MBPeT tool has a distributed architecture in which a

master node controls and distributes the load generation on
several slave nodes. Before the slaves start to generate load,
the master node loads the PTA model, validates its consis-
tency and initializes a test database with all the necessary
test data, e.g., user names, password, form data, files, etc,
that is needed to generate meaningful load.

The slave nodes are activated on-the-fly if more generation
capacity is needed. If a slave node gets saturated, e.g., hav-
ing the utilization local resources over a specified threshold,
it notifies the master, while maintaining the current load ca-
pacity. The master then decides to continue load generation
on another slave. The approach is especially beneficial if the
slave nodes have heterogenous computation power, eliminat-

423



ing the need for a preliminary benchmarking process of the
different nodes.

The PTA models are used by the slave nodes for gener-
ating load in real-time against the SUT, by creating traces
from the PTA models. The number of VUs on each slave
is decided by the master node based on the specified ramp
function. A new process is started for each VU that is going
to be run concurrently. Each process simulates an indepen-
dent user based on the PTA. For each simulated user, a new
transition is selected in the PTA and, after waiting for the
specified time, the corresponding action is sent to the sys-
tem. Whenever the number of concurrent VUs has to be
decreased the corresponding number of processes on each
slave are just stopped.

The actions generated from the models can not, as such,
directly be sent to the SUT, because the actions are ab-
stract. Therefore, each slave node sends the abstract actions
through an adapter, which can be used to either translate
on-the-fly every abstract action into a machine readable for-
mat (e.g., a HTTP request) and collect the response, or to
write the actions to scripts that can be executed by other
tools such as JMeter [7]. The adapter acts much like a Fa-
ban Driver would in the Faban framework [6]. Faban is a
tool used for development of server benchmarks and for gen-
erating workloads.

Each slave node monitors different Key Performance Indi-
cators (KPIs) of the SUT, such as response time and through-
put. The values are reported to the master at the end of
performance test. The master node then aggregates the val-
ues reported by the slaves, calculates different different sta-
tistical indicators, and creates an HTML test report. The
test report shows information of how the response time of
individual actions varied over time (Figure 2), and provides
plots of error rates, average throughput and network utiliza-
tion, etc. If one has access to the SUT, the MBPeT tool can
collect monitoring information of how resources like, CPU,
memory, disk, etc, were used during the test session and in-
clude them in the test report. In our experiments, we were
able to monitor the SUT and collect information using for
instance the dstats tool which was automatically processed
and include in the test report. The MBPeT tool will also
present statistics of the most executed traces in the model.

Figure 2: Response times for actions plotted over time

The MBPeT tool has been built to run in a private cloud
or in a public ones, such as the Amazon EC2 cloud [2].
Since the master node does not require much computational

power, it can run locally on a laptop, while the slave nodes
can be set up to run in the cloud.

4. GOALS OF THE DEMONSTRATION
The goals of the demonstration is to show that using ab-

stract models minimizes the effort of creating the workload
profiles. Although the implementation the adapter requires
an initial effort it can be afterwards reused without changes.
Having available graphical models makes easier to visualize
and change the workload profiles. With respect to load gen-
eration, using PTAs allows us to model the user profiles
and generate syntectic load, via probabilistic-guided load
generation, that mimics closer the real one workload. We
also want to show how load is generated from the workload
models and explain how the tool works. We plan to show
the tool running the master node on a laptop and have the
slave nodes running in the Amazon EC2 cloud. However,
if it is not possible to connect properly to Amazon, we will
demonstrate the tool running locally on two machines. Dur-
ing the demonstration we intend to show the tool in action
on two different case studies, an auctioning web service and
a web-based file storage service. We have done a prelimi-
nary evaluation of the MBPeT against the JMeter tool and
we could conclude that for identical test configurations and
load profiles, the results were similar in terms of through-
put (number of actions generated per minute). We plan to
briefly discuss our conclusions during the demo as well.

5. REFERENCES
[1] F. Abbors, T. Ahmad, D. Truscan, and I. Porres.

MBPeT: A Model-Based Performance Testing Tool.
2012 Fourth International Conference on Advances in
System Testing and Validation Lifecycle, 2012.

[2] Amazon. Amazon elastic compute cloud (amazon ec2).
http://aws.amazon.com/ec2/. Retrieved: October 2012.

[3] D. Ferrari. On the foundations of artificial workload
design. In Proceedings of the 1984 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems, SIGMETRICS ’84, pages 8–14, New York,
NY, USA, 1984. ACM.

[4] M. Jurdziński, M. Kwiatkowska, G. Norman, and
A. Trivedi. Concavely-Priced Probabilistic Timed
Automata. In M. Bravetti and G. Zavattaro, editors,
Proc. 20th International Conference on Concurrency
Theory (CONCUR’09), volume 5710 of LNCS, pages
415–430. Springer, 2009.

[5] J. Shaw. Web Application Performance Testing – a
Case Study of an On-line Learning Application. BT
Technology Journal, 18(2):79–86, Apr. 2000.

[6] Sun. Faban harness and benchmark framework,. Online
at http://java.net/projects/faban., 2013.

[7] The Apache Software Foundation. JMeter. Online at
http://jmeter.apache.org/. Retrieved: October 2012.

424


	Introduction
	Probabilistic Timed Automata
	MBPeT tool
	Goals of the demonstration
	References



