
Systematic Performance Evaluation
based on Tailored Benchmark Applications

Christian Weiss
SAP Research

Vincenz-Priessnitz-Strasse 1
76131 Karlsruhe, Germany

christian.florian.weiss@sap.com

Dennis Westermann
SAP Research

Vincenz-Priessnitz-Strasse 1
76131 Karlsruhe, Germany

dennis.westermann@sap.com
Christoph Heger
Karlsruhe Institute of

Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
christoph.heger@kit.edu

Martin Moser
SAP AG

Dietmar-Hopp-Allee 16
69190 Walldorf, Germany

martin.moser@sap.com

ABSTRACT
Performance (i.e., response time, throughput, resource con-
sumption) is a key quality metric of today’s applications as it
heavily affects customer satisfaction. SAP strives to identify
and fix performance problems before customers face them.
Therefore, performance engineering methods are applied in
all stages of the software lifecycle. However, especially in
the development phase continuous performance evaluations
can introduce a lot of overhead for developers which hinders
their broad application in practice. In order to evaluate the
performance of a certain software artefact (e.g. comparing
two design alternatives), a developer has to run measure-
ments that are tailored to the software artefact under test.
The use of standard benchmarks would create less overhead,
but the information gain is often not sufficient to answer
the specific questions of developers. In this industrial paper,
we present an approach that enables exhaustive, tailored
performance testing with minimal effort for developers. The
approach allows to define benchmark applications through
a domain-specific model and realizes the transformation of
those models to benchmark applications via a generic Bench-
mark Framework. The application of the approach in the
context of the SAP Netweaver Cloud development environ-
ment demonstrated that we can efficiently identify perfor-
mance problems that would not have been detected by our
existing performance test infrastructure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [measurement techniques,
design studies, performance attributes]; D.2.5 [Software
Engineering]: Testing and debugging—testing tools; D.2.5
[Database Management]: Logical Designs—data models

General Terms
Java Persistence API (JPA), Benchmarking, Measurelet, Au-
tomated Performance Testing, Model-based Testing, Perfor-
mance Regression Testing

Keywords
Performance, Benchmarking, Database, JPA, Feedback

1. INTRODUCTION
Identifying performance problems before customers face

them is highly relevant for web-based software solutions such
as websites or Software- and Platform-as-a-Service (SaaS/-
PaaS) products. Recent industrial studies and field reports
have shown that performance (response time, throughput,
resource usage) often directly correlates with revenue [16].
Engineering methods (e.g., monitoring, testing, modelling)
can help software providers to understand performance be-
haviour and identify performance problems early.

However, evaluating performance in a realistic environ-
ment involving large subsystems (e.g., databases, middlewa-
re, legacy) is still a challenging task. Especially in the deve-
lopment phase, continuous performance evaluations can in-
troduce a lot of overhead for developers which hinders their
broad application in practice.

In this industrial paper, we report on our efforts towards
a systematic and lean approach for evaluating the perfor-
mance of the persistence layer of a platform solution. The
persistence layer of an application is often one of the most
performance-critical components as it is quite likely that it
becomes a bottleneck. In a PaaS solution, platform provi-
ders offer a ready-to-use persistence layer to developers that
create applications on top of the platform. This implies the
following challenges.

411

The platform service provider needs to support many dif-
ferent application types with different usage profiles. Stan-
dard benchmarks such as provided by SPEC [15] and TPC
[18] do not test broad enough in order to enable a detailed
understanding of performance characteristics. In order to
simulate a comprehensive set of workloads at development
time, it requires tailored performance tests that simulate
many different usage patterns and specifically focus on the
concrete system under test [7]. However, creating and run-
ning these detailed tests is very time-consuming and requires
detailed expert knowledge.

Developers that consume the platform service are main-
ly interested in understanding how the performance of the
platform service affects the performance of their application.
The platform service provider could support the consumers
by providing a prediction that maps the service usage to the
expected performance. However, in order to provide such a
prediction, the platform service provider needs an even more
detailed understanding of how the service behaves under dif-
ferent usage profiles. In our scenario, classical model-driven
prediction approaches (such as surveyed in [10]) fail due to
the complexity of the service and its continuous modificati-
on which makes it hard to create and maintain the models.
Hence, exhaustive, systematic measurements are the means
that we choose to derive predictions. This underlines our re-
quirement for an efficient approach to set up and run tailored
performance tests.

In this paper, we present our approach for creating and
running performance tests tailored to the persistence ser-
vice of a platform solution. In our scenario, the service in-
terface is the Java Persistence API (JPA) [3]. Based on a
JPA data model provided by the platform consumer, an
object-relational mapping (ORM) component persists the
application data in the underlying database. We introduce
a measurement API that separates benchmark applications
from their runtime environment. Moreover, we developed
a Benchmark Framework that generates all necessary pro-
ject and source files of a benchmark application based on
information provided in a benchmark model. Furthermore,
the Benchmark Framework compiles the generated code, de-
ploys it on the test environment, executes the measurements
and returns the results.

The presented approach simplifies the creation and execu-
tion of performance tests for developers by hiding complexity
and automating many tasks. This simplification makes it ea-
sier to introduce performance tests which results in a larger
set of tests. Having more tailored tests increases the proba-
bility of uncovering a performance problem. Moreover, it al-
lows us to quickly reproduce a performance issue on the test
environment that we observed for a consumer application
on the real environment. In the paper, we demonstrate how
we use the approach for performance regression testing and
performance prediction function construction. Moreover, we
report on the first results that we achieved by applying the
approach in the development of the SAP Netweaver Cloud
platform [14]. Based on the initial experience with the ap-
proach, we discuss open issues and future research directions
that we see in the performance engineering field.

The remainder of this paper is organized as follows. Secti-
on 2 gives an overview on the approach and introduces the
key components. Sections 3 and 4 describe the measurement
API and our approach to automate the construction, execu-
tion and analysis of benchmark applications, respectively. In

Section 5, we demonstrate the application of the approach
in our industrial setting. In Section 6, we discuss potential
research directions based on our experience with the presen-
ted approach. Related research is introduced in Section 7.
Finally, Section 8 concludes the paper.

2. OVERVIEW
The main goal of the work presented in this paper is to

support developers as well as consumers of a persistence ser-
vice in understanding the performance impact of design and
implementation decisions. Figure 1 illustrates the basic sce-
nario.

Platform

Database
O/R-

Mapper
Application

Server ...

Application A

Data Model

Application
Logic

User
Interface

Application B

Data Model

Application
Logic

User
Interface

Application C

Data Model

Application
Logic

User
Interface

Figure 1: Platform Scenario

The platform hosts a set of different applications with dif-
ferent usage profiles. In addition to hosting the applications,
the platform provides further services to the application de-
velopers. In this paper, we focus on the persistence service
of the platform which allows application developers to store
and load data based on a simple interface. Hence, applica-
tion developers do not have to deal with setting up, confi-
guring, or maintaining their own persistence solution. The
results presented in this paper are derived for a persistence
service that uses JPA [3] as the interface to the applicati-
on developer. In that scenario, the main components of the
persistence service are the database and the object-relational
mapping component (such as Hibernate [6] or EclipseLink
[23]). The application developer designs the entities that ma-
ke up the data model of the application and bundles it to-
gether with the application logic and the user interface to a
deployable unit that runs on the the platform.

When it comes to quality assurance in terms of performan-
ce, the persistence service provider as well as the applicati-
on developers need to answer different questions. Examples
from a persistence provider view are:

• Does my planned database update affect performance?

• Which test cases reflect the actual usage profile best?

• Should I use O/R-Mapper A or B?

412

Application developers face questions like:

• Is variant A or variant B of my data model better with
respect to performance?

• What is the performance of my application on platform
X?

• Did my latest change affect the performance of my
application?

The approach presented in this paper provides a means to
support persistence service providers and application devel-
opers in answering these questions efficiently. In Section 5,
we provide some examples on how we used the approach for
performance regression testing and providing performance
feedback. Figure 2 illustrates the basic idea of the approach
based on a simple example.

MyEntity
Benchmark
Application

 MyEntity Test
Environment

MyEntity
Alternative 1

MyEntity
Alternative 2

tested by
tailored

runs on

Figure 2: Basic Idea

If the developer of a data model wants to make a decision
between two design alternatives for the entity MyEntity, a
tailored benchmark application is constructed that tests the
performance of the two alternatives of this specific entity on
a test environment. Thereby, the design of the benchmark
application as well as the test environment depend on the
goal of the test (e.g. comparing two design alternatives with
respect to an achievable throughput for a certain workload).
This procedure requires to create and run a large set of tai-
lored measurements. In the following, we give an overview
on how we manage this requirement.

Creating and running a single performance measurement
in the described context requires the following steps:

1. Developing a JPA data model.

2. Developing a test application logic that uses the data
model.

3. Developing a load driver that simulates a usage profile.

4. Adding instrumentation that enables performance mo-
nitoring.

5. Deploying the test application on a performance test
environment.

6. Executing the performance test.

7. Analysing and interpreting the measured data.

In the following, we refer to the software that is created
during steps 1 to 4 as benchmark application. With our ap-
proach, we aim at reducing the manual effort in creating and
executing benchmark applications while retaining the flexi-
bility in creating these individual benchmark applications.

Therefore, we facilitate the definition of such benchmark ap-
plications through a generic domain-specific model and pro-
vide a Benchmark Framework to realize the transformation
of those models to benchmark applications (see Section 4)
which allows us to efficiently create and run benchmark app-
lications. Furthermore, we adopt a concept known from the
web development domain where developers build Servlets
that are executed in a Servlet Container [12]. The Servlet
Container provides the infrastructure to run the Servlets
and takes over management and controlling of Servlets. In
our approach, the benchmark applications are called Measu-
relets and the mechanisms to control such Measurelets are
provided by a Measurelet Container. A Measurelet Contai-
ner executes Measurelets by providing an appropriate in-
frastructure and can provide additional services concerning
the processing of measurements (e.g., recovery of failed runs
or repeating runs until a certain confidence level has been
reached). The benefit of this approach is that the developer
of a benchmark application can focus on the design of the
benchmark application (i.e., the Measurelet) and does not
have to deal with setting up the execution environment and
controlling the measurements. In order to ensure the compa-
tibility between the Measurelets and the Measurelet Contai-
ner we introduce a Measurelet API as part of the approach
(see Section 3). The Measurelet API supports developers in
building and running a single benchmark application. Howe-
ver, in order to answer some of the questions stated above,
the construction and execution of a multitude of benchmark
applications is required (e.g. for exhaustive performance re-
gression testing such as described in Section 5).

Developing all these benchmark applications manually
would be too time-consuming and thus impracticable. The-
refore, we introduce a Benchmark Framework that allows us
to automatically create, run and analyse Measurelets. The-
reby, the construction and execution of benchmark applica-
tions can be parametrisable. A Measurelet can, for example,
contain the code of the application logic that accesses the da-
ta model via a certain interface. The actual implementation
of the data model can then be varied which allows comparing
different design alternatives. In order to support the efficient
parametrised construction and execution of a multitude of
Measurelets, we introduce a model-based representation of
Measurelets, called JPA Benchmark Model (JBM). Having
the information about the content of a Measurelet as well
as a set of variation points specified in a model allows us to
leverage model-driven development advantages such as code
generation and consistent design documentation. The model
is interpreted by the Benchmark Framework that automates
the execution of the three steps illustrated in Figure 3.

JPA Benchmark Model

Construction Execution Analysis

Measurelet APIMeasurelet API Benchmark Framework

Figure 3: Benchmark Framework

The Benchmark Framework automates construction, exe-
cution, and analysis of benchmark applications. It is para-
metrisable via the information specified in the JPA Bench-

413

mark Model. In the construction step the Benchmark Model
triggers the generation of code and configuration files and
packages the benchmark application (i.e., the Measurelet)
to a deployable unit. In the execution phase the Measurelet
is deployed to the Measurelet Container which runs the ap-
plication. Finally, the analysis step analyses the measured
results and correlates the measurements with the informati-
on specified in the JPA Benchmark Model. In Section 4, we
introduce this process in more detail.

Both, the Measurelet concept as well as the automati-
on capabilities of the Benchmark Framework combined with
the JPA Benchmark Model helped us to reduce the effort for
detailed performance testing. In Section 5, we report on the
first results that we achieved by applying exhaustive, tailo-
red performance measurements in the development process
of a platform persistence service.

3. MEASURELET API
The Measurelet API is an approach to reduce the efforts

for creating and executing tailored performance measure-
ments. We apply the idea of the Servlet API [12] to the per-
formance measurement domain. Benchmark applications are
called Measurelets and created based on a common abstract
interface. The execution of Measurelets is controlled by so-
called Measurelet Containers. Hence, a Measurelet is focused
on benchmark structure, workloads, and monitoring probes.
The management and execution of Measurelets is conducted
by Measurelet Containers based on the abstract Measurelet
API. The Measurelet Containers adapt to the specific plat-
form on which the Measurelets (i.e., the benchmark appli-
cations) should be executed (i.e. the SAP Netweaver Cloud
platform in our scenario).

Figure 4 shows the common interface for the implementa-
tion of Measurelets.

Figure 4: Measurelet Interface

The method service realizes the actual measurement.
This method expects two input parameters which repre-
sent the interface to the caller of the benchmark applica-
tion. The parameters provide access to the caller input and
return the response values. The values for those parameters
are provided by the Measurelet Container, which abstract,
for example, from the concrete communication protocol or
deployment format of the execution platform. Examples for
different communication protocols are HTTP and Java Re-
mote Method Invocation (RMI) for synchronous invocations
and messaging protocols like the Advanced Message Queuing
Protocol (AMQP) for asynchronous invocations.

To create a Measurelet, a developer has to create a class
which implements the Measurelet Interface shown in Figu-
re 4. The developer does not need to provide extensive,
platform-specific execution and communication logic as this
is realized in the Measurelet Containers. Rather, he can fo-
cus on the core benchmark application design and rely on
the common interfaces to access the inputs and provide the

outputs. Using a common, abstract interface for the imple-
mentation of Measurelets and their execution through Mea-
surelet Containers makes the implementation of these com-
ponents independent from each other. Thus, Measurelets are
not bound to a specific Measurelet Container, which makes
them executable on different platforms which cover, for ex-
ample, different JPA-based persistence services. Listing 1
shows an example Measurelet implementation.

1 pub l i c c l a s s MyMeasurelet
2 implements Measurelet {
3 pub l i c void service (
4 MeasureletRequest request ,
5 MeasureletResponse response) {
6 i n t count = request .getParam(”count ”) ;
7 long time = System . nanoTime () ;
8 f o r (i n t i = 0 ; i < count ; ++i) {
9 p e r s i s t (createRandomEntity ()) ;

10 }
11 time = System . nanoTime () − time ;
12 response . setValue (” p e r s i s t . time ” , time) ;
13 }
14 // . . .
15 }

Listing 1: Sample Measurelet Implementation

The benchmark application is realized within the service

method and uses the input parameters provided by the cal-
ler to control a measurement and evaluate its result. Line 6
shows how input parameters are accessed. In line 12 the
measured value is stored in the result object. The implemen-
tation artefacts of such a Measurelet code can be deployed
and executed on Measurelet Containers using its integration
tools. For example, such a tool could package the artefacts
in a JAR file to deploy and invoke it on a remote application
server.

In the following sections, we present an approach that
aims at the automated construction and execution of Mea-
surelets using a model-based description. This allows us to
create and run an exhaustive set of benchmark applications
for a certain target platform.

4. AUTOMATED, TAILORED
BENCHMARKING

Exhaustive, tailored benchmarking can be used in multi-
ple scenarios (see also Section 5). Examples are (1) perfor-
mance regression testing, (2) comparing performance cha-
racteristics of different platforms, or (3) comparing design
alternatives. In all use cases, the following basic actions are
to be conducted (cf. Figure 3):

• create a benchmark application,

• execute the benchmark application on the target plat-
form, and

• analyse the results.

While all use cases have to execute the same actions, they
differ in how the actions are included in a process flow. For
example, in the performance regression testing use case, the
same benchmark application is executed multiple times whi-
le the execution platform evolves. Whereas, in the design
alternative comparison use case, we compare the results of
two different benchmark applications that are executed on
the same platform.

414

The effort to implement the use cases mentioned above can
be very high, especially if the basic actions have to be im-
plemented manually for each use case. Hence, our approach
extracts the common actions into components that can be
reused in different use cases. This allows us to simply com-
pose the basic actions in order to implement the process
flow of a specific use case. Moreover, we use a model-based
description of benchmark applications that allows us to le-
verage advantages of model-driven development such as code
generation and consistent design documentation.

In the following sections, we introduce our JPA Bench-
mark Model as well as the component-based Benchmark
Framework that we developed to automate the creation, exe-
cution and analysis of benchmark applications.

4.1 JPA Benchmark Model
A JPA Benchmark Model (JBM) is a means to describe

benchmark applications that are supposed to run on a plat-
form that provides a JPA-based persistence service. Using a
model, performance analysts can provide a declarative des-
cription of benchmark applications. This description is then
used to automatically construct, execute and analyse the
benchmark application (see Section 4). A JPA Benchmark
Model is constructed based on a metamodel that allows a
complete specification of JPA entity structures as it is ali-
gned to the elements of the Metamodel API described in
the JPA Specification [3]. Moreover, the metamodel allows
for the registration of additional information in a key-value
fashion. This additional information is required to descri-
be the other parts (i.e., other than the data model) of the
benchmark application (e.g. information about test data or
test workload). Listing 2 illustrates an example for the in-
formation described in a JPA Benchmark Model.

1 JPABenchmarkModel :
2 e n t i t i e s :
3 − name : Customer
4 operationsToTest : [i n s e r t , update]
5 a t t r i b u t e s :
6 − name : id
7 type : I n t eg e r
8 id : t rue
9 − name : primaryAddress

10 type : S t r ing
11 length : 128
12 − name : secondaryAddresses
13 type : L i s t<Str ing>
14 s ize : 4
15 stringItemLength : 128

Listing 2: Custom JPA Benchmark Model

The model consists of a single entity class called Customer,
which has 3 persistent attributes called id, primaryAddress
and secondaryAddresses. Line 4 represents the additional
information which states that for this entity class the per-
formance of the persistence operations insert and update

should be tested. In line 11, additional information is added
to the attribute primaryAddress which defines to use string
values with a length of 128 characters. Lines 14 and 15 spe-
cify that the list of secondaryAddresses should contain 4
items and the length of those string items should be 128
characters.

A JPA Benchmark Model can be used to automatically
create executable applications through model to code trans-
formation which has several benefits. Experts like bench-

mark designers can create the necessary transformations whe-
reas application developers and performance analysts create
the model. Moreover, it is possible to create model instances
via an API which allows to combine the approach with diffe-
rent applications and tools such as systematic experimenta-
tion [20] or code extraction [5]. In the following section, we
provide a detailed description on how the models are used
to automate the benchmarking process.

4.2 Benchmark Framework
We developed a Benchmark Framework (BF) which im-

plements this component-based approach by providing a ge-
neric component model for the three basic actions outlined
above. For each action, we define a specific component type.
The BF manages the components and enables their usage in
multiple use cases. The generic component model of the fra-
mework is based on OSGi [17]. Components are created and
managed as OSGi services and are available through the ser-
vice registry. Each action type specifies the interface of the
implementing service component leading to the specificati-
on of an interface for constructing, executing, and analysing
benchmark applications. The interfaces form the basis for
component implementations and ensure their type-safe usa-
ge. In the following subsections, we describe the different
component types and their interfaces in more detail. Mo-
reover, we describe how we implemented the components to
apply them in the use cases introduced in Section 5.

4.2.1 Construction Component Type
The construction component is responsible for creating

benchmark applications. Therefore, it uses the information
specified in a JPA Benchmark Model (JBM) to build an exe-
cutable application via a model-to-code transformation. The
resulting benchmark application realises the measurements
of interest. The construction component accepts an instance
of the JBM as input and provides an executable JAR file in-
cluding the benchmark application as output (see Figure 5).

<<interface>>
Generator

generate(model : JPABenchmarkModel) : File

Figure 5: Construction Component Interface

The benchmark applications are implemented as Measu-
relets in order to increase the reusability of the component
(see also Section 3). The construction component applied
by the use cases described in Section 5 uses Apache Velocity
Templates [1] to generate Java source code. The place hol-
ders and control structure within the templates are aligned
to the elements of the JBM which is why an JBM is the only
input parameter required by the templates. Listing 3 outli-
nes an example Velocity template used to create the source
code of an entity class.

1 @Entity
2 pub l i c c l a s s ${ en t i t y . name} {
3 #foreach ($at t in $ en t i t y . a t t r i b u t e s)
4 #i f ($at t . id == true)
5 @Id
6 #end
7 pr i va t e ${ at t . type} ${ at t . name } ;
8 // . . .
9 #end

10 // . . .

415

11 pub l i c s t a t i c c l a s s Factory {
12 pub l i c ${ en t i t y . name} randomInstance () {
13 ${ en t i t y . name} r i =
14 new ${ en t i t y . name } () ;
15 #foreach ($at t in $ en t i t y . a t t r i b u t e s)
16 #i f ($at t . type == ”St r ing ”)
17 r i . ${ at t . name} =
18 randomString (${ at t . length }) ;
19 #end
20 #end
21 r e turn r i ;
22 }}}

Listing 3: Sample Code Template

Lines 3-9 iterate over the attributes of an entity defined
in the JBM and create the attribute signatures in the entity
source code. In line 15, the attribute information defined in
the JBM is used to generate the code for the factory method
that is responsible for creating instances of the entity. Here,
the template also considers additional information like the
length of a String attribute (cf. line 18 in Listing 3 and
line 11 in Listing 2).

The implementation uses the visitor pattern to create the
different artefacts specified in the JBM. The visitor traverses
the model and calls the template engine appropriately. The
artefacts are created within a folder according to the Java
conventions. The artefacts include the source code of JPA
entities, the JPA persistence configuration file, as well as the
Measurelet interface and the corresponding configuration as
an OSGi declarative service. The resulting artefacts are com-
piled by the Java Compiler API and bundled in a JAR file
using the JVM libraries of the java.util.zip package.

4.2.2 Execution Component Type
The execution component is responsible for running the

benchmark applications on the target platform and gathe-
ring the metrics of interest. The execution can be influ-
enced by parameters specified in the JBM (e.g. by specifying
the database instance that should be used for the measure-
ments). The input of the execution component is (i) a JAR
file that contains an executable benchmark application and
(ii) the corresponding JBM (see Figure 6). The output are
the results of the execution (e.g. measured response times
for a certain service call).

<<interface>>
Runner

run(model : JPABenchmarkModel, benchmark : File) :
 Future<MeasurementResult>

<<interface>>
RunnerCallback

onResult(measurementResult : MeasurementResult) : void
onError(error : Throwable) : void

Figure 6: Execution Component Interface

The execution is based on the Measurelet API which incre-
ases the reusability of the component. The execution compo-
nent used by the use cases described in Section 5 implements
a Measurelet Container that adapts to the SAP Netweaver
Cloud platform. The container registers a Servlet according
to the OSGi Web Application Specification [17]. The Serv-
let allows to load JAR files into the container that are then
installed as OSGi bundles. The bundles can register Mea-
surelets as OSGi services and registered Measurelets can be
executed via the Servlet. Thus, the deployed benchmark ap-
plications can be triggered by other applications using the
HTTP protocol (e.g. by a nightly-build job for performance
regression testing).

4.2.3 Analysis Component Type
The results derived by running one or many benchmark

applications are processed by analysis components. Analy-
sis components can perform a variety of analysis and data
processing methods. For example, results can be illustrated
in graphs or processed for textual representation. Moreover,
it is possible to trigger follow-up actions based on the mea-
surement results. When analysing the measured data, the
component implementation can use the information speci-
fied in the JBM. Hence, the input of the analysis compo-
nent is the execution result of a benchmark application and
the corresponding JBM describing the application and the
execution context (see Figure 7).

<<interface>>
Processor

process(model : JPABenchmarkModel, result : MeasurementResult) : void
handleError(model : JPABenchmarkModel, error : Throwable) : void

Figure 7: Analysis Component Interface

Despite the fact that the interface only accepts the result
of a single execution of a benchmark application as input, a
complementary component can enhance the capabilities by
storing and providing results of previous benchmark app-
lication runs. This allows to implement more sophisticated
analyses such as the performance regression analysis applied
in one of the use cases described in Section 5.

5. USE CASES
In this section, we introduce two use cases that leverage

from the approach presented in this paper. In the performan-
ce regression testing use case, we apply the approach to run
an exhaustive set of tailored performance test for the per-
sistence service of the SAP Netweaver Coud platform. The
test are triggered by a nightly job on the build server and
thus ensure that the development teams are timely informed
on introduced performance problems. The second use case
describes how we use the approach to provide performan-
ce feedback in the development environment of application
developers that use the persistence service within an appli-
cation that runs on the Netweaver Cloud platform.

5.1 Performance Regression Testing
Performance regression testing is a commonly used means

to monitor whether a new software version still adheres to
a specified quality goal or agreement. Performance tests are
(in most cases) automatically executed on a regular basis
(e.g., nightly). If a performance regression is observed, the
development team can immediately dig into the issue. Ho-
wever, the probability of actually observing an issue as well
as the effort for identifying its root cause is highly depen-
dent on the number and quality of performance tests exe-
cuted on a regular basis. Using the approach presented in
this paper, we have been able to increase the number of per-
formance regression test significantly. Moreover, it allows us
to create performance tests that are tailored to the specifics
of the persistence service which improves the value of the
information provided by the tests. We developed a set of
benchmark applications that include different data models,
different application logic methods accessing a data model
as well as different types of usage profiles. As a result, we

416

have an exhaustive set of benchmark applications all tes-
ting a different aspect of the persistence service. This set
of benchmark applications is executed on a nightly basis.
Moreover, we can easily add additional tests as soon as we
identify a performance problem in an application that has
not been detected by the existing tests. The concept is si-
milar to the unit testing approach where specific tests are
created for each concrete feature and tests are added af-
ter fixing a problem in order to prevent from introducing
the problem again. Figure 8 shows a performance regression
that we observed after having the tailored benchmark set in
place.

F
eb

 1
6

F
eb

 1
2

F
eb

 1
3

F
eb

 1
4

F
eb

 1
5

F
eb

 1
9

F
eb

 2
1

F
eb

 1
7

F
eb

 1
8

F
eb

 2
0

F
eb

 2
2

O
pe

ra
tio

ns
 /

S
ec

on
d

0

8k

F
eb

 2
4

F
eb

 2
3

F
eb

 0
6

F
eb

 0
7

F
eb

 0
8

F
eb

 0
9

F
eb

 1
1

F
eb

 1
0

4k

6k

2k

Date

O
pe

ra
tio

ns
 /

S
ec

on
d

0

400

200

300

100

Feature #2883 Feature #2891

F
eb

 1
6

F
eb

 1
2

F
eb

 1
3

F
eb

 1
4

F
eb

 1
5

F
eb

 1
9

F
eb

 2
1

F
eb

 1
7

F
eb

 1
8

F
eb

 2
0

F
eb

 2
2

F
eb

 2
4

F
eb

 2
3

F
eb

 0
6

F
eb

 0
7

F
eb

 0
8

F
eb

 0
9

F
eb

 1
1

F
eb

 1
0

Date

Figure 8: Identified Regression

The graphs show the measured throughput for two bench-
mark applications over a certain period of time. The bench-
mark application on the left side executes a named query
that retrieves all instances of an entity in a certain data mo-
del. The benchmark application on the right side executes a
query that stores a number of instances of the same entity
to the database. The graph on the left side of Figure 8 shows
that for this benchmark application a performance regres-
sion of factor 4 has been introduced. As the tests run on a
nightly basis, we have been able to identify the root cause
for the issue very quickly which happened to be an upda-
te of the database version that has been conducted at that
day. An interesting observation is that the regression has
only been observed in one test out of the set of benchmark
applications. The test shown on the right side of Figure 8
does, for example, not show a performance regression. This
observation underlines the assumption that more and tailo-
red performance tests increase the probability of detecting a
performance issue. Moreover, knowing the exact conditions
under which a problem occurs and under which not can be
very helpful in fixing a performance issue.

5.2 Performance Feedback
In data-centric applications, the data model can limit per-

formance and scalability of the overall application. When de-
veloping the data model and the application logic that uses
the data model, it is often unclear to developers how different
design decisions or usage profiles affect the application’s per-
formance. With our ongoing research [19], we aim at incre-
asing the performance awareness of developers by providing
immediate feedback about the expected performance of the
artefact under development. We integrate the performance
feedback into the development environment (e.g. eclipse) to
lower the burden for developers (cf. Figure 9). For the per-
sistence scenario described in this paper, we identified two
feedback usage types.

Performance

Integrated Development Environment

Person.java
import javax.persistence.*;

@Entity
public class Person {

 @Id
 public Integer id;
 public String lastName;
 public String firstName;

}

Persist:
Remove:

m
s

/ O
pe

ra
tio

n

Persist

Remove

0 10 20 30

25,33 ms
17,92 ms

40

Figure 9: Immediate Feedback in the IDE.

1. Developers can use the feedback to continuously track
the performance impact of changes applied to the ar-
tefact.

2. Developers can use the feedback to evaluate design al-
ternatives with respect to data model entities (e.g. dis-
tribution of attributes across entity classes) and entity
usage (e.g. number of parallel reads).

For the first usage type, the performance feedback relates
to the currently focused software artefact (e.g. a data model
entity or a method using persistence operations) and the
performance values are updated when changes are applied
to the software artefact. Figure 9 sketches how this could
look like in the IDE of the developer.

While the developer is developing the entity Person and
adding additional attributes, the performance feedback view
on the right side of the figure shows how the changes affect
the average response time for persist and remove operations
on this entity for a predefined test workload.

In the second scenario, developers directly compare diffe-
rent implementation alternatives against each other in order
to understand the performance characteristics of each alter-
native. Figure 10 shows an example for this kind of feedback.

Part (a) of Figure 10 sketches the two implementation
alternatives. The functional requirement for the developer
is to store 32 numbers in a Container entity. Alternative
1 implements this requirement by adding 32 fields of type
Long to the entity. Alternative 2 uses a list field that can
hold values of type Long. Part (b) of Figure 10 illustrates
the performance feedback view for that example. It shows
the throughput that can be achieved for the insert, update,
remove, and persist operations using the respective alterna-
tive. In the example, the throughput that can be achieved
with Alternative 1 is 4 times higher than with Alternative
2. We derived the feedback for this example by integrating
the two entities in two benchmark applications that differ
only in the described point. The workload as well as the test
platform have been identical.

Basically, the feedback can be based on two sources. Eit-
her by directly measuring the performance of the artefact of
interest (as we did it for the example above) or by predicting
the performance using performance prediction models. Mea-
sured performance is more accurate but is not immediately
available to developers. Performance prediction is immedia-
tely available but requires the prior derivation of performan-
ce prediction models. In the remainder of this section, we
describe how we apply the approach presented in this paper
to implement the two feedback sources.

417

Alternative 2Alternative 1

<<Entity>>
Container

+ id : Long
+ value01 : Long
+ value02 : Long
...
+ value32 : Long

<<Entity>>
Container

+ id : Long
+ values : List<Long>

Provides storage of 32
values of type java.lang.Long

(a)

0 200 400 600 800 1000 1200

Insert

Update

Remove

Persist

Operations / Second

List Attributes

(b)

Figure 10: Evaluation of Design Alternatives.

5.2.1 Measurement-based Feedback
In case of measurement-based feedback, we execute a bench-

mark application on a test environment and measure the
performance of different persistence service operations. The-
refore, a JPA Benchmark Model is created by the IDE plu-
gin. The plugin uses static code analysis to derive informa-
tion about the data model that is to be tested and adds
information about the test data and test workload that is
to be used for the test. Then, the Benchmark Framework is
applied to create a benchmark application based on the mo-
del, run it on the test platform and return the measurement
result to the IDE plugin which channels the feedback to the
developer.

5.2.2 Prediction-based Feedback
For the prediction scenario, we do not have real-world re-

sults yet. However, we give a short outline on the overall
idea in order to illustrate how the approach presented in
this paper can be used for our ongoing research. Our ap-
proach to derive performance prediction models is based on
systematic experimentation by applying measurements and
sophisticated statistical analyses (see also [21]). To define
and control the experiments required to derive a predicti-
on function, we apply our Software Performance Cockpit
tool [20] in combination with the approach presented in this
paper. The Software Performance Cockpit executes experi-
ments by systematic variation of parameter values (e.g. the
number of the entity’s Long attributes). The benchmark fra-
mework creates and executes benchmark applications with
the parameters specified by the Software Performance Cock-

pit and returns the performance measurement results. Based
on the results provided by multiple benchmark applications
SoPeCo derives a functional relationship between a set of
input parameters and a performance metric of interest. For
the example shown in Figure 10, the function that evaluates
the achievable throughput for the persist operation could be
as follows:

TPpersist(nLongAtt) = 2300 + (−12 ∗ numLongFields)

Deriving a complete prediction function for different data
models and applications is a challenging task and requires
detailed future research (see also Section 6). However, the
approach presented in this paper forms the basis for this re-
search as it provides an efficient means to run an exhaustive
set of benchmark applications. Our next steps towards the
automated construction of performance prediction functions
for JPA-based applications are setting up systematic experi-
ments to identify performance-relevant aspects of JPA-based
data models and to identify a set of synthetic workload clas-
ses that are representative for applications of a certain do-
main.

6. RESEARCH DIRECTIONS
The approach of exhaustive, tailored performance testing

has immediately shown its benefits when we applied it to the
development of the persistence service. The proof of concept
implementations of the Measurelet idea and the Benchmark
Framework have demonstrated that it is possible to create
and run a multitude of benchmark applications with limited
effort. Based on the experience we gained through applying
the presented approach, we discuss different research direc-
tions that we see in this area.

How to design the actual benchmark applications?
While the approach presented in this paper simplifies the
construction and execution of benchmark applications, it is
out of the scope of this work to determine how the design of
the benchmarks should look like. In order to answer ques-
tions like

”
What are the usage profiles that I should test

in my benchmark applications?“,
”
What are performance-

critical data model designs?“, or
”
How to deal with caching

effects that can bias the results?“, it requires sophisticated
engineering methods. An example for such a method could
be the automated derivation of benchmark applications ba-
sed on real user monitoring data.

How to deal with the large parameter space?
The approach allows developers to create and run large sets
of benchmark applications based on parametrisable Measu-
relet construction. However, the potential degrees of freedom
for a developer of a benchmark application are huge. There
are, for example, a vast amount of different potential data
models. The same is true for the application logic and the
usage profiles. Moreover, the number of test environments
as well as the time available to execute the tests are limited.
Thus, smart approaches are required that provide maximum
information gain with a limited number of benchmark app-
lications.

How to derive prediction models to provide perfor-
mance feedback to application developers?
In Section 5 we introduced a scenario that aims at provi-
ding feedback to application developers with respect to the

418

performance of the persistence service for their specific app-
lication. However, deriving a prediction model that provides
accurate predictions for different real-world applications is
a challenging task. Besides the two questions stated above,
one has to deal with finding an appropriate abstraction level
that on the one hand limits the complexity of applications
and platform service, but on the other hand includes enough
detail to enable accurate predictions. A systematic search
for proper heuristics in combination with sophisticated sta-
tistical analysis and machine learning techniques could be a
potential direction towards answering this question.

How to apply the approach to other components?
The idea of having a Measurelet API and a parametrisable
framework that creates and runs benchmark applications is
independent of JPA and the persistence service. Except for
the JPA Benchmark Model Model introduced in Section 4.1
all the components presented in this paper are reusable for
other performance measurements. However, so far we do not
have any information on the effort for applying the approach
to a different component (e.g., a messaging or identity mana-
gement service). Moreover, other components can introduce
additional challenges with respect to automated performan-
ce testing.

7. RELATED WORK
The approach presented in this paper combines automa-

ted model-based benchmarking and benchmark application
generation with systematic measurements. In the following,
we discuss existing work that addresses these aspects.

Benchmarking is a common and widely spread task in in-
dustry. Standard benchmarks, such as those offered by the
Standard Performance Evaluation Corporation (SPEC) [15],
the Transaction Processing Council (TPC) [18] (e.g. TPC-
H and SPECjEnterprise2010), or software vendors like SAP
[13], provide standardized performance measurement for com-
paring and ranking of platform configurations or platforms
of different vendors. The JPA Performance Benchmark [9]
is the largest benchmark that deals with JPA-based app-
lications and allows the comparison of different JPA pro-
viders (e.g. EclipseLink, Hibernate) and Database Mana-
gement Systems (e.g. Derby, MySQL). However, standard
benchmarks do not satisfy individual information needs and
are often difficult to setup. Therefore, specifically tailored
and easily employable benchmark applications are needed
to satisfy a certain information need.

Wright et al. [22] present Auto-Pilot a tool for the au-
tomation of performance measurements. Benchmark scripts
execute performance measurements described using a proce-
dural language. Auto-Pilot provides the ability to run ana-
lysis on performance measurements but does not use des-
criptive models for performance measurements in general.
Kalibera [8] et al. present an approach for automatic per-
formance measurements in a distributed and heterogeneous
environment. They use an execution framework to take per-
formance measurements and a benchmarking framework to
control the execution. However, the execution framework re-
quires the implementation of a certain run time environment
and communication protocol. Moreover, Kalibera et al. do
not use models to describe performance measurements and
benchmark applications.

Apfelbaum and Doyle [2] as well as Malik et al. [11] present
approaches for generating functional tests from models that

describe the system under test. However, our JPA Bench-
mark Models describe performance measurements and not
functional tests. In [24], Zhu et al. present a model-based ap-
proach for automated usage of performance measurements.
The benchmark software is described in UML based models
that are enhanced with annotations and elements describing
the usage of the benchmark in order to conduct performance
measurements. The model of the benchmark software can be
derived automatically from UML models of the system un-
der test with a model to model transformation. The model-
based approach using UML for model description focuses
on the integration of performance measurements in model-
based software development. In contrast, our JPA Bench-
mark Model is domain specific and targets tailored measu-
rements by describing test-relevant parts of the benchmark
application.

In contrast to a model-based approach, Denaro [4] des-
cribes an approach for benchmark application construction
based on existing software artefacts. Unimplemented parts
are replaced by stubs which provide only minimal require-
ments (e.g. just an interface). The assumption is that the re-
sults delivered by the benchmark applications approximate
the final performance characteristics of the software system.
However, benchmark applications and required stubs have
to be developed like common software system artefacts. Our
benchmark framework complements the approach by auto-
matically generating benchmark applications. The benefit of
our model-based approach is to replace stubs with the con-
crete implementation of the artefact as development evolves.

8. CONCLUSIONS
In this paper, we introduced an approach that allows for

exhaustive, tailored performance testing. The two main com-
ponents of the approach are the Measurelet concept as well
as the model-based construction and execution of bench-
mark applications. Using the presented approach, developers
can create and run a large set of tailored benchmark appli-
cations with minimal effort. We have illustrated how we use
the capabilities of the approach to ensure the quality of a
JPA-based persistence service via detailed performance re-
gression testing. Besides this platform service provider view,
we also reported on how we plan to use the approach to pro-
vide valuable performance feedback to the consumer of the
platform service (i.e., the application developers) in order
to support them in developing high-quality applications. In
our future work, we focus on implementing the performan-
ce feedback for the platform service consumer. Therefore,
we are investigating sophisticated methods to derive perfor-
mance prediction functions based on the systematic execu-
tion of parametrised benchmark applications. Moreover, we
plan to adopt the exhaustive performance regression testing
approach to other platform services.

Acknowledgment
This work is supported by the German Research Foundation
(DFG), grant RE 1674/6-1 (Transfer project KIT-SAP).

419

9. REFERENCES
[1] Apache Software Foundation. The Apache Velocity

Project. http://velocity.apache.org/, 2012.

[2] L. Apfelbaum and J. Doyle. Model based testing.
Software Quality Week Conference, pages 1–14, 1997.

[3] L. DeMichiel and J. P. E. Group. JSR 317: Java
Persistence API, Version 2.0.
http://jcp.org/en/jsr/detail?id=317, 2009.

[4] G. Denaro, A. Polini, and W. Emmerich. Early
performance testing of distributed software
applications. In Proceedings of the 4th international
workshop on Software and performance, pages 94 –
103. ACM, 2004.

[5] Forschungszentrum Informatik (FZI). SQools:
Software Analysis Tools. http://www.sqools.org/,
2012.

[6] Hibernate. Relational Persistence for Java and .NET.
http://www.hibernate.org, 2012.

[7] R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. Wiley
professional computing. Wiley, 1991.

[8] T. Kalibera. Regression benchmarking environment.
Proceedings of WDS, 2004.

[9] I. Kirsh. JPA Performance Benchmark (JPAB).
http://www.jpab.org/, 2012.

[10] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation Journal, 2009.

[11] Q. A. Malik, J. Lilius, and L. Laibinis. Model-based
testing using scenarios and event-b refinements.
Methods, Models and Tools for Fault Tolerance, pages
177–195, 2009.

[12] R. Mordani. JSR 315: Java Servlet Specification,
Version 3.0 Rev a.
http://jcp.org/en/jsr/detail?id=315, 2010.

[13] SAP. Standard Application Benchmarks. http://
www.sap.com/campaigns/benchmark, November 2011.

[14] SAP AG. Sap netweaver cloud.
http://www.sap.com/solutions/technology/cloud/
netweaver/index.epx, 2012.

[15] SPEC. Standard Performance Evaluation Corporation.
http://www.spec.org/, 2012.

[16] S. Stefanov. Book of speed: The business, psychology
and technology of high-performance web apps.
http://www.bookofspeed.com, 2012.

[17] The OSGi Alliance. OSGi service platform core
specification. http://www.osgi.org/Specifications,
2012.

[18] TPC. Transaction Processing Performance Council.
http://www.tpc.org/, 2012.

[19] D. Westermann. A generic methodology to derive
domain-specific performance feedback for developers.
In Proc. of the 34th International Conference on
Software Engineering (ICSE 2012), Doctoral
Symposium, 2012.

[20] D. Westermann, J. Happe, M. Hauck, and C. Heupel.
The Performance Cockpit Approach: A Framework for
Systematic Performance Evaluations. In Proceedings of
the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA 2010),
pages 31–38. IEEE Computer Society, 2010.

[21] D. Westermann, J. Happe, R. Krebs, and
R. Farahbod. Automated inference of goal-oriented
performance prediction functions. In Proceedings of
the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pages
190–199, New York, NY, USA, 2012. ACM.

[22] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy,
and E. Zadok. Auto-pilot: A platform for system
software benchmarking. ATEC ’05 Proceedings of the
annual conference on USENIX Annual Technical
Conference, pages 1–19, 2005.

[23] G. York. EclipseLink JPA: An Advanced ORM
Persistence Framework. Dzone Refcardz,
http://refcardz.dzone.com/refcardz/eclipselink-jpa,
2011.

[24] L. Zhu, N. B. Bui, Y. Liu, and I. Gorton. MDABench:
Customized benchmark generation using MDA.
Journal of Systems and Software, 80(2):265–282, Feb.
2007.

420

	Introduction
	Overview
	Measurelet API
	Automated, Tailored Benchmarking
	JPA Benchmark Model
	Benchmark Framework
	Construction Component Type
	Execution Component Type
	Analysis Component Type

	Use Cases
	Performance Regression Testing
	Performance Feedback
	Measurement-based Feedback
	Prediction-based Feedback

	Research Directions
	Related Work
	Conclusions
	References

