
Overcoming Memory Limitations in

High-Throughput Event-Based Applications

Marcelo R. N. Mendes
†

CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II

Coimbra, Portugal

mnunes@dei.uc.pt

Pedro Bizarro
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II

Coimbra, Portugal

bizarro@dei.uc.pt

Paulo Marques
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II

Coimbra, Portugal

pmarques@dei.uc.pt

ABSTRACT
The last decade has witnessed the emergence of business critical

applications processing streaming data for domains as diverse as

credit card fraud detection, real-time recommendation systems,

call-center monitoring, ad selection, network monitoring, and

more. Most of those applications need to compute hundreds or

thousands of metrics continuously while coping with very high

event input rates. As a consequence, large amounts of state (i.e.,

moving windows) need to be maintained, very often exceeding

the available memory resources. Nonetheless, current event

processing platforms have little or no memory management

capabilities, hanging or simply crashing when memory is

exhausted. In this paper we report our experience in using

secondary storage for solving the performance problems of

memory-constrained event processing applications. For that, we

propose SlideM, a novel buffer management algorithm that

exploits the access pattern of sliding windows in order to

efficiently handle memory shortages. The proposed algorithm

was implemented in a real stream processing engine and

validated through an extensive experimental performance

evaluation. Results corroborate the efficacy of the approach: the

system was able to sustain very high input rates (up to 300,000

events per second) for very large windows (about 30GB) while

consuming small amounts of main memory (few kilobytes).

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies

Keywords

Disk, Event Stream Processing, Memory Management, Query

Plan Sharing, Sliding Window.

1. INTRODUCTION
Event stream processing has recently passed from a pure

academic subject to a well-established field in industry, with

many of the original research projects [1][7][17] turning into

fully-functional products (e.g., [9][18][23]). As the technology

matures, these stream processing engines (SPEs) start to gain

increased popularity among real-world users, finding application

in the most diverse domains such as financial, telecom and

sensor networks [12]. Many of these applications involve the

computation of aggregates over sliding windows, which allow

users to better measure the quality-level of their businesses and

systems in real-time. For example, consider a call-center

monitoring application where information about customers’ calls

is constantly analyzed by a stream processing engine. A typical

query executing at the SPE in such scenario is:

Query 1: “Report, every second, the average time during which

customers are waiting for service, across the last hour.”

SELECT AVG(waitTime)

FROM calls [RANGE 1 HOUR SLIDE 1 SECOND]

The query above, expressed using the CQL language [2] syntax,

specifies an AVG aggregation query over a sliding window with

two parameters: RANGE, which defines the span of the window

(i.e., for how long tuples of the event stream “calls” are

considered in query answer computation); and SLIDE, which

defines when tuples are expired out of the window and controls

the frequency in which updated results are produced.

For a number of reasons (e.g., stringent latency requirements,

transient data items, etc.), SPEs use main memory for processing

their continuous queries. Unfortunately, many queries have an

unbounded space cost, which cannot be determined a priori. For

instance, the memory consumption of Query 1 typically depends

on the event arrival rate, which might vary significantly during

query execution. In those circumstances, one would expect SPEs

to be prepared to deal with memory shortages. Interestingly,

previous work [16] has shown that many commercial SPEs deal

badly with this situation – some suffer from thrashing due to OS

paging or excessive garbage collection activity while others

simply crash with out-of-memory errors.

In this paper we report our experience in addressing this problem

for analytic workloads composed by a large number of

continuous aggregation queries. We introduce SlideM, a buffer

management algorithm that selectively offloads sliding windows

state to secondary storage when main memory becomes

insufficient. Our approach is based on the observation that for

most aggregation queries the memory consumption and access

pattern is dictated by the sliding window, and that this access

pattern can be exploited to achieve excellent performance while

using small amounts of main memory.

This work was motivated by a series of real event processing

applications we have been working with recently. Most of them

†
Work partially carried out while at industrial partner FeedZai.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICPE’13, April 21–24, 2013, Prague, Czech Republic.

Copyright © 2013 ACM 978-1-4503-1636-1/13/04...$15.00.

399

involve the computation of several metrics (aggregates) over very

large sliding windows, under stringent memory requirements.

Throughout the rest of the paper, we use one of such use-cases,

the call-center monitoring application introduced earlier and

described in detail in Appendix A, to illustrate the problem. The

requirements of this application include the computation of about

150 KPIs over 24-hour sliding windows, under an input rate of

around 1,000 events per second, running on a machine with 2

gigabytes of main memory. Note that, given the moderate input

rate, relative simplicity of the KPIs being computed (SUM, COUNT

and AVG aggregates) and the large size of the window, the

application tends to be memory-bound rather than CPU-bound. A

simplistic calculation gives an idea on the dimension of the

problem: considering that the average event size is 94 bytes, and

that all tuples need to be maintained until they are expired out of

the window, a single aggregation query will require at least:

1000 X 24 X 3600 X 94 bytes = 7.6 gigabytes (we show in Section

2 that the commonly used technique of pre-aggregating data

instead of storing tuples may require even more space). Our goal

is to allow such memory-intensive applications to run smoothly

on an SPE whether they fit on available memory or not. In

summary, we make the following contributions:

1. We analyze current proposals for executing sliding-

window aggregates and show that frequently-used

techniques, designed to reduce memory consumption and

create opportunity for resource sharing, in many cases do

not produce the desired effects (Section 2).

2. We propose an optimal buffer management algorithm to

deal with memory shortages during execution of sliding-

window aggregation queries. We demonstrate that,

contrary to common sense, storing windows data on disk

can be appropriate even for applications with very high

event arrival rates (Section 3).

3. We build upon the proposed buffer management

algorithm and develop a strategy to share computational

resources when processing multiple aggregation queries

over overlapping sliding windows (Section 4).

4. We implement our proposed techniques in a real SPE

[19] and validate their effectiveness through an extensive

experimental evaluation (Section 5).

2. SLIDING-WINDOW AGGREGATES
Continuous queries in SPEs are computed over infinite event

streams rather than bounded datasets. However, many operations

cannot be executed over infinite inputs in bounded memory, and

some blocking operations require seeing the entire input before

producing any result (e.g., join) [11]. Traditionally these two

issues have been addressed in SPEs by limiting the amount of

data over which operations take place through the use of sliding

windows. A sliding window is a construct that retains only the

most-recently arrived tuples of an event stream. The size of a

sliding window determines the amount of data to be retained,

and can be specified in number of tuples (count-based windows)

or through an interval (time-based windows). Stale tuples are

purged when window slides, due to arrival of new event or time

passing.

A sliding-window aggregate (SWA) computes an aggregation

function over a sliding window content and produces an updated

result every time the window slides. For example, consider our

motivating scenario where a stream of statistics continuously

generates new information about call-center interactions with its

customers. Query 1 defines a sliding window that retains the

data items that arrived in the last hour, computes the average

“waiting time” from this set of elements, and reports a new

result every second. A common variation of this query structure

is to have a grouped aggregation, where the input stream is

logically partitioned into sub-streams, based on a grouping key,

and one aggregate is produced for each partition. For instance, a

GROUP-BY clause could be added to Query 1 in order to produce

the average waiting time per customer region or per employee.

SWA is recognized as a fundamental operation of SPEs and has

been extensively studied in previous work [3][4][12][14]. In the

rest of this section we discuss how SWAs have been traditionally

implemented. We present the two most frequently-used

approaches, and compare how well they utilize memory

resources in different workload scenarios.

2.1 SWA Implementation
Many important aggregates such as AVG, SUM, COUNT, MIN and

MAX can be computed incrementally, in a single-pass over data

items. This, in principle, allows an aggregation operator to

discard events right after they have been processed. For instance,

an AVG aggregate can be computed in O(1) space by simply

keeping two variables – sum and count – and updating them

upon event arrivals. However, when the aggregate is applied

over a sliding window, tuples are eventually expired and this

tuple removal has to be reflected into the query answer – in the

AVG example, this means subtracting from the sum variable the

value of the aggregated field in the expired tuples and

decrementing the count variable by the number of expired tuples.

Therefore, an SWA operator needs to maintain information about

events that arrived previously so that the result can be updated

properly when they eventually leave the window.

Traditionally, two approaches have been used to keep this

information about past events in an SWA. The first, simply

keeps all tuples in the window until it is time to expire them [2].

Normally, the sliding window is an operator by itself which

forwards incoming and expired tuples to subsequent, aggregate

operators (Σ), as depicted in Figure

1. The second approach, first

introduced in [14], and adopted in

subsequent proposals (e.g., [12])

sub-aggregates the incoming

stream using smaller windows and

then aggregates these sub-

aggregates into a window of the

original size in order to produce

the final query result (see Figure

2). Taking Query 1 as example,

SUM and COUNT sub-aggregates are

computed over a 1-second window

and then aggregated over a 1-hour

window, thus producing the final

result. The main advantage of this

two-level aggregation (2LA)

scheme over the former one-

window (1W) approach is that the

space cost of the query no longer

Figure 1: Plan for

Query 1 using the

single-window (1W)

scheme.

400

depends on the input rate. However, as we are going to discuss

next, it does not guarantee a bounded space cost, and for some

workloads results in increased memory consumption.

Figure 2: Execution plan for Query 1 using the 2LA scheme

2.2 Space Cost Analysis
In this section we examine the space cost of the two widely-used

SWA implementations. In particular, we demonstrate that either

approach can incur in considerable memory costs, eventually

bringing event processing applications to run out of memory. We

also show that the 2LA technique, originally designed to reduce

space cost of SWAs, might in many cases aggravate the problem.

2.2.1 Two-Level Aggregation (2LA)
The 2LA technique can be very useful for reducing space and

computation cost of periodic sliding-window aggregates,

particularly when input rates are high and/or the answer does not

need to be updated often. However, there are a couple of issues

that limit its effectiveness in many important scenarios. Probably

the most relevant of them is that its space cost grows linearly

with the number of aggregates being computed. This is

particularly critical since most monitoring applications compute

not one, but several aggregates – either because different

aggregation functions are needed, distinct sets of attributes of the

input streams are aggregated, or different grouping criteria are

used. For instance, the users of the call-center monitoring

application are interested not only in the average waiting time,

but also in the total waiting time, the average call time, and the

average waiting time per region. With the 2LA scheme, each

such aggregate results in a pair of operators, a tumbling-window

aggregate (TWA) and a subsequent sliding window aggregate

(SWA), as illustrated in Figure 2.

Another issue is that aggregations with a GROUP-BY clause

implemented using the 2LA scheme have their space and

computation cost directly affected by the number of groups. This

is because the TWA operator will produce as much aggregates as

the number of distinct groups seen during the lifetime of its

window. Each of these aggregates consumes space and

computation in the subsequent SWA operator. Moreover, since

the number of groups seen during the interval of the TWA

window cannot be determined a priori, the 2LA scheme does not

guarantee a bounded space cost for grouped sliding-window

aggregates. Taking into account the aforementioned factors, the

total space cost when computing a set of aggregates using the

2LA scheme is determined as follows1.

Consider that N sliding-window aggregates, Σ1,…,ΣN, are to be

computed – each representing a unique combination (Φi, Fi, Pi)

of aggregation function (Φ), aggregated fields (F) and grouping

criteria (P) – over a common sliding window with size W and

update interval U. The space cost of each aggregate Σi is given by

the sum of the costs of its inner tumbling-window and sliding-

window aggregates:

 SWATWALA SpaceSpaceSpace N 2

The TWA operator does not keep tuples in a window and only

consumes the space required to maintain an aggregation state s’
for each of the g groups seen during period U as shown below:

'sg TWASpace

The SWA operator, on the other hand, keeps both the tuples

produced by TWA and a per-group aggregation state:

st agg GW
U

g
SpaceSWA

In the formula above, Ug is the rate at which tuples arrive at

SWA from TWA, tagg is the size of the tuples produced by TWA,

G is the total number of groups seen during W, and s is the size

of the aggregation state per-group. The final space cost of the

2LA scheme for A aggregates is then given by the formula below:

 ss' G

U

tW
gNSpace

agg

LA2

(2.1)

Note that depending on the function being computed, the

aggregation state sizes s and s’ can be constant or grow with the

number of tuples in the corresponding window. As discussed

elsewhere ([3] and [14]), subtractable aggregates like SUM,

COUNT, AVG and VARIANCE can be computed with constant

storage, but distributive (e.g., MIN and MAX) and holistic (e.g.,

QUANTILE) functions require O(N) space.

2.2.2 To Sub-Aggregate or not to Sub-Aggregate
We now examine the space cost of the one-window approach. As

it can be seen from Figure 1, the memory consumption for the

1W scheme corresponds to the sum of the space required to

maintain the tuples in the main sliding window, and the state of

each aggregate Σi. The former is obtained by the product of the

window size W, the input rate λ, and the tuple size t. The latter

is given by the product of the number of aggregates N, the total

number of groups G seen during W, and the state size of each

aggregate operator s. Or algebraically:

sGNtWSpace 1W (2.2)

We can see from formulas 2.1 and 2.2 that each approach is

more sensitive to a given factor than the other. With the 1W

1 For the sake of brevity, we limit our discussion to time-based

windows, but similar analysis applies to count-based windows.

401

implementation, the space cost will be substantial for large

windows if the input rate is high. On the other hand, the 2LA

scheme is immune to the input rate2, independently on how large

the window is, but can be severely penalized if the workload has

many aggregates or groups.

As an example, we compare the memory consumption of the two

different approaches using parameters taken from the call-center

monitoring use-case. Let W=24 hours, U=10 seconds, λ=1000

events/sec, N=104 aggregates, G=10000 groups, g=1000 groups,

s=s’=16 bytes3, t=94 bytes, and tagg=20bytes. The space cost of

each scheme is in this case:

GBSpace LA 17610000
10

2086400
610001042

 11

GBSpace 8161000014494864001000 1W

As we can see, for this particular use case, performing a two-

level aggregation in the end results in less efficient usage of

memory resources than when computing the aggregates with a

single window. More importantly, considering that in this

application the available memory is limited to less than 2GB,

neither of the two approaches allows the workload to run entirely

at RAM. In this situation, it is necessary to selectively spill part

of the queries state to disk so that the application does not run

out of memory. Note that in either scheme the queries space cost

is largely dominated by the state of the sliding window(s). For

this reason, we address the problem of insufficient memory

resources during computation of SWAs with an algorithm to

manage the content of sliding windows.

3. SlideM: A BUFFER MANAGEMENT

ALGORITHM FOR SLIDING WINDOWS
In this section we introduce SlideM, an algorithm for managing

the working set of sliding windows. The proposed algorithm

exploits the fact that sliding-window operators are most of the

time manipulating only a small fraction of their data set and are

doing so in a very predictable pattern – once a tuple is stored on

the window it is not going to be accessed by the sliding-window

operator until it is time to expire it, which may take long (e.g.,

consider a 6-hour time-based window).

SlideM is employed on a per-operator basis, that is, each window

physical operator in the query plan is given a repository to hold

its tuples. The actual location of tuples (either RAM or disk) is

encapsulated by this repository, which internally implements a

buffer management strategy based on SlideM. The repository

includes a buffer pool (BP) for holding the memory-resident part

of the window and a handle for accessing tuples at secondary

media. Both the buffer pool and the data file at disk are divided

in non-spanned blocks with a fixed block factor. These blocks

are the unit of transfer between main memory and disks.

2 Assuming that the number of groups g seen during period U is

not affected by the input rate, which typically is not the case.

3 Only subtractable aggregates are computed. We simplify

discussion using a single value to represent the average state

size of the different aggregation functions in the application.

The algorithm operates as illustrated in Figure 3: when the

buffer pool gets full, it first sends to disk the block containing

the most recently arrived tuples because these are the ones that

are not going to be needed for the longest time. Similarly, when

the oldest block at RAM is expired and hence the BP has space

left once more, SlideM brings back from disk the least recently

written (LRW) block, because it contains the tuples which are

going to be needed next among the ones currently at disk. This

behavior ensures that memory will always contains the tuples

that are going to be needed by the sliding-window operator in the

shortest time. The algorithm operation is described in details in

Figure 4 and Procedures 1 and 2.

Figure 3: Overview of SlideM operation.

Procedure 1 add(Tuple t)

 let recent_block: block at RAM holding recently arrived tuples

1: if recent_block is full then

2: if buffer pool is full then

3: if there are free blocks at disk then

4: diskPos ← address of least recently released block

5: else

6: diskPos ← end_of_file

7: end if

8: WRITETODISK(diskPos, recent_block);

9: end if

10: recent_block ← ALLOCATENEWBLOCK();

11: end if

12: recent_block.APPENDTUPLE(t);

Procedure 1 describes event arrivals: every time a new tuple

needs to be stored in the window, the algorithm checks whether

the block at the tail of the window still has space left. If so, it

stores the tuple normally at the end of the block; otherwise it

allocates a new block at the buffer pool (as shown in step 2 of

Figure 4). If the buffer pool is full (3), the algorithm first spills

the most recently written (MRW) block to disk (4) to free space

for the new block that will be soon allocated. The MRW block is

written at a free position on disk (9) or at the end of the data file,

if there are no free blocks (5).

Tuple expiration happens as in Procedure 2: when the repository

receives a request to remove a tuple at the beginning of the

window it checks whether the oldest block is now empty. If so,

the block is removed from the buffer pool (as shown in step 6 of

402

Figure 4); if there is data at disk, the LRW disk block is brought

to the buffer pool, at the position of the just-dismissed block (7).

Then, the tuple is finally removed from the (newly arrived to

memory) ancient block.

Procedure 2 expireOldest()

 let ancient_block: block at RAM holding soon-to-expire tuples

1: if ancient_block is empty then

2: buffer_Pool.REMOVE(ancient_block);

3: if there is data at disk then

 // position at disk of least recently written block.

4: lrw ← GETLRWDISKBLOCKADDRESS();

5: lrwDiskBlock ← READFROMDISK(lrw);

6: buffer_pool.ADD(lrwDiskBlock);

7: end if

8: ancient_block ← buffer_pool.GETLRWBLOCK();

9: end if

10: ancient_block.REMOVEOLDESTTUPLE();

Figure 4: SlideM algorithm in several phases of its execution.

It should be clear that SlideM operation results in a very small

memory consumption. In its strict sense, the algorithm needs

only the equivalent to two blocks, one for holding the oldest part

of the window (ancient block) and another for accommodating

the newly arriving events (recent block). In fact, the performance

of SlideM should not be affected by buffer pool size, unless BP

becomes large enough to hold the entire working set of the

window – if the window does not fit at RAM the algorithm will

necessarily be swapping data to/from disk. Additionally, SlideM

is optimal in terms of the amount of generated I/O as it always

evicts to disk the block that is not going to be referenced for the

longest time (the optimality of clairvoyant page replacement

policies has been first established at [5]; a short proof can be

found at [20]).

3.1 Discussion: I/O Load
We now examine the I/O demand of the SlideM buffer

management algorithm. As explained before, SlideM issues disk

read requests every time blocks at RAM are expired and

performs disk write operations whenever a new block needs to be

created at buffer pool but there is no space left. Thus, the

number of I/O operations requested per second (IOPS) by SlideM

for a single sliding window operator is given by:

IOPS = Expired_Blocks/sec + New_Blocks/sec

Assuming that events are fixed-size and there is a balance

between event arrival and expiration rates – which is always true

for count-based sliding windows and is also frequently the case

across a period [τ, τ+WINDOW_RANGE] of a time-based sliding

window – the following property holds:

Expired_Blocks/sec = New_Blocks/sec

From which we derive:

IOPS = 2 New_Blocks/sec

Now, the rate at which new blocks are produced is a function of

the event arrival rate, λ, as follows:

New_Blocks/sec = λ / block_factor

Where block_factor represents the number of tuples stored

inside a block. This relation gives us the final I/O demand:

IOPS = 2 λ / ⌊block_size / tuple_size⌋ (3.1)

IObandwidth = IOPS block_size (3.2)

EXAMPLE: For an input rate of λ=1000 events/sec, 94-bytes

tuples, as found in the call-center use-case, and a block size of

64KB, the IO demand of SlideM will be (assuming the 1W

scheme is used):

IOPS = 2 1000 / ⌊64 1024 / 94⌋ = 2.9 iops
IObandwidth = 2.9 64 / 1024 = 0.18 MB/sec

Note that these numbers are far less than the theoretical transfer

rate of modern hard drives (e.g., up to 204 MB/sec [21]), or the

maximum measured disk bandwidth achieved under workload

conditions similar to the modeled application (around

25MB/sec). Therefore, SlideM is capable of handling much

larger input rates than the ones mentioned so far or to process a

much larger number of simultaneous sliding window operators

before the I/O subsystem starts to become a bottleneck.

Nevertheless, the scalability of the algorithm can still be greatly

improved by sharing the content of overlapping windows as we

discuss next.

4. SHARING STATE OF OVERLAPPING

SLIDING WINDOWS
The previous section introduced SlideM, an efficient algorithm to

manage the state of a single sliding window operator. Now we

extend the discussion to a multi-query scenario, where multiple

overlapping sliding windows are defined over a common event

stream. The problem is of foremost importance as large-scale

monitoring applications usually process several aggregation

queries over different time granularities – e.g., average price of a

stock in the last hour, 12 hours, last day and so on. In a naïve

approach, each of these overlapping windows would be mapped

into an operator inside the query execution plan. Obviously, this

limits system scalability and performance since having one

operator per window implies that tuples (or pointers to tuples)

are stored multiple times at different places, thus wasting

memory space. Using the algorithm of the last section only

address partially this issue as the bottleneck is eventually moved

from the memory system to the I/O subsystem. We then build

upon the SlideM algorithm and propose a shared execution

403

scheme we call Shared SlideM (SSM) to improve the usage of

computational resources when processing multiple overlapping

sliding windows.

4.1 Shared SlideM (SSM)
We consider the problem of processing a set of N aggregation

queries over N sliding windows of different sizes, defined over a

common event stream S. For example, assume that three SWA

queries are defined over a stream “calls” as follows:

Q1: SELECT AVG(waitTime)

 FROM calls [RANGE 1 HOUR]

Q2: SELECT AVG(waitTime)

 FROM calls [RANGE 6 HOURS]

Q3: SELECT AVG(waitTime)

 FROM calls [RANGE 12 HOURS]

A direct translation of this set of queries would result in an

execution plan like the one shown in Figure 5, with aggregation

(Σ) and sliding window (ω) operators being replicated for every

query in the set. This naïve approach simplifies query plan

generation, but wastes memory during query execution, since the

tuples stored in the smaller windows are also, by definition,

present in the larger

windows, and could be

instead maintained in a

single, shared, location. This

is illustrated in Figure 6: the

tuples that arrived in the

interval [τnow - 1hour, τnow]

are part of all three windows;

similarly, tuples belonging to

the interval [τnow - 6hours,

τnow - 1hour] are shared by

both the 6-hour and 12-hour

windows. In this case, having

one operator per window

implies that roughly half of the tuples in the query set are stored

more than once.

Figure 6: Three overlapping sliding windows

Using the SlideM algorithm reduces the pressure over main

memory since portions of the windows can be offloaded to disk,

but does not solve the problem of unnecessary data redundancy.

Moreover, assuming that the windows do not fit in main

memory, each query will produce a pair of IO operations from

time to time (read for the ancient part of the windows and write

for the recent segment). Eventually, as the number of queries

increases, the I/O subsystem will become saturated.

To overcome these issues, we propose SSM, an adaptation of the

SlideM algorithm in which multiple overlapping sliding windows

are processed in a shared way. SSM works much like SlideM, in

the sense that it sends parts of the window to disk when main

memory is insufficient and brings data back from disk when it is

time to expire them. However, contrary to SlideM, SSM manages

a tuple repository that serves

multiple logical window

operators. We use the term

‘logical’ here because the

several windows are in fact

implemented by a single

operator (Ω) as illustrated in

Figure 7. This allows sharing

computation of tuple arrivals

as we explain next.

A SSM tuple repository shared

by multiple overlapping

windows looks like the

structure shown in Figure 8.

The recent block (MRW), which

stores the newly-arriving tuples, is common to all windows, but

each window has its own ancient block (LRW), containing the

tuples which are about to expire.

Figure 8: Shared tuple repository serving multiple windows

As the recent block is shared by all windows in the set, incoming

tuples are processed only once by the shared operator Ω. Tuple

arrivals in SSM occur essentially in the same way as in SlideM

(see Procedure 1), with the exception that the request for adding

tuples in the repository is now shared by multiple windows and

the block sent to disk when the buffer pool is full is not

necessarily the recent block (line 9 in Procedure 1) – a victim

block must be selected instead. The major differences are,

though, on the way tuple expirations are handled: first, tuples are

not purged out of the repository unless the window which

requested expiration is the largest one in the set. Intuitively, a

tuple can only be discarded when it no longer belongs to any

window, which happens when the largest window in the set

requests its expiration – the same holds in a, coarser, block-level

granularity. Another difference is that SSM does not prefetch

data from disk when a block at RAM gets empty as SlideM does.

This is because the LRW block at disk is not necessarily the

block which is going to be needed next by the set of windows –

with multiple windows the disk access pattern is no longer

strictly sequential. Since determining which block will be

required next is a potentially expensive operation, SSM skips

prefetching and only brings data from disk when a request to a

non-memory-resident block is issued. As a consequence, when

the ancient block of a window gets empty it is no longer

guaranteed that its “new” ancient block will be already at RAM,

and as such it might be necessary to bring data from disk.

Additionally, if the buffer pool is full, it will be also necessary to

send a block to disk in order to open room for the upcoming

block. The expiration process under the SSM scheme is

Figure 7: Shared

execution plan for three

SWAs, with SSM

Figure 5: Unshared

execution plan for three

SWA queries

404

described in detail in Procedure 3 (note that the procedure has a

parameter to indicate which window the request comes from).

Procedure 3 expireOldestShared(window_rank)

let ancient_block: block at RAM holding soon-to-expire

tuples of the window passed as argument

let valid_index: index of the oldest, non-expired tuple in the

ancient block of the window passed as argument

1: ancient_block ← GETANCIENTBLOCK(window_rank);

2: valid_index ← GETVALIDINDEX(window_rank);

3: if ancient_block has only expired tuples then

4: if window_rank is the largest then

5: buffer_pool.REMOVE(ancient_block);

6: end if

7: new_AB ← GETNEXT(window_rank, ancient_block);

8: if new_AB is at buffer pool then

9: new_AB_Addr ← GETBPBLOCKADDRESS(new_AB);

10: ancient_block ← buffer_pool.GET(new_AB_Addr);

11: else

12: new_AB_Addr ← GETDISKBLOCKADDRESS(new_AB);

13: ancient_block ← READFROMDISK(new_AB_Addr);

14: if buffer pool is full then

15: victim_block ← GETVICTIMBLOCK();

16: buffer_pool.SWAP(victim_block, ancient_block);

17: WRITETODISK(new_AB_Addr, victim_block);

18: else

19: buffer_pool.ADD(ancient_block);

20: end if

21: end if

22: SETANCIENTBLOCK(window_rank, ancient_block);

23: valid_index ← 0;

24: end if

25: valid_index ← valid_index + 1;

26: SETVALIDINDEX(window_rank, valid_index);

4.2 Discussion: I/O Load and Eviction Policy
The major advantage of SSM lies in a better use of memory space

by avoiding that tuples are stored multiple times in the several

window operators. This guarantees that no matter how many

windows are defined over a given stream, the space cost will

never exceed the size of the largest window in the set. As a

consequence, SSM can handle a much greater number of queries

than an unshared approach with the same amount of available

memory before having to resort to secondary storage.

Now another important aspect is once the memory has been

exhausted and access to disk is required, how much load SSM

puts into the I/O subsystem. In order to determine that, consider

that there are N windows of different sizes: W1 < W2 <…< WN. Let

ρ be the likelihood of the next oldest block of a window being

already at RAM after the current ancient block gets empty (see

line 8 in Procedure 3)4. Assuming the buffer pool is full, the I/O

pattern will be as follows: i) a write request will be issued every

4 In fact, ρ represents the hit rate of the buffer pool.

time a new recent block is created and ii) expiration of the

ancient block of window Wi will incur, with likelihood (1-ρ): one

read request, and, if i < N, one additional write request (for i= N,

the ancient block is effectively removed from the buffer pool,

and as such, there is no need to send data to disk to open room

for the new ancient block). Algebraically:

#IO = W + (1-ρ) [(N-1) (R+W) + R] (4.1)

Note that in the limit, for ρ=0, the amount of I/O generated when

processing the query set using SSM will be exactly the same as

in SlideM (one pair of read and write request per window):

#IO = W + (N-1) (R+W) + R = N (R+W)

This means that the shared execution mechanism will never

perform more I/O than the unshared approach, and in the worst

case the I/O pressure of the two schemes will be equivalent. For

any ρ>0, SSM will reduce the amount of I/O, and the reduction

will be as large as ρ. As discussed in previous section, the

optimal eviction policy that maximizes ρ is the one that sends to

disk the block that is not going to be needed for the longest time.

For the single-window case, the choice is straightforward: the

optimal victim block is always the most recently written block.

This does not hold for multiple windows though, as the MRW

block might be needed earlier by a small window than an

intermediate block by larger windows. Instead, the optimal

victim block in a multi-window scenario can be determined by

computing the distance – in number of blocks or time units – of

the candidate blocks at the buffer pool to the ancient block of

each window as follows: let dki be the distance of block k at BP

to the ancient block of window wi. For any block k, refk denotes

the next time the block will be referenced by any window, and

corresponds to the minimum value in the set of distances: refk =
min{dki | dki >0}. The victim block v is the one with the

maximum value for refk among the B candidates at buffer pool:

v = (k | refk = max{ref1,…, refB}).

This distance-based replacement policy creates clusters of blocks

in the BP, immediately after the ancient block of each window as

illustrated in Figure 9 below:

Figure 9: Typical arrangement of blocks at the buffer pool

when using SSM block replacement policy.

Since each block is referenced only once by each window, the

buffer pool hit rate of the scheme is given by the average

percentage of blocks residing at memory of each segment:

N

i

iiSSM SB

1
N

1
 (4.2)

where Bi is the number of memory-resident blocks of each

segment and Si is the corresponding total number of blocks.

Clearly, the more memory is available (larger Bi) and the more

overlapping the windows are (smaller Si), the higher the buffer

pool hit rate ρSSM will be.

405

5. PERFORMANCE STUDY
In this section we present an extensive experimental evaluation

of the SlideM algorithm and the sharing scheme SSM. We have

performed a wide variety of experiments with the objective of

assessing:

1. Effectiveness of SlideM in a real-world use-case: we

demonstrate the ability of the proposed algorithm in

addressing memory shortages in a real scenario and

compare its performance against the conventional

memory-only implementations discussed earlier in this

paper (Section 5.2).

2. High-performance nature of SlideM: we examine SlideM

performance under heavy load conditions. Results reveal

that the algorithm was capable of handling very high

input rates for multi-gigabyte windows while keeping

latency under desirable levels (Section 5.3).

3. Performance and scalability of SSM: we show that the

sharing mechanism SSM scales significantly better than

an unshared approach (Section 5.4).

For the first set of experiments, we used queries and stream

definitions taken from the real use-case, as described in

Appendix A. For the other two sets, we used synthetic queries

and datasets. Tests setup and methodology are described next.

5.1 Experimental Setup and Methodology
We implemented our proposed techniques in Pulse [19], a Java-

based stream processing engine from industrial partner FeedZai.

Experiments were conducted on a server with two Intel Xeon

E5420 2.50 GHz Quad-Core processors, 4 GB of RAM, and 4

SATA-300 disks distributed in two RAID-0 arrays, running

Windows Server 2008 x64 and Hotspot x64 JVM (configured

with a 1 GB heap size). One RAID array was used to host the OS

while the other was used to hold window data during tests.

Measurements were taken as follows:

 A single Java application was responsible for generating,

submitting and consuming tuples during the performance

runs. Input data was submitted to the SPE through local

method calls using its API.

 Tests consisted in a warmup phase, during which the

SPE was brought to a steady state, and a subsequent

measurement interval (MI), when the performance of the

system was measured. The duration of both warmup and

MI was set to the time necessary for traversing 1.5 times

the window – e.g., an experiment with a 6-hour window

ran for 18 hours (9h of warmup plus 9h for MI).

 We collected both application-level and system-level

metrics. Average throughput was computed as the ratio

between processed tuple count and elapsed time. Latency

was computed through the nanoTime() method of the

Java runtime, called immediately before and after

sending tuples to the SPE. Memory consumption was

computed by the end of tests using standard Java SDK

methods. CPU, disk, and process metrics were collected

using the System Monitor tool of MS-Windows.

All experiments with SlideM and SSM used a fixed block size

(64 kilobytes).

5.2 Call-Center Use-Case Results
Our first set of experiments mimics the workload conditions of a

real event processing application, and consists in processing a

number of aggregations like Query 2 below:

Query 2: Compute call-center statistics in the last day

SELECT COUNT(*),

 SUM(busyTime),

 AVG(busyTime)

FROM calls [RANGE 24 HOURS SLIDE 10 SECONDS]

GROUP BY serviceId

On total, the application computes 144 aggregates, resulting in

104 distinct SWA operators – the query above is replicated for 6

different fields and 8 distinct grouping criteria, with the COUNT

aggregate being shared by the queries with different fields; a

more detailed description of the use-case can be found in

Appendix A. We then compare the performance of memory-only

SWA implementations against application performance when

paging sliding window content to disk through the SlideM

algorithm. Both the 1W and the 2LA SWA approaches were

tested in each case. Results are presented in Figure 10.

The three uppermost graphs show the performance of the two

non-managed implementations, and illustrate what typically

occurs with memory-constrained event processing applications in

most Java-based SPEs: as the application working set approaches

the available memory threshold, the system spends progressively

more time with garbage collection, increasing the tuple

processing latency and preventing the SPE to cope with the data

input rate. Since there is no data to be purged until the sliding

window closes, the application eventually crashes with an out-of-

memory error. In our tests this happened before 3 hours for the

1W implementation and before 1 hour when using the 2LA

scheme, as signalized in Figure 10.

The results above contrast with application behavior when the

SlideM algorithm is employed to manage the state of the sliding

windows, as illustrated in the bottom part of Figure 10. Using

our proposed algorithm allowed the experiments to complete

without errors, while keeping performance metrics in desirable

levels. As expected, memory consumption and tuple processing

latency was larger when using the 2LA scheme than with the 1W

approach in this use-case.

5.3 Performance of SlideM
Many event processing applications, like those found in the

financial trading environment, require that SPEs be able to

process a considerable volume of data within very short periods

of time. Using disks in these cases might be inadequate if they

are not able to cope with the very high arrival rates and stringent

latency requirements. In this section we examine how SlideM

performs in such critical scenarios. For that, we employ a simple

microbenchmark, which consists in computing one or more

aggregations over a stock market data stream. Each input tuple

has 4 attributes: Timestamp, Symbol, Price and Volume (about 28

bytes). We fill tuples by repeatedly cycling through a list of 100

stock symbols and assigning the tuple creation time to the

timestamp field and random values to the other two. The

workload consists in computing the volume-weighted average

price (VWAP) of each stock over the last hour, as shown in

Query 3. Six runs of this experiment are performed,

406

progressively scaling the injection rate from 50,000 up to

300,000 tuples per second.

Query 3: Compute the VWAP of each stock over the last hour

SELECT Symbol, SUM(Volume*Price)/SUM(Volume)

FROM Stock [RANGE 1 HOUR]

GROUP BY Symbol

Note that the window definition in the query above does not

include a SLIDE, which means that the result must be updated

whenever a new tuple arrives at the Stock stream5. In all

experiments, the buffer size was set to the minimum, 2 blocks

(128KB), so that system performance is measured under

maximum I/O pressure. Results are shown in Table 1.

As we can see, the system was able to handle up to 300,000

tuples per second, with the CPU being the limiting factor at that

point. Average processing latency was fairly low in all

experiments (a few microseconds), and even the absolute

maximum latency remained under acceptable levels as the load

was increased. Disk utilization was also quite low in all runs, as

it can be seen from the average disk queue length (ADQL)

metric in Table 1. The reason is that the disk bandwidth required

by SlideM at the maximum load of 300,000 tuples per second in

5 An aggregation query without a SLIDE clause would probably

make little sense if its result were to be output (i.e., used for

monitoring purposes). In many cases, however, the result of an

aggregation is used as input for further processing (e.g., pattern

detection), and updated results must be produced as soon as

new data is available.

this benchmark is only 16 MB/sec, which is still far from the

maximum measured disk transfer rate, as discussed in Section

3.1. This moderate load posed by SlideM into the I/O subsystem

was crucial to remove a bottleneck (memory) without creating a

new one, thus allowing the SPE to fully exploit the available

CPU power.

Table 1: SlideM Performance, scaling injection rate

Injection

Rate

(tuples/sec)

Space

Cost

(GB)

Avg.

Latency

(ms)

Max.

Latency

(ms)

% CPU ADQL

50,000 4.7 0.009 2.9 5% 0.016

100,000 9.4 0.012 3.6 13% 0.035

150,000 14.1 0.007 3.9 23% 0.056

200,000 18.7 0.012 16.7 37% 0.071

250,000 23.5 0.008 14.4 69% 0.103

300,000 28.2 0.008 18.9 100% 0.145

5.4 Performance of SSM
We now examine the performance of the shared execution

scheme SSM and quantify to which extent it scales better than an

unshared approach. Experiments here consist in processing N

instances of Query 3, using either the unshared SlideM algorithm

or its shared counterpart, SSM, under an input rate of 5,000

tuples per second. The number of queries in each experiment, N,

took the following values: N = {2, 4, 8, 16, 32}. All N queries in

the set have different window sizes, uniformly distributed in the

interval [3600, 7200] seconds. Available memory was set to

Memory-Only

SlideM

Figure 10: Comparison: performance of SlideM vs. memory-only implementations in real-world-based workload conditions

407

512MB in all experiments (for the non-shared version, this

amount was equally divided among the N buffer pools). We then

measured for each algorithm the total space cost and the amount

of pressure put onto the I/O subsystem. Results are depicted in

Figure 11:

Figure 11: Performance of SlideM (unshared) and SSM

(shared) in a multi-query scenario.

As expected, the total space cost (memory and disk) of the

unshared approach grows linearly with the number of windows

while with the shared strategy the space cost remains constant (it

is bounded to the size of the largest window). SSM was also

significantly more I/O-efficient, issuing up to 22 times less disk

requests than the unshared implementation. The explanation for

this remarkable difference in the number of I/O requests between

the two algorithms is that SSM benefits from the fact that adding

more queries to the set reduces the distance between the

overlapping windows, thus increasing the hit rate of the buffer

pool as expressed in formula 4.2. This way, while the I/O

pressure of the unshared implementation consistently grows as

more windows are used, with SSM it tends to stabilize since the

increase on buffer hit rate compensates for the increased number

of simultaneous queries. The result is a much better scalability

as we can see in Figure 11.

6. RELATED WORK
There has been considerable work on resource management in

stream processing systems [4] [11] [17]. For dealing with

memory shortages, two approaches have been widely employed.

The first consists in providing approximate answers by shedding

load [8] [22] [24], with research on this area focusing essentially

on minimizing error of approximations. However, many event

processing applications rely on exact answers to perform

complex data analysis and support real-time decision making. In

these cases, techniques such as load shedding or approximation

are not applicable. The alternative, then, is to use secondary

storage as an extension of main memory. Indeed, such disk-based

approach has been adopted in a number of proposals such as [6],

[10] and [15]. The focus of those works, though, is on processing

of join queries. Liu et al [15] consider queries with multiple

operators and propose strategies to choose which part of the

operator states to spill during query execution in order to

maximize the overall throughput. As discussed before, this is not

an issue for sliding-window aggregates since the data access

pattern can be accurately predicted. Farag and Hamad [10]

propose a two-phase external-memory algorithm that joins the

arriving tuples of one stream with the memory-resident data of

the other streams, and postpones matching with the disk-resident

portion until the stream runs out-of-space or arrival of new tuples

stalls. Chakraborty and Singh [6] propose an Exact Window Join

algorithm that deals with memory shortages by deferring the load

during high workload, and processing the deferred load during

the period of low workload. This strategy, however, results in

high delays (> 5 seconds) even for moderate data input rates

(450 tuples per second). To the best of our knowledge, our work

is the first to address the problem of exact answer computation

of aggregations in memory-limited, high-throughput,

environments.

Shared processing of sliding-window aggregates has been

previously explored in a couple of proposals. Arasu and Widom

[3] devise two algorithms for sharing execution of multiple

sliding-window aggregates, where a common aggregation

function is computed over different window sizes. These

algorithms assume an aperiodic scenario, where results are

produced on-demand (when user polls a query). Our proposed

strategy, on the other hand, is for periodic aggregates and applies

even when different aggregation functions are used. In [12]

Krishnamurthy proposes a strategy for sharing the execution of

multiple periodic sliding-window aggregates implemented under

the 2LA scheme. The strategy focuses on computation sharing,

and consists in computing the partial aggregates with only one

shared operator, rather than using one operator per query. It does

not address, however, the space sharing problem introduced in

this paper, as the partial aggregates are still stored several times

at the main window.

7. CONCLUSIONS
In this work we introduce techniques for overcoming the

traditional memory limitations faced by stream processing

engines when processing aggregation queries over sliding

windows. We address the problem by proposing a novel buffer

management algorithm, SlideM, which offloads sliding window

state to disk during memory shortages. In order to further

increase algorithm scalability, we also proposed SSM, a query

sharing strategy that prevents explosion of space cost by storing

the state of multiple overlapping sliding windows in a single,

shared, repository. Experimental results demonstrated that the

two techniques together provide significant performance and

scalability benefits. With SlideM the system was able to handle

up to 300,000 events per second for multi-gigabyte windows

while consuming only 128 kilobytes of main memory. In a

scenario with multiple simultaneous queries, SSM reduced space

cost by a factor of up to 24, issuing up to 22 less disk requests.

408

There are a couple of issues we did not explore in this paper and

constitute interesting avenues for future work. First, the

techniques proposed here are designed to exploit the access

pattern of sliding window operators during event arrivals and

expirations, which allows excellent performance for SWA

queries. Our implementation currently supports random access to

tuples inside the window, but probably in a way far from optimal

for operations such as joins. Therefore, we intend to investigate

state-spilling mechanisms that work well for a more diversified

gamma of queries. A promising direction is to combine per-

operator SlideM repositories with a global buffer manager

responsible for serving queries with less predictable access

patterns. Another possible direction for future work is to extend

the proposed algorithms and develop new disk-based techniques

in order to enable SPEs to recover their state in the advent of

system failures. Finally, the results presented in this work were

obtained with conventional hard drives. It shall be interesting to

observe the behavior of the proposed techniques in conjunction

with faster storage technologies like solid-state disks (SSDs) or

phase-change memories (PCMs).

Acknowledgements
We would like to thank the development team at FeedZai for all

the feedback and valuable discussions during the implementation

of the query execution engine of the Pulse SPE. This research

has been supported in part by the Portuguese Science and

Technology Foundation (FCT), under grant Nº 45121/2008, and

by the industrial partner FeedZai.

8. REFERENCES
[1] Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M.,

Convey, C., Lee, S., Stonebraker, M., Tatbul, N., and

Zdonik, S.B. Aurora: a new model and architecture for data

stream management. In Proceedings of VLDB Journal.

2003, 120-139.

[2] Arasu, A., Babu, S., and Widom, J. The CQL continuous

query language: semantic foundations and query

execution. In Proceedings of VLDB Journal Vol. 15 Issue 2,

2006, 121-142.

[3] Arasu, A. and Widom, J.: Resource Sharing in Continuous

Sliding-Window Aggregates. In Proc. of the 30th VLDB

Conference (Toronto, Canada, September 2004), 336-347.

[4] Babcock, B., Babu, S., Datar, M., Motwani, R., and

Widom, J.: Models and Issues in Data Stream Systems. In

Proceedings of the 21st Symposium on Principles of

Database Systems, pages 1–16, June 2002.

[5] Belady, L.A.: A Study of Replacement Algorithms for

Virtual-Storage Computer. In Proceedings of IBM Systems

Journal. 1966, 78-101.

[6] Chakraborty, A., and Singh, A.: Processing Exact Results

for Sliding Window Joins over Time-Sequence, Streaming

Data Using a Disk Archive. In Proceedings of the 1st Asian

Conference on Intelligent Information and Database

Systems (Vietnam 2009), 196-201.

[7] Chandrasekaran, S., et al. TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. In

Proceedings of CIDR 2003 (Asilomar, California, USA).

[8] Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R.:

Processing Complex Aggregate Queries over Data Streams.

In Proceedings of the 2002 ACM SIGMOD, Madison,

Wisconsin, USA.

[9] Esper: http://esper.codehaus.org/

[10] Farag, F., and Hamad M.A: Adaptive Execution of Stream

Window Joins in a Limited Memory Environment. In Proc.

of the 11th International Database Engineering and

Applications Symposium (Banff, Canada, 2007), 12-20.

[11] Golab, L., and Ozsu, M.: Issues in Data Stream

Management. SIGMOD Record, Vol. 32, Issue 2, 5–14.

[12] Hinze, A., Sachs, K., Buchmann, A.P. Event-based

applications and enabling technologies. In Proceedings of

DEBS 2009 (New York, USA), Art. 1, 15 pages.

[13] Krishnamurthy, S. Shared Query Processing in Data

Streaming Systems. Ph.D. Thesis, University of California,

Berkeley, 2006.

[14] Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker,

P.A. No Pane, no Gain: Efficient Evaluation of Sliding-

Window Aggregates over Data Streams. SIGMOD Record

(2005), Vol. 34, Issue 1, 39-44.

[15] Liu, B., Zhu, Y., and Rundensteiner, E.A.: Run-Time

Operator State Spilling for Memory Intensive Long-Running

Queries. In Proceedings of the 2006 ACM SIGMOD,

(Chicago, Illinois, USA), 347-358.

[16] Mendes, M.R.N., Bizarro, P., and Marques, P.: A

Performance Study of Event Processing Systems. In

Proceedings of TPCTC 2009 (Lyon, France), 221-236.

[17] Motwani, R., and et al.: Query Processing, Approximation,

and Resource Management in a Data Stream Management

System. In Proceedings of CIDR 2003 (Asilomar,

California, USA).

[18] Oracle CEP:

http://docs.oracle.com/cd/E13157_01/wlevs/docs30/

[19] Pulse: http://www.feedzai.com/products/pulse

[20] Roy, B.V. A Short Proof of Optimality for the MIN Cache

Replacement Algorithm. In Proceedings of Information

Processing Letters, 2007, 72-73.

[21] Seagate Cheetah hard disk Data Sheet:

http://www.seagate.com/files/docs/pdf/datasheet/disc/cheeta

h-15k.7-ds1677.3-1007us.pdf

[22] Srivastava, U., and Widom, J.: Memory-Limited Execution

of Windowed Stream Joins. In Proc. of the 30th VLDB

Conference (Toronto, Canada, September 2004), 324-335.

[23] StreamBase: http://www.streambase.com/

[24] Tatbul, N., Etintemel, U., Zdonik, S. B., Cherniack, M.,

and Stonebraker M.: Load shedding in a Data Stream

Manager. In Proceedings of the 29th VLDB Conference

(Berlin, Germany, September 2003), 309-320.

409

APPENDIX

A. USE-CASE DETAILS
In this section we present some of the details of the call-center

monitoring application that we referred to throughout this paper.

The description provided here is for a proof-of-concept prototype,

which corresponds to a simplified version of the full application,

still under development.

As mentioned before, the purpose of the application is to provide

a real-time view of the operation of a large call center chain. The

company is spread over 20 geographical sites and has around

12,000 agents serving more than 3 million customer requests per

day. A statistical module collects information about the calls and

produces a stream of data items describing each step of the

interactions between the call center and its customers. This data

stream, whose schema is shown in Figure 12, is then fed into the

stream processing engine, where 144 KPIS are continuously

computed. Each KPI corresponds to a 24-hour sliding-window

aggregate over a given field of the stream. Specifically, three

functions (SUM, COUNT and AVG) are applied over 6 attributes of

the stream (alertingTime, busyTime, wrapUpTime,

waitTime, helpTime, and availableTime), using 8 different

grouping keys (instance, serviceId, agentId, mediaId,

interactionLegId, agentSite, callSite, and direction).

In our experimental evaluation we filled the tuples of the stream

AgentInteractions with synthetic data since real datasets were

not available due to confidentiality issues. The generated data,

however, respected the critical properties of the original input

stream, such as the cardinality of the attributes used as grouping

key in the queries and the distribution of these groups over time.

We did not replicate eventual oscillations on tuple arrival rate

though, keeping the injection rate fixed in 1,000 tuples per

second. All the tests were performed in a virtual machine with 8

cores, 2GB of RAM, and running Window Server 2008, as found

in the production environment.

AgentInteractions (

timestamp long,

instance int,

start long,

sessionId int,

serviceId int,

agentId int,

interactionLegId int,

alertingTime int,

busyTime int,

wrapUpTime int,

waitTime int,

direction int,

mediaId int,

helpTime int,

agentReleased bool,

mediaOutcome int,

finalSegment bool,

agentSite int,

callSite int,

availableTime int,

availableTimeByService int,

held int,

help int

)

Figure 12: Schema of the input data stream in the call-center

monitoring application

410

