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ABSTRACT 
The last decade has witnessed the emergence of business critical 

applications processing streaming data for domains as diverse as 

credit card fraud detection, real-time recommendation systems, 

call-center monitoring, ad selection, network monitoring, and 

more. Most of those applications need to compute hundreds or 

thousands of metrics continuously while coping with very high 

event input rates. As a consequence, large amounts of state (i.e., 

moving windows) need to be maintained, very often exceeding 

the available memory resources. Nonetheless, current event 

processing platforms have little or no memory management 

capabilities, hanging or simply crashing when memory is 

exhausted. In this paper we report our experience in using 

secondary storage for solving the performance problems of 

memory-constrained event processing applications. For that, we 

propose SlideM, a novel buffer management algorithm that 

exploits the access pattern of sliding windows in order to 

efficiently handle memory shortages. The proposed algorithm 

was implemented in a real stream processing engine and 

validated through an extensive experimental performance 

evaluation. Results corroborate the efficacy of the approach: the 

system was able to sustain very high input rates (up to 300,000 

events per second) for very large windows (about 30GB) while 

consuming small amounts of main memory (few kilobytes). 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Design studies 

Keywords 

Disk, Event Stream Processing, Memory Management, Query 

Plan Sharing, Sliding Window. 

1. INTRODUCTION 
Event stream processing has recently passed from a pure 

academic subject to a well-established field in industry, with 

many of the original research projects [1][7][17] turning into 

fully-functional products (e.g., [9][18][23]). As the technology 

matures, these stream processing engines (SPEs) start to gain 

increased popularity among real-world users, finding application 

in the most diverse domains such as financial, telecom and 

sensor networks [12]. Many of these applications involve the 

computation of aggregates over sliding windows, which allow 

users to better measure the quality-level of their businesses and 

systems in real-time. For example, consider a call-center 

monitoring application where information about customers’ calls 

is constantly analyzed by a stream processing engine. A typical 

query executing at the SPE in such scenario is:  

Query 1: “Report, every second, the average time during which 

customers are waiting for service, across the last hour.” 

SELECT AVG(waitTime) 

FROM   calls [RANGE 1 HOUR SLIDE 1 SECOND] 

The query above, expressed using the CQL language [2] syntax, 

specifies an AVG aggregation query over a sliding window with 

two parameters: RANGE, which defines the span of the window 

(i.e., for how long tuples of the event stream “calls” are 

considered in query answer computation); and SLIDE, which 

defines when tuples are expired out of the window and controls 

the frequency in which updated results are produced. 

For a number of reasons (e.g., stringent latency requirements, 

transient data items, etc.), SPEs use main memory for processing 

their continuous queries. Unfortunately, many queries have an 

unbounded space cost, which cannot be determined a priori. For 

instance, the memory consumption of Query 1 typically depends 

on the event arrival rate, which might vary significantly during 

query execution. In those circumstances, one would expect SPEs 

to be prepared to deal with memory shortages. Interestingly, 

previous work [16] has shown that many commercial SPEs deal 

badly with this situation – some suffer from thrashing due to OS 

paging or excessive garbage collection activity while others 

simply crash with out-of-memory errors.  

In this paper we report our experience in addressing this problem 

for analytic workloads composed by a large number of 

continuous aggregation queries. We introduce SlideM, a buffer 

management algorithm that selectively offloads sliding windows 

state to secondary storage when main memory becomes 

insufficient. Our approach is based on the observation that for 

most aggregation queries the memory consumption and access 

pattern is dictated by the sliding window, and that this access 

pattern can be exploited to achieve excellent performance while 

using small amounts of main memory.  

This work was motivated by a series of real event processing 

applications we have been working with recently. Most of them 
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involve the computation of several metrics (aggregates) over very 

large sliding windows, under stringent memory requirements. 

Throughout the rest of the paper, we use one of such use-cases, 

the call-center monitoring application introduced earlier and 

described in detail in Appendix A, to illustrate the problem. The 

requirements of this application include the computation of about 

150 KPIs over 24-hour sliding windows, under an input rate of 

around 1,000 events per second, running on a machine with 2 

gigabytes of main memory. Note that, given the moderate input 

rate, relative simplicity of the KPIs being computed (SUM, COUNT 

and AVG aggregates) and the large size of the window, the 

application tends to be memory-bound rather than CPU-bound. A 

simplistic calculation gives an idea on the dimension of the 

problem: considering that the average event size is 94 bytes, and 

that all tuples need to be maintained until they are expired out of 

the window, a single aggregation query will require at least: 

1000 X 24 X 3600 X 94 bytes = 7.6 gigabytes (we show in Section 

2 that the commonly used technique of pre-aggregating data 

instead of storing tuples may require even more space). Our goal 

is to allow such memory-intensive applications to run smoothly 

on an SPE whether they fit on available memory or not. In 

summary, we make the following contributions: 

1. We analyze current proposals for executing sliding-

window aggregates and show that frequently-used 

techniques, designed to reduce memory consumption and 

create opportunity for resource sharing, in many cases do 

not produce the desired effects (Section 2). 

2. We propose an optimal buffer management algorithm to 

deal with memory shortages during execution of sliding-

window aggregation queries. We demonstrate that, 

contrary to common sense, storing windows data on disk 

can be appropriate even for applications with very high 

event arrival rates (Section 3). 

3. We build upon the proposed buffer management 

algorithm and develop a strategy to share computational 

resources when processing multiple aggregation queries 

over overlapping sliding windows (Section 4). 

4. We implement our proposed techniques in a real SPE 

[19] and validate their effectiveness through an extensive 

experimental evaluation (Section 5). 

2. SLIDING-WINDOW AGGREGATES 
Continuous queries in SPEs are computed over infinite event 

streams rather than bounded datasets. However, many operations 

cannot be executed over infinite inputs in bounded memory, and 

some blocking operations require seeing the entire input before 

producing any result (e.g., join) [11]. Traditionally these two 

issues have been addressed in SPEs by limiting the amount of 

data over which operations take place through the use of sliding 

windows. A sliding window is a construct that retains only the 

most-recently arrived tuples of an event stream. The size of a 

sliding window determines the amount of data to be retained, 

and can be specified in number of tuples (count-based windows) 

or through an interval (time-based windows). Stale tuples are 

purged when window slides, due to arrival of new event or time 

passing.  

A sliding-window aggregate (SWA) computes an aggregation 

function over a sliding window content and produces an updated 

result every time the window slides. For example, consider our 

motivating scenario where a stream of statistics continuously 

generates new information about call-center interactions with its 

customers. Query 1 defines a sliding window that retains the 

data items that arrived in the last hour, computes the average 

“waiting time” from this set of elements, and reports a new 

result every second. A common variation of this query structure 

is to have a grouped aggregation, where the input stream is 

logically partitioned into sub-streams, based on a grouping key, 

and one aggregate is produced for each partition. For instance, a 

GROUP-BY clause could be added to Query 1 in order to produce 

the average waiting time per customer region or per employee. 

SWA is recognized as a fundamental operation of SPEs and has 

been extensively studied in previous work [3][4][12][14]. In the 

rest of this section we discuss how SWAs have been traditionally 

implemented. We present the two most frequently-used 

approaches, and compare how well they utilize memory 

resources in different workload scenarios.  

2.1 SWA Implementation 
Many important aggregates such as AVG, SUM, COUNT, MIN and 

MAX can be computed incrementally, in a single-pass over data 

items. This, in principle, allows an aggregation operator to 

discard events right after they have been processed. For instance, 

an AVG aggregate can be computed in O(1) space by simply 

keeping two variables – sum and count – and updating them 

upon event arrivals. However, when the aggregate is applied 

over a sliding window, tuples are eventually expired and this 

tuple removal has to be reflected into the query answer – in the 

AVG example, this means subtracting from the sum variable the 

value of the aggregated field in the expired tuples and 

decrementing the count variable by the number of expired tuples. 

Therefore, an SWA operator needs to maintain information about 

events that arrived previously so that the result can be updated 

properly when they eventually leave the window.  

Traditionally, two approaches have been used to keep this 

information about past events in an SWA. The first, simply 

keeps all tuples in the window until it is time to expire them [2]. 

Normally, the sliding window is an operator by itself which 

forwards incoming and expired tuples to subsequent, aggregate 

operators (Σ), as depicted in Figure 

1. The second approach, first 

introduced in [14], and adopted in 

subsequent proposals (e.g., [12]) 

sub-aggregates the incoming 

stream using smaller windows and 

then aggregates these sub-

aggregates into a window of the 

original size in order to produce 

the final query result (see Figure 

2). Taking Query 1 as example, 

SUM and COUNT sub-aggregates are 

computed over a 1-second window 

and then aggregated over a 1-hour 

window, thus producing the final 

result. The main advantage of this 

two-level aggregation (2LA) 

scheme over the former one-

window (1W) approach is that the 

space cost of the query no longer 

Figure 1: Plan for 

Query 1 using the 

single-window (1W) 

scheme. 
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depends on the input rate. However, as we are going to discuss 

next, it does not guarantee a bounded space cost, and for some 

workloads results in increased memory consumption. 

 

Figure 2: Execution plan for Query 1 using the 2LA scheme   

2.2 Space Cost Analysis 
In this section we examine the space cost of the two widely-used 

SWA implementations. In particular, we demonstrate that either 

approach can incur in considerable memory costs, eventually 

bringing event processing applications to run out of memory. We 

also show that the 2LA technique, originally designed to reduce 

space cost of SWAs, might in many cases aggravate the problem.  

2.2.1  Two-Level Aggregation (2LA) 
The 2LA technique can be very useful for reducing space and 

computation cost of periodic sliding-window aggregates, 

particularly when input rates are high and/or the answer does not 

need to be updated often. However, there are a couple of issues 

that limit its effectiveness in many important scenarios. Probably 

the most relevant of them is that its space cost grows linearly 

with the number of aggregates being computed. This is 

particularly critical since most monitoring applications compute 

not one, but several aggregates – either because different 

aggregation functions are needed, distinct sets of attributes of the 

input streams are aggregated, or different grouping criteria are 

used. For instance, the users of the call-center monitoring 

application are interested not only in the average waiting time, 

but also in the total waiting time, the average call time, and the 

average waiting time per region. With the 2LA scheme, each 

such aggregate results in a pair of operators, a tumbling-window 

aggregate (TWA) and a subsequent sliding window aggregate 

(SWA), as illustrated in Figure 2.  

Another issue is that aggregations with a GROUP-BY clause 

implemented using the 2LA scheme have their space and 

computation cost directly affected by the number of groups. This 

is because the TWA operator will produce as much aggregates as 

the number of distinct groups seen during the lifetime of its 

window. Each of these aggregates consumes space and 

computation in the subsequent SWA operator. Moreover, since 

the number of groups seen during the interval of the TWA 

window cannot be determined a priori, the 2LA scheme does not 

guarantee a bounded space cost for grouped sliding-window 

aggregates. Taking into account the aforementioned factors, the 

total space cost when computing a set of aggregates using the 

2LA scheme is determined as follows1.  

Consider that N sliding-window aggregates, Σ1,…,ΣN, are to be 

computed – each representing a unique combination (Φi, Fi, Pi) 

of aggregation function (Φ), aggregated fields (F) and grouping 

criteria (P) – over a common sliding window with size W and 

update interval U. The space cost of each aggregate Σi is given by 

the sum of the costs of its inner tumbling-window and sliding-

window aggregates: 

 SWATWALA SpaceSpaceSpace   N  2  

The TWA operator does not keep tuples in a window and only 

consumes the space required to maintain an aggregation state s’ 
for each of the g groups seen during period U as shown below:  

'sg TWASpace  

The SWA operator, on the other hand, keeps both the tuples 

produced by TWA and a per-group aggregation state:  

st agg  GW
U

g
SpaceSWA  

In the formula above, Ug is the rate at which tuples arrive at 

SWA from TWA, tagg is the size of the tuples produced by TWA, 

G is the total number of groups seen during W, and s is the size 

of the aggregation state per-group. The final space cost of the 

2LA scheme for A aggregates is then given by the formula below: 




























 
 ss' G

U

tW
gNSpace

agg

LA2  

(2.1) 

Note that depending on the function being computed, the 

aggregation state sizes s and s’ can be constant or grow with the 

number of tuples in the corresponding window. As discussed 

elsewhere ([3] and [14]), subtractable aggregates like SUM, 

COUNT, AVG and VARIANCE can be computed with constant 

storage, but distributive (e.g., MIN and MAX) and holistic (e.g., 

QUANTILE) functions require O(N) space. 

2.2.2 To Sub-Aggregate or not to Sub-Aggregate 
We now examine the space cost of the one-window approach. As 

it can be seen from Figure 1, the memory consumption for the 

1W scheme corresponds to the sum of the space required to 

maintain the tuples in the main sliding window, and the state of 

each aggregate Σi. The former is obtained by the product of the 

window size W, the input rate λ, and the tuple size t. The latter 

is given by the product of the number of aggregates N, the total 

number of groups G seen during W, and the state size of each 

aggregate operator s. Or algebraically: 

sGNtWSpace  1W  (2.2) 

We can see from formulas 2.1 and 2.2 that each approach is 

more sensitive to a given factor than the other. With the 1W 

                                                             

 

1 For the sake of brevity, we limit our discussion to time-based 

windows, but similar analysis applies to count-based windows. 
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implementation, the space cost will be substantial for large 

windows if the input rate is high. On the other hand, the 2LA 

scheme is immune to the input rate2, independently on how large 

the window is, but can be severely penalized if the workload has 

many aggregates or groups.  

As an example, we compare the memory consumption of the two 

different approaches using parameters taken from the call-center 

monitoring use-case. Let W=24 hours, U=10 seconds, λ=1000 

events/sec, N=104 aggregates, G=10000 groups, g=1000 groups, 

s=s’=16 bytes3, t=94 bytes, and tagg=20bytes. The space cost of 

each scheme is in this case: 

GBSpace LA 17610000
10

2086400
610001042 
















 
 11  

GBSpace 8161000014494864001000 1W  

As we can see, for this particular use case, performing a two-

level aggregation in the end results in less efficient usage of 

memory resources than when computing the aggregates with a 

single window. More importantly, considering that in this 

application the available memory is limited to less than 2GB, 

neither of the two approaches allows the workload to run entirely 

at RAM. In this situation, it is necessary to selectively spill part 

of the queries state to disk so that the application does not run 

out of memory. Note that in either scheme the queries space cost 

is largely dominated by the state of the sliding window(s). For 

this reason, we address the problem of insufficient memory 

resources during computation of SWAs with an algorithm to 

manage the content of sliding windows. 

3. SlideM: A BUFFER MANAGEMENT 

ALGORITHM FOR SLIDING WINDOWS 
In this section we introduce SlideM, an algorithm for managing 

the working set of sliding windows. The proposed algorithm 

exploits the fact that sliding-window operators are most of the 

time manipulating only a small fraction of their data set and are 

doing so in a very predictable pattern – once a tuple is stored on 

the window it is not going to be accessed by the sliding-window 

operator until it is time to expire it, which may take long (e.g., 

consider a 6-hour time-based window). 

SlideM is employed on a per-operator basis, that is, each window 

physical operator in the query plan is given a repository to hold 

its tuples. The actual location of tuples (either RAM or disk) is 

encapsulated by this repository, which internally implements a 

buffer management strategy based on SlideM. The repository 

includes a buffer pool (BP) for holding the memory-resident part 

of the window and a handle for accessing tuples at secondary 

media. Both the buffer pool and the data file at disk are divided 

in non-spanned blocks with a fixed block factor. These blocks 

are the unit of transfer between main memory and disks. 

                                                             

 

2 Assuming that the number of groups g seen during period U is 

not affected by the input rate, which typically is not the case. 

3 Only subtractable aggregates are computed. We simplify 

discussion using a single value to represent the average state 

size of the different aggregation functions in the application. 

The algorithm operates as illustrated in Figure 3: when the 

buffer pool gets full, it first sends to disk the block containing 

the most recently arrived tuples because these are the ones that 

are not going to be needed for the longest time. Similarly, when 

the oldest block at RAM is expired and hence the BP has space 

left once more, SlideM brings back from disk the least recently 

written (LRW) block, because it contains the tuples which are 

going to be needed next among the ones currently at disk. This 

behavior ensures that memory will always contains the tuples 

that are going to be needed by the sliding-window operator in the 

shortest time. The algorithm operation is described in details in 

Figure 4 and Procedures 1 and 2. 

 

Figure 3: Overview of SlideM operation. 

Procedure 1 add(Tuple t) 

 

  let recent_block: block at RAM holding recently arrived tuples 

 

1: if recent_block is full then 

2:    if buffer pool is full then     

3:       if there are free blocks at disk then 

4:          diskPos ← address of least recently released block 

5:       else 

6:          diskPos ← end_of_file 

7:       end if 

8:       WRITETODISK(diskPos, recent_block); 

9:    end if 

10:    recent_block ← ALLOCATENEWBLOCK(); 

11: end if 

12: recent_block.APPENDTUPLE(t); 

 

Procedure 1 describes event arrivals: every time a new tuple 

needs to be stored in the window, the algorithm checks whether 

the block at the tail of the window still has space left. If so, it 

stores the tuple normally at the end of the block; otherwise it 

allocates a new block at the buffer pool (as shown in step 2 of 

Figure 4). If the buffer pool is full (3), the algorithm first spills 

the most recently written (MRW) block to disk (4) to free space 

for the new block that will be soon allocated. The MRW block is 

written at a free position on disk (9) or at the end of the data file, 

if there are no free blocks (5). 

Tuple expiration happens as in Procedure 2: when the repository 

receives a request to remove a tuple at the beginning of the 

window it checks whether the oldest block is now empty. If so, 

the block is removed from the buffer pool (as shown in step 6 of 
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Figure 4); if there is data at disk, the LRW disk block is brought 

to the buffer pool, at the position of the just-dismissed block (7). 

Then, the tuple is finally removed from the (newly arrived to 

memory) ancient block. 

Procedure 2 expireOldest() 

  

 let ancient_block: block at RAM holding soon-to-expire tuples 

 

1: if ancient_block is empty then 

2:    buffer_Pool.REMOVE(ancient_block); 

3:    if there is data at disk then 

            // position at disk of least recently written block. 

4:       lrw ← GETLRWDISKBLOCKADDRESS(); 

5:       lrwDiskBlock ← READFROMDISK(lrw); 

6:       buffer_pool.ADD(lrwDiskBlock); 

7:    end if 

8:    ancient_block ← buffer_pool.GETLRWBLOCK();  

9: end if 

10: ancient_block.REMOVEOLDESTTUPLE(); 

 
 

 

Figure 4: SlideM algorithm in several phases of its execution. 

It should be clear that SlideM operation results in a very small 

memory consumption. In its strict sense, the algorithm needs 

only the equivalent to two blocks, one for holding the oldest part 

of the window (ancient block) and another for accommodating 

the newly arriving events (recent block). In fact, the performance 

of SlideM should not be affected by buffer pool size, unless BP 

becomes large enough to hold the entire working set of the 

window – if the window does not fit at RAM the algorithm will 

necessarily be swapping data to/from disk. Additionally, SlideM 

is optimal in terms of the amount of generated I/O as it always 

evicts to disk the block that is not going to be referenced for the 

longest time (the optimality of clairvoyant page replacement 

policies has been first established at [5]; a short proof can be 

found at [20]).  

3.1 Discussion: I/O Load 
We now examine the I/O demand of the SlideM buffer 

management algorithm.  As explained before, SlideM issues disk 

read requests every time blocks at RAM are expired and 

performs disk write operations whenever a new block needs to be 

created at buffer pool but there is no space left. Thus, the 

number of I/O operations requested per second (IOPS) by SlideM 

for a single sliding window operator is given by: 

IOPS = Expired_Blocks/sec + New_Blocks/sec 

Assuming that events are fixed-size and there is a balance 

between event arrival and expiration rates – which is always true 

for count-based sliding windows and is also frequently the case 

across a period [τ, τ+WINDOW_RANGE] of a time-based sliding 

window – the following property holds: 

Expired_Blocks/sec = New_Blocks/sec 

From which we derive: 

IOPS = 2 New_Blocks/sec 

Now, the rate at which new blocks are produced is a function of 

the event arrival rate, λ, as follows: 

New_Blocks/sec = λ / block_factor 

Where block_factor represents the number of tuples stored 

inside a block. This relation gives us the final I/O demand: 

IOPS = 2  λ /  ⌊block_size / tuple_size⌋ (3.1) 

IObandwidth = IOPS block_size (3.2) 

EXAMPLE: For an input rate of λ=1000 events/sec, 94-bytes 

tuples, as found in the call-center use-case, and a block size of 

64KB, the IO demand of SlideM will be (assuming the 1W 

scheme is used): 

IOPS = 2 1000 / ⌊64 1024 / 94⌋ = 2.9 iops 
IObandwidth = 2.9 64 / 1024 = 0.18 MB/sec 

Note that these numbers are far less than the theoretical transfer 

rate of modern hard drives (e.g., up to 204 MB/sec [21]), or the 

maximum measured disk bandwidth achieved under workload 

conditions similar to the modeled application (around 

25MB/sec). Therefore, SlideM is capable of handling much 

larger input rates than the ones mentioned so far or to process a 

much larger number of simultaneous sliding window operators 

before the I/O subsystem starts to become a bottleneck. 

Nevertheless, the scalability of the algorithm can still be greatly 

improved by sharing the content of overlapping windows as we 

discuss next. 

4. SHARING STATE OF OVERLAPPING 

SLIDING WINDOWS  
The previous section introduced SlideM, an efficient algorithm to 

manage the state of a single sliding window operator. Now we 

extend the discussion to a multi-query scenario, where multiple 

overlapping sliding windows are defined over a common event 

stream. The problem is of foremost importance as large-scale 

monitoring applications usually process several aggregation 

queries over different time granularities – e.g., average price of a 

stock in the last hour, 12 hours, last day and so on. In a naïve 

approach, each of these overlapping windows would be mapped 

into an operator inside the query execution plan. Obviously, this 

limits system scalability and performance since having one 

operator per window implies that tuples (or pointers to tuples) 

are stored multiple times at different places, thus wasting 

memory space. Using the algorithm of the last section only 

address partially this issue as the bottleneck is eventually moved 

from the memory system to the I/O subsystem. We then build 

upon the SlideM algorithm and propose a shared execution 
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scheme we call Shared SlideM (SSM) to improve the usage of 

computational resources when processing multiple overlapping 

sliding windows. 

4.1 Shared SlideM (SSM) 
We consider the problem of processing a set of N aggregation 

queries over N sliding windows of different sizes, defined over a 

common event stream S. For example, assume that three SWA 

queries are defined over a stream “calls” as follows: 

Q1:  SELECT AVG(waitTime) 

    FROM calls [RANGE 1 HOUR] 

Q2:  SELECT AVG(waitTime) 

    FROM calls [RANGE 6 HOURS] 

Q3:  SELECT AVG(waitTime) 

    FROM calls [RANGE 12 HOURS] 

A direct translation of this set of queries would result in an 

execution plan like the one shown in Figure 5, with aggregation 

(Σ) and sliding window (ω) operators being replicated for every 

query in the set. This naïve approach simplifies query plan 

generation, but wastes memory during query execution, since the 

tuples stored in the smaller windows are also, by definition, 

present in the larger 

windows, and could be 

instead maintained in a 

single, shared, location. This 

is illustrated in Figure 6: the 

tuples that arrived in the 

interval [τnow - 1hour, τnow] 

are part of all three windows; 

similarly, tuples belonging to 

the interval [τnow - 6hours, 

τnow - 1hour] are shared by 

both the 6-hour and 12-hour 

windows. In this case, having 

one operator per window 

implies that roughly half of the tuples in the query set are stored 

more than once. 

 

Figure 6: Three overlapping sliding windows 

Using the SlideM algorithm reduces the pressure over main 

memory since portions of the windows can be offloaded to disk, 

but does not solve the problem of unnecessary data redundancy. 

Moreover, assuming that the windows do not fit in main 

memory, each query will produce a pair of IO operations from 

time to time (read for the ancient part of the windows and write 

for the recent segment). Eventually, as the number of queries 

increases, the I/O subsystem will become saturated. 

To overcome these issues, we propose SSM, an adaptation of the 

SlideM algorithm in which multiple overlapping sliding windows 

are processed in a shared way. SSM works much like SlideM, in 

the sense that it sends parts of the window to disk when main 

memory is insufficient and brings data back from disk when it is 

time to expire them. However, contrary to SlideM, SSM manages 

a tuple repository that serves 

multiple logical window 

operators. We use the term 

‘logical’ here because the 

several windows are in fact 

implemented by a single 

operator (Ω) as illustrated in 

Figure 7. This allows sharing 

computation of tuple arrivals 

as we explain next. 

A SSM tuple repository shared 

by multiple overlapping 

windows looks like the 

structure shown in Figure 8. 

The recent block (MRW), which 

stores the newly-arriving tuples, is common to all windows, but 

each window has its own ancient block (LRW), containing the 

tuples which are about to expire. 

 

Figure 8: Shared tuple repository serving multiple windows 

As the recent block is shared by all windows in the set, incoming 

tuples are processed only once by the shared operator Ω. Tuple 

arrivals in SSM occur essentially in the same way as in SlideM 

(see Procedure 1), with the exception that the request for adding 

tuples in the repository is now shared by multiple windows and 

the block sent to disk when the buffer pool is full is not 

necessarily the recent block (line 9 in Procedure 1) – a victim 

block must be selected instead. The major differences are, 

though, on the way tuple expirations are handled: first, tuples are 

not purged out of the repository unless the window which 

requested expiration is the largest one in the set. Intuitively, a 

tuple can only be discarded when it no longer belongs to any 

window, which happens when the largest window in the set 

requests its expiration – the same holds in a, coarser, block-level 

granularity. Another difference is that SSM does not prefetch 

data from disk when a block at RAM gets empty as SlideM does. 

This is because the LRW block at disk is not necessarily the 

block which is going to be needed next by the set of windows – 

with multiple windows the disk access pattern is no longer 

strictly sequential. Since determining which block will be 

required next is a potentially expensive operation, SSM skips 

prefetching and only brings data from disk when a request to a 

non-memory-resident block is issued. As a consequence, when 

the ancient block of a window gets empty it is no longer 

guaranteed that its “new” ancient block will be already at RAM, 

and as such it might be necessary to bring data from disk. 

Additionally, if the buffer pool is full, it will be also necessary to 

send a block to disk in order to open room for the upcoming 

block. The expiration process under the SSM scheme is 

Figure 7: Shared 

execution plan for three 

SWAs, with SSM 

Figure 5: Unshared 

execution plan for three 

SWA queries 
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described in detail in Procedure 3 (note that the procedure has a 

parameter to indicate which window the request comes from). 

 

Procedure 3 expireOldestShared(window_rank) 

 

let ancient_block: block at RAM holding soon-to-expire 

tuples of the window passed as argument 

let valid_index: index of the oldest, non-expired tuple in the 

ancient block of the window passed as argument 

 

1: ancient_block ← GETANCIENTBLOCK(window_rank); 

2: valid_index ← GETVALIDINDEX(window_rank); 

3: if ancient_block has only expired tuples then 

4:    if window_rank is the largest then 

5:       buffer_pool.REMOVE(ancient_block); 

6:    end if 

7:    new_AB ← GETNEXT(window_rank, ancient_block); 

8:    if new_AB is at buffer pool then    

9:       new_AB_Addr ← GETBPBLOCKADDRESS(new_AB); 

10:       ancient_block ← buffer_pool.GET(new_AB_Addr);    

11:    else 

12:       new_AB_Addr ← GETDISKBLOCKADDRESS(new_AB); 

13:       ancient_block ← READFROMDISK(new_AB_Addr);  

14:       if buffer pool is full then 

15:          victim_block ← GETVICTIMBLOCK(); 

16:          buffer_pool.SWAP(victim_block, ancient_block); 

17:          WRITETODISK(new_AB_Addr, victim_block); 

18:       else 

19:          buffer_pool.ADD(ancient_block);          

20:       end if 

21:    end if 

22:    SETANCIENTBLOCK(window_rank, ancient_block); 

23:    valid_index ← 0; 

24: end if 

25: valid_index ← valid_index + 1; 

26: SETVALIDINDEX(window_rank, valid_index); 

 

 

4.2 Discussion: I/O Load and Eviction Policy 
The major advantage of SSM lies in a better use of memory space 

by avoiding that tuples are stored multiple times in the several 

window operators. This guarantees that no matter how many 

windows are defined over a given stream, the space cost will 

never exceed the size of the largest window in the set. As a 

consequence, SSM can handle a much greater number of queries 

than an unshared approach with the same amount of available 

memory before having to resort to secondary storage. 

Now another important aspect is once the memory has been 

exhausted and access to disk is required, how much load SSM 

puts into the I/O subsystem. In order to determine that, consider 

that there are N windows of different sizes: W1 < W2 <…< WN. Let 

ρ be the likelihood of the next oldest block of a window being 

already at RAM after the current ancient block gets empty (see 

line 8 in Procedure 3)4. Assuming the buffer pool is full, the I/O 

pattern will be as follows: i) a write request will be issued every 

                                                             

 

4 In fact, ρ represents the hit rate of the buffer pool.  

time a new recent block is created and ii) expiration of the 

ancient block of window Wi will incur, with likelihood (1-ρ): one 

read request, and, if i < N, one additional write request (for i= N, 

the ancient block is effectively removed from the buffer pool, 

and as such, there is no need to send data to disk to open room 

for the new ancient block). Algebraically: 

#IO = W + (1-ρ)  [(N-1)  (R+W) + R] (4.1) 

Note that in the limit, for ρ=0, the amount of I/O generated when 

processing the query set using SSM will be exactly the same as 

in SlideM (one pair of read and write request per window): 

#IO = W + (N-1)  (R+W) + R = N  (R+W) 

This means that the shared execution mechanism will never 

perform more I/O than the unshared approach, and in the worst 

case the I/O pressure of the two schemes will be equivalent. For 

any ρ>0, SSM will reduce the amount of I/O, and the reduction 

will be as large as ρ. As discussed in previous section, the 

optimal eviction policy that maximizes ρ is the one that sends to 

disk the block that is not going to be needed for the longest time. 

For the single-window case, the choice is straightforward: the 

optimal victim block is always the most recently written block. 

This does not hold for multiple windows though, as the MRW 

block might be needed earlier by a small window than an 

intermediate block by larger windows. Instead, the optimal 

victim block in a multi-window scenario can be determined by 

computing the distance – in number of blocks or time units – of 

the candidate blocks at the buffer pool to the ancient block of 

each window as follows: let dki be the distance of block k at BP 

to the ancient block of window wi. For any block k, refk denotes 

the next time the block will be referenced by any window, and 

corresponds to the minimum value in the set of distances: refk = 
min{dki | dki >0}. The victim block v is the one with the 

maximum value for refk among the B candidates at buffer pool:  

v = (k | refk = max{ref1,…, refB}). 

This distance-based replacement policy creates clusters of blocks 

in the BP, immediately after the ancient block of each window as 

illustrated in Figure 9 below:  

 

Figure 9: Typical arrangement of blocks at the buffer pool 

when using SSM block replacement policy.   

Since each block is referenced only once by each window, the 

buffer pool hit rate of the scheme is given by the average 

percentage of blocks residing at memory of each segment: 

 




N

i

iiSSM SB

1
N

1
  (4.2) 

where Bi is the number of memory-resident blocks of each 

segment and Si is the corresponding  total number of blocks. 

Clearly, the more memory is available (larger Bi) and the more 

overlapping the windows are (smaller Si), the higher the buffer 

pool hit rate ρSSM will be.  
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5. PERFORMANCE STUDY 
In this section we present an extensive experimental evaluation 

of the SlideM algorithm and the sharing scheme SSM. We have 

performed a wide variety of experiments with the objective of 

assessing:  

1. Effectiveness of SlideM in a real-world use-case: we 

demonstrate the ability of the proposed algorithm in 

addressing memory shortages in a real scenario and 

compare its performance against the conventional 

memory-only implementations discussed earlier in this 

paper (Section 5.2). 

2. High-performance nature of SlideM: we examine SlideM 

performance under heavy load conditions. Results reveal 

that the algorithm was capable of handling very high 

input rates for multi-gigabyte windows while keeping 

latency under desirable levels (Section 5.3). 

3. Performance and scalability of SSM: we show that the 

sharing mechanism SSM scales significantly better than 

an unshared approach (Section 5.4). 

For the first set of experiments, we used queries and stream 

definitions taken from the real use-case, as described in 

Appendix A. For the other two sets, we used synthetic queries 

and datasets. Tests setup and methodology are described next. 

5.1 Experimental Setup and Methodology 
We implemented our proposed techniques in Pulse [19], a Java-

based stream processing engine from industrial partner FeedZai. 

Experiments were conducted on a server with two Intel Xeon 

E5420 2.50 GHz Quad-Core processors, 4 GB of RAM, and 4 

SATA-300 disks distributed in two RAID-0 arrays, running 

Windows Server 2008 x64 and Hotspot x64 JVM (configured 

with a 1 GB heap size). One RAID array was used to host the OS 

while the other was used to hold window data during tests. 

Measurements were taken as follows: 

 A single Java application was responsible for generating, 

submitting and consuming tuples during the performance 

runs. Input data was submitted to the SPE through local 

method calls using its API. 

 Tests consisted in a warmup phase, during which the 

SPE was brought to a steady state, and a subsequent 

measurement interval (MI), when the performance of the 

system was measured. The duration of both warmup and 

MI was set to the time necessary for traversing 1.5 times 

the window – e.g., an experiment with a 6-hour window 

ran for 18 hours (9h of warmup plus 9h for MI).  

 We collected both application-level and system-level 

metrics. Average throughput was computed as the ratio 

between processed tuple count and elapsed time. Latency 

was computed through the nanoTime() method of the 

Java runtime, called immediately before and after 

sending tuples to the SPE. Memory consumption was 

computed by the end of tests using standard Java SDK 

methods. CPU, disk, and process metrics were collected 

using the System Monitor tool of MS-Windows. 

All experiments with SlideM and SSM used a fixed block size 

(64 kilobytes). 

5.2 Call-Center Use-Case Results 
Our first set of experiments mimics the workload conditions of a 

real event processing application, and consists in processing a 

number of aggregations like Query 2 below: 

Query 2: Compute call-center statistics in the last day 

SELECT   COUNT(*), 

         SUM(busyTime), 

         AVG(busyTime) 

FROM     calls [RANGE 24 HOURS SLIDE 10 SECONDS] 

GROUP BY serviceId 

On total, the application computes 144 aggregates, resulting in 

104 distinct SWA operators – the query above is replicated for 6 

different fields and 8 distinct grouping criteria, with the COUNT 

aggregate being shared by the queries with different fields; a 

more detailed description of the use-case can be found in 

Appendix A. We then compare the performance of memory-only 

SWA implementations against application performance when 

paging sliding window content to disk through the SlideM 

algorithm. Both the 1W and the 2LA SWA approaches were 

tested in each case. Results are presented in Figure 10. 

The three uppermost graphs show the performance of the two 

non-managed implementations, and illustrate what typically 

occurs with memory-constrained event processing applications in 

most Java-based SPEs: as the application working set approaches 

the available memory threshold, the system spends progressively 

more time with garbage collection, increasing the tuple 

processing latency and preventing the SPE to cope with the data 

input rate. Since there is no data to be purged until the sliding 

window closes, the application eventually crashes with an out-of-

memory error. In our tests this happened before 3 hours for the 

1W implementation and before 1 hour when using the 2LA 

scheme, as signalized in Figure 10.  

The results above contrast with application behavior when the 

SlideM algorithm is employed to manage the state of the sliding 

windows, as illustrated in the bottom part of Figure 10. Using 

our proposed algorithm allowed the experiments to complete 

without errors, while keeping performance metrics in desirable 

levels. As expected, memory consumption and tuple processing 

latency was larger when using the 2LA scheme than with the 1W 

approach in this use-case. 

5.3 Performance of SlideM 
Many event processing applications, like those found in the 

financial trading environment, require that SPEs be able to 

process a considerable volume of data within very short periods 

of time. Using disks in these cases might be inadequate if they 

are not able to cope with the very high arrival rates and stringent 

latency requirements. In this section we examine how SlideM 

performs in such critical scenarios. For that, we employ a simple 

microbenchmark, which consists in computing one or more 

aggregations over a stock market data stream. Each input tuple 

has 4 attributes: Timestamp, Symbol, Price and Volume (about 28 

bytes). We fill tuples by repeatedly cycling through a list of 100 

stock symbols and assigning the tuple creation time to the 

timestamp field and random values to the other two. The 

workload consists in computing the volume-weighted average 

price (VWAP) of each stock over the last hour, as shown in 

Query 3. Six runs of this experiment are performed, 
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progressively scaling the injection rate from 50,000 up to 

300,000 tuples per second. 

Query 3: Compute the VWAP of each stock over the last hour 

SELECT   Symbol, SUM(Volume*Price)/SUM(Volume) 

FROM     Stock [RANGE 1 HOUR] 

GROUP BY Symbol 

Note that the window definition in the query above does not 

include a SLIDE, which means that the result must be updated 

whenever a new tuple arrives at the Stock stream5. In all 

experiments, the buffer size was set to the minimum, 2 blocks 

(128KB), so that system performance is measured under 

maximum I/O pressure. Results are shown in Table 1. 

As we can see, the system was able to handle up to 300,000 

tuples per second, with the CPU being the limiting factor at that 

point. Average processing latency was fairly low in all 

experiments (a few microseconds), and even the absolute 

maximum latency remained under acceptable levels as the load 

was increased. Disk utilization was also quite low in all runs, as 

it can be seen from the average disk queue length (ADQL) 

metric in Table 1. The reason is that the disk bandwidth required 

by SlideM at the maximum load of 300,000 tuples per second in 

                                                             

 

5 An aggregation query without a SLIDE clause would probably 

make little sense if its result were to be output (i.e., used for 

monitoring purposes). In many cases, however, the result of an 

aggregation is used as input for further processing (e.g., pattern 

detection), and updated results must be produced as soon as 

new data is available. 

this benchmark is only 16 MB/sec, which is still far from the 

maximum measured disk transfer rate, as discussed in Section 

3.1. This moderate load posed by SlideM into the I/O subsystem 

was crucial to remove a bottleneck (memory) without creating a 

new one, thus allowing the SPE to fully exploit the available 

CPU power.  

Table 1: SlideM Performance, scaling injection rate 

Injection 

Rate 

(tuples/sec) 

Space 

Cost 

(GB) 

Avg. 

Latency 

(ms) 

Max. 

Latency 

(ms) 

% CPU ADQL 

50,000 4.7 0.009 2.9 5% 0.016 

100,000 9.4 0.012 3.6 13% 0.035 

150,000 14.1 0.007 3.9 23% 0.056 

200,000 18.7 0.012 16.7 37% 0.071 

250,000 23.5 0.008 14.4 69% 0.103 

300,000 28.2 0.008 18.9 100% 0.145 

5.4 Performance of SSM 
We now examine the performance of the shared execution 

scheme SSM and quantify to which extent it scales better than an 

unshared approach. Experiments here consist in processing N 

instances of Query 3, using either the unshared SlideM algorithm 

or its shared counterpart, SSM, under an input rate of 5,000 

tuples per second. The number of queries in each experiment, N, 

took the following values: N = {2, 4, 8, 16, 32}. All N queries in 

the set have different window sizes, uniformly distributed in the 

interval [3600, 7200] seconds. Available memory was set to 

Memory-Only 

 

SlideM 

 

Figure 10: Comparison: performance of SlideM vs. memory-only implementations in real-world-based workload conditions 
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512MB in all experiments (for the non-shared version, this 

amount was equally divided among the N buffer pools). We then 

measured for each algorithm the total space cost and the amount 

of pressure put onto the I/O subsystem. Results are depicted in 

Figure 11: 

 

 

Figure 11: Performance of SlideM (unshared) and SSM 

(shared) in a multi-query scenario.  

As expected, the total space cost (memory and disk) of the 

unshared approach grows linearly with the number of windows 

while with the shared strategy the space cost remains constant (it 

is bounded to the size of the largest window). SSM was also 

significantly more I/O-efficient, issuing up to 22 times less disk 

requests than the unshared implementation. The explanation for 

this remarkable difference in the number of I/O requests between 

the two algorithms is that SSM benefits from the fact that adding 

more queries to the set reduces the distance between the 

overlapping windows, thus increasing the hit rate of the buffer 

pool as expressed in formula 4.2. This way, while the I/O 

pressure of the unshared implementation consistently grows as 

more windows are used, with SSM it tends to stabilize since the 

increase on buffer hit rate compensates for the increased number 

of simultaneous queries. The result is a much better scalability 

as we can see in Figure 11. 

6. RELATED WORK 
There has been considerable work on resource management in 

stream processing systems [4] [11] [17]. For dealing with 

memory shortages, two approaches have been widely employed. 

The first consists in providing approximate answers by shedding 

load [8] [22] [24], with research on this area focusing essentially 

on minimizing error of approximations. However, many event 

processing applications rely on exact answers to perform 

complex data analysis and support real-time decision making. In 

these cases, techniques such as load shedding or approximation 

are not applicable. The alternative, then, is to use secondary 

storage as an extension of main memory. Indeed, such disk-based 

approach has been adopted in a number of proposals such as [6], 

[10] and [15]. The focus of those works, though, is on processing 

of join queries. Liu et al [15] consider queries with multiple 

operators and propose strategies to choose which part of the 

operator states to spill during query execution in order to 

maximize the overall throughput. As discussed before, this is not 

an issue for sliding-window aggregates since the data access 

pattern can be accurately predicted. Farag and Hamad [10] 

propose a two-phase external-memory algorithm that joins the 

arriving tuples of one stream with the memory-resident data of 

the other streams, and postpones matching with the disk-resident 

portion until the stream runs out-of-space or arrival of new tuples 

stalls. Chakraborty and Singh [6] propose an Exact Window Join 

algorithm that deals with memory shortages by deferring the load 

during high workload, and processing the deferred load during 

the period of low workload. This strategy, however, results in 

high delays (> 5 seconds) even for moderate data input rates 

(450 tuples per second). To the best of our knowledge, our work 

is the first to address the problem of exact answer computation 

of aggregations in memory-limited, high-throughput, 

environments. 

Shared processing of sliding-window aggregates has been 

previously explored in a couple of proposals. Arasu and Widom 

[3] devise two algorithms for sharing execution of multiple 

sliding-window aggregates, where a common aggregation 

function is computed over different window sizes. These 

algorithms assume an aperiodic scenario, where results are 

produced on-demand (when user polls a query). Our proposed 

strategy, on the other hand, is for periodic aggregates and applies 

even when different aggregation functions are used. In [12] 

Krishnamurthy proposes a strategy for sharing the execution of 

multiple periodic sliding-window aggregates implemented under 

the 2LA scheme. The strategy focuses on computation sharing, 

and consists in computing the partial aggregates with only one 

shared operator, rather than using one operator per query. It does 

not address, however, the space sharing problem introduced in 

this paper, as the partial aggregates are still stored several times 

at the main window. 

7. CONCLUSIONS 
In this work we introduce techniques for overcoming the 

traditional memory limitations faced by stream processing 

engines when processing aggregation queries over sliding 

windows. We address the problem by proposing a novel buffer 

management algorithm, SlideM, which offloads sliding window 

state to disk during memory shortages. In order to further 

increase algorithm scalability, we also proposed SSM, a query 

sharing strategy that prevents explosion of space cost by storing 

the state of multiple overlapping sliding windows in a single, 

shared, repository. Experimental results demonstrated that the 

two techniques together provide significant performance and 

scalability benefits. With SlideM the system was able to handle 

up to 300,000 events per second for multi-gigabyte windows 

while consuming only 128 kilobytes of main memory. In a 

scenario with multiple simultaneous queries, SSM reduced space 

cost by a factor of up to 24, issuing up to 22 less disk requests. 
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There are a couple of issues we did not explore in this paper and 

constitute interesting avenues for future work. First, the 

techniques proposed here are designed to exploit the access 

pattern of sliding window operators during event arrivals and 

expirations, which allows excellent performance for SWA 

queries. Our implementation currently supports random access to 

tuples inside the window, but probably in a way far from optimal 

for operations such as joins. Therefore, we intend to investigate 

state-spilling mechanisms that work well for a more diversified 

gamma of queries. A promising direction is to combine per-

operator SlideM repositories with a global buffer manager 

responsible for serving queries with less predictable access 

patterns. Another possible direction for future work is to extend 

the proposed algorithms and develop new disk-based techniques 

in order to enable SPEs to recover their state in the advent of 

system failures. Finally, the results presented in this work were 

obtained with conventional hard drives. It shall be interesting to 

observe the behavior of the proposed techniques in conjunction 

with faster storage technologies like solid-state disks (SSDs) or 

phase-change memories (PCMs). 
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APPENDIX 

A. USE-CASE DETAILS 
In this section we present some of the details of the call-center 

monitoring application that we referred to throughout this paper. 

The description provided here is for a proof-of-concept prototype, 

which corresponds to a simplified version of the full application, 

still under development. 

As mentioned before, the purpose of the application is to provide 

a real-time view of the operation of a large call center chain. The 

company is spread over 20 geographical sites and has around 

12,000 agents serving more than 3 million customer requests per 

day. A statistical module collects information about the calls and 

produces a stream of data items describing each step of the 

interactions between the call center and its customers. This data 

stream, whose schema is shown in Figure 12, is then fed into the 

stream processing engine, where 144 KPIS are continuously 

computed.  Each KPI corresponds to a 24-hour sliding-window 

aggregate over a given field of the stream. Specifically, three 

functions (SUM, COUNT and AVG) are applied over 6 attributes of 

the stream (alertingTime, busyTime, wrapUpTime, 

waitTime, helpTime, and availableTime), using 8 different 

grouping keys (instance, serviceId, agentId, mediaId, 

interactionLegId, agentSite, callSite, and direction). 

In our experimental evaluation we filled the tuples of the stream 

AgentInteractions with synthetic data since real datasets were 

not available due to confidentiality issues. The generated data, 

however, respected the critical properties of the original input 

stream, such as the cardinality of the attributes used as grouping 

key in the queries and the distribution of these groups over time. 

We did not replicate eventual oscillations on tuple arrival rate 

though, keeping the injection rate fixed in 1,000 tuples per 

second. All the tests were performed in a virtual machine with 8 

cores, 2GB of RAM, and running Window Server 2008, as found 

in the production environment. 

AgentInteractions (  

timestamp   long, 

instance   int, 

start   long, 

sessionId int, 

serviceId int, 

agentId int, 

interactionLegId int, 

alertingTime int, 

busyTime int, 

wrapUpTime    int, 

waitTime int, 

direction   int, 

mediaId int, 

helpTime int, 

agentReleased bool, 

mediaOutcome int, 

finalSegment bool, 

agentSite int, 

callSite int, 

availableTime int, 

availableTimeByService int, 

held int, 

help int 

)  

Figure 12: Schema of the input data stream in the call-center 

monitoring application 
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