
Multiple Class G-Networks with Restart

Jean-Michel Fourneau
PRiSM, CNRS / Université de

Versailles St Quentin
45, avenue des Etats-Unis

F-78035 Versailles
jean-

michel.fourneau@prism.uvsq.fr

Katinka Wolter
Institute of Computer Science

Freie Universität Berlin
Takustr. 9, 14195 Berlin,

Germany
katinka.wolter@fu-

berlin.de

Philipp Reinecke
HP Labs Bristol

Long Down Avenue, Bristol
BS34 8QZ

philipp.reinecke@hp.com

Tilman Krauß
Institute of Computer Science

Freie Universität Berlin
Takustr. 9, 14195 Berlin
tilman.krauss@fu-

berlin.de

Alexandra Danilkina
Institute of Computer Science

Freie Universität Berlin
Takustr. 9, 14195 Berlin

alexandra.danilkina@fu-
berlin.de

ABSTRACT
Restart is a common technique for improving response-times
in complex systems where the causes of delays can either not
be discerned, or not be addressed by the user. With restart,
the user aborts a running job that exceeds a deadline, and
resubmits it to the system immediately. In many common
scenarios, this approach can reduce the response-times that
the user experiences. Restart has been well-studied for sce-
narios where only one user applies restart, and typically in
cases where queueing effects can be neglected. In this pa-
per we approach the question of restart in a scenario where
restart is applied by many users in a system that can be
modelled as an open queueing network. We apply the G-
Networks formalism to this problem. We use negative cus-
tomers to model the abortion and retry of a request. The
open G-network uses multiple classes with phase-type dis-
tributed service times. This allows the approximation of
a preemptive repeat different behaviour as it is natural for
multiple restarts of a request. We compute the response
time of a request and show that an optimal restart interval
can be found. The results are compared with simulation.

Categories and Subject Descriptors
Networks [Network performance evaluation]: Network
performance modeling; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Keywords
Restart, G-Networks, Phase-type distributions
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1. INTRODUCTION
The restart mechanism is known to most people, since

there exist many situations in daily life where the impatient
customer after some waiting time refuses to wait any longer
for completion of his job, cancels the job and restarts it. In-
ternet downloads are the most widely known situation that
can benefit from restarts, but many other instances do ex-
ist. While restart is often an elegant and simple solution,
it may also have a negative effect on the system to which
it is applied, as restart can effectively mean an increase of
the load on the system, thereby exacerbating the problem
it should address. Therefore, a careful choice of the restart
interval is often necessary.

Several aspects of the restart problem have been explored
in recent years. In [18, 19] a stochastic model for restart
to minimise job completion times has been proposed. The
probability of job completion under restart has been max-
imised in [20]. In these works the authors considered an
individual user issuing independent jobs that are completed
according to some completion-time distribution. It could be
shown that with this restriction restart can be successful in
reducing the completion-times experienced by the user.

In this paper we address the question whether restart is
still beneficial if applied by several users on one or more
shared resources. This naturally leads to the formulation
of the problem as an open queueing-network model. We
utilise the formalism of G-networks, that is, queueing net-
works with signals. Signals in our G-network model restarts
as they remove a random job in the queue. The restarted
job returns to the queueing network in a different class which
allows us to model a different processing speed upon restart.
Our model uses phase-type (PH) distributions for the service-
time distributions [14], in order to be able to reflect charac-
teristics of real systems. In particular, the distributions are
more general than the exponential distribution.

The remainder of this paper is structured as follows: In Sec-
tion 2 we provide the necessary background on G-networks.
In Section 3 we formulate our model. Section 4 provides a
product-form solution for this model. In Section 5 we dis-
cuss computation of measures of interest using our solution.
We then illustrate the approach in Section 6 and discuss its
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application in the evaluation of practical questions related
to restart in Section 7.

2. G-NETWORKS
In this paper we define a class of G-networks that can

model restart. The theory of queues with signals has re-
ceived considerable attention since the seminal paper on
positive and negative customers [6] published by Gelenbe
20 years ago. Traditional queueing networks model systems
that are used to represent contention among customers for
some resources. Customers move from server to server, they
wait for service, but they do not interact among each other.
Signals have been used to change these rules. In a network of
queues with signals (also denoted as a G-network of queues)
customers are allowed to change to signals at the comple-
tion of their service and signals interact at their arrival into
a queue with customers already present in the queue. More-
over signals are never queued. They try to interact with cus-
tomers and disappear immediately. Note that they may fail
to interact with some probability or due to some conditions
which are not satisfied. Despite this deep modification of the
model, G-networks still preserve the product-form property
for the steady-state distribution of some Markovian queue-
ing networks.

The first type of signal [6] was introduced as a negative
customer. A negative customer deletes a positive customer
at its arrival at a backlogged queue. A negative customer is
never queued. Positive customers are usual customers which
are queued and receive service or are deleted by negative
customers. Under typical assumptions for Markovian queue-
ing networks (Poisson arrival for both types of customers,
exponential service time for positive customers, Markovian
routing of customers, open topology, independence) Gelenbe
proved that such a network has a product-form solution for
its steady-state distribution. It must be clear that the results
are more complex than those for Jackson networks. The G-
networks flow equations exhibit some uncommon properties:
they are neither linear as in closed queueing networks nor
contracting as in Jackson queueing networks. Therefore the
existence of a solution had to be proved [10] by new tech-
niques from the theory of fixed point equation. A numerical
algorithm was developed in [5].

G-networks have also motivated many new important re-
sults in the theory of queues. The original proofs were based
on the analysis of the global balance equations. Indeed, as
negative customers lead to customer deletions, the original
description of quasi-reversibility by arrivals and departures
did not hold anymore and new versions have been proposed.
At the time being, the description proposed by Chao and his
co-authors in [2] looks sufficient to study queues with cus-
tomers and signals. A completely different approach, based
on Stochastic Process Algebra, was proposed by Harrison
[12, 11]. The main results (CAT and RCAT theorems and
their extensions [1, 12, 11]) give some sufficient conditions
for product-form stationary distributions. This technique
clearly has a different range of applications as it allows to
represent component-based models which are much more
general and more detailed than networks of queues.

These techniques have been used to study many new sig-
nals which all lead to product-form solutions: triggers which
redirect other customers among the queues, catastrophes
which flush all the customers out of a queue [8, 7], resets
[9], synchronised arrivals in a set of queues [4], signals which

change the class of the customer in service [16]. Here we
present a new result for open G-networks where the effect of
the signal is to restart a customer service. The service-times
follow PH distributions, which are class dependent.

3. THE MODEL
We investigate generalized networks with an arbitrary num-

ber N of queues. We consider K classes of positive cus-
tomers and only one class of negative customers (also de-
noted as signals). The external arrivals to the queues follow
independent Poisson processes. The external arrival rate to

queue i is denoted by λ
(k)
i for positive customers of class k

and Λ−
i for signals.

The customers are served according to the processor shar-
ing (PS) policy. The service times are assumed to be phase-
type distributed. At phase p, the intensity of service for

customers of class k in queue i is denoted as µ
(k,p)
i . The

transition probability matrix H
(k)
i describes how, at queue

i, the phase of a customer of class k evolves. Without loss
of generality we assume that the PH distributions which de-
scribe the service times follow these rules:

• The initial state has index 1.

• The exit state has index 0.

Thus the service in queue i is an excursion from state 1 to

state 0 following matrix H
(k)
i for a customer of class k and

we have:

∀i, k, p

P
∑

q=0

H
(k)
i [p, q] = 1. (1)

At its service completion time in queue i (i.e. transition

from phase p to phase 0 in H
(k)
i ), and according to a Marko-

vian transition matrix, a customer of class k may join queue

j as a positive customer of class l with probability P
+(k,l)
i,j .

It may also leave the network with probability d
(k)
i . We as-

sume that a customer cannot return to the queue it has just

left: P
+(k,l)
i,i = 0 for all i, k and l. As usual, we have:

∀i, k

N
∑

j=1

K
∑

l=1

P
+(k,l)
i,j + d

(k)
i = 1. (2)

Signals do not stay in the network. At its arrival into a
queue, a signal interacts with a selected customer and then
vanishes instantaneously. If, at its arrival, the queue is al-
ready empty, it also vanishes instantaneously. The selected
customer is chosen at random following a state-dependent
distribution which mimics the PS scheduling. At state ~xi,

the probability for a customer to be selected is
x
(k,p)
i

|~xi|
11{|~xi|>0}

and the signal has an effect with probability α
(k,p)
i . The

effect is the restarting of the customer: this customer (re-
member it has class k and phase p) is routed as a customer

of class l at phase 1 with probability R
(k,l)
i . We assume for

all k, R
(k,k)
i = 0. Of course we have:

∀k
K
∑

l=1

R
(k,l)
i = 1. (3)

The state of the queueing network is represented by the
vector ~x = (~x1, ~x2, . . . , ~xN ), where the component ~xi denotes
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the state of the queue i. As usual with multiple class PS
queues with Markovian distribution of service, the state of

queue i is given by the vector (x
(k,p)
i ), for all class index

k and phase index p. Furthermore, we note |~xi| the total
number of customers in queue i.

Clearly ~x is a Markov chain.
Note that at the end of a service, we do not allow that a

customer becomes a signal. This is not needed in our model
because we do not want to represent the joint restart of a
group of customers.

4. PRODUCT-FORM THEOREM
Let p(~x) be the stationary probability distribution of the

network state if it exists. The following result establishes the
existence of a product-form solution if a fixed point system
has a solution which satisfies the stationarity constraints.

Theorem 1. Consider an arbitrary open G-network with
p classes of positive customers and a single class of negative
customers the effect of which is to restart one customer in
the queue. If the system of linear equations:

ρ
(k,1)
i =

λ
(k)
i +

P
∑

o=1

µ
(k,o)
i ρ

(k,o)
i H

(k)
i [o, 1] +∇k,1

i +∆k,1
i

µ
(k,1)
i +Λ−

i α
(k,1)
i

,

(4)
where

∆k,1
i =

P
∑

p=1

K
∑

l=1

Λ−
i α

(l,p)
i ρ

(l,p)
i R

(l,k)
i , (5)

∇k,1
i =

N
∑

j=1

K
∑

l=1

P
∑

q=1

µ
(l,q)
j ρ

(l,q)
j H

(l)
j [q, 0]P

+(l,k)
j,i , (6)

and,

∀p > 1, ρ
(k,p)
i =

P
∑

o=1

µ
(k,o)
i ρ

(k,o)
i H

(k)
i [o, p]

µ
(k,p)
i + Λ−

i α
(k,p)
i

(7)

has a positive solution such that for all station i:

K
∑

k=1

P
∑

p=1

ρ
(k,p)
i < 1, (8)

then the system stationary distribution exists and has prod-
uct form:

p(~x) =

N
∏

i=1

pi(~xi), (9)

where

pi(~xi) = (1−
K
∑

k=1

P
∑

p=1

ρ
(k,p)
i )|~xi|!

K
∏

k=1

P
∏

p=1

(ρ
(k,p)
i )x

(k,p)
i

x
(k,p)
i !

. (10)

Before we can give the proof, we introduce some usual

notations. We denote by (~xi+e
(k,p)
i ) (resp. (~xi−e

(k,p)
i )) the

state of queue i obtained by adding (resp. suppressing) one

customer of class k at phase p of service. We note M
(k,p)
i (~xi)

the service rate of customers of class k in phase p at queue i.

Since the service discipline considered is processor sharing,

M
(k,p)
i (~xi) can be written as a function of µ

(k,p)
i :

M
(k,p)
i (~xi) = µ

(k,p)
i

x
(k,p)
i

|~xi|
11{|~xi|>0}. (11)

As the selection of customers mimics the PS discipline,
the probability of restarting a customer of class k at step p
when the queue is at state ~xi is:

N
(k,p)
i (~xi) = α

(k,p)
i

x
(k,p)
i

|~xi|
11{|~xi|>0}. (12)

The proof consists mainly of algebraic manipulations of
the Chapmann-Kolmogorov equation for steady-state dis-
tribution:

p(~x)
∑N

i=1

∑K
k=1

[

λ
(k)
i +

∑P
p=1 M

(k,p)
i (~xi)11

{x
(k,p)
i

>0}
+

∑P
p=1 Λ

−
i N

(k,p)
i (~xi)11

{x
(k,p)
i

>0}

]

=
N
∑

i=1

K
∑

k=1

λ
(k)
i p(~x− e

(k,1)
i )11

{x
(k,1)
i

>0}
[1]

+
N
∑

i=1

K
∑

k=1

P
∑

p=1

M
(k,p)
i (~xi + e

(k,p)
i )d

(k)
i ∗

H
(k)
i [p, 0]p(~x+ e

(k,p)
i ) [2]

+
N
∑

i=1

K
∑

k=1

P
∑

p=1

P
∑

q=1

M
(k,p)
i (~xi + e

(k,p)
i − e

(k,q)
i )∗

p(~x+ e
(k,p)
i − e

(k,q)
i )H

(k)
i [p, q]11

{x
(k,q)
i

>0}
[3]

+
N
∑

i=1

K
∑

k=1

N
∑

j=1

K
∑

l=1

P
∑

p=1

M
(k,p)
i (~xi + e

(k,p)
i )P

+(k,l)
i,j ∗

p(~x+ e
(k,p)
i − e

(l,1)
j )H

(k)
i [p, 0]11

{x
(l,1)
j

>0}
[4]

+
N
∑

i=1

K
∑

k=1

P
∑

p=1

Λ−
i N

(k,p)
i (~xi + e

(k,p)
i )

K
∑

l=1

R
(k,l)
i ∗

p(~x+ e
(k,p)
i − e

(l,1)
i )11

{x
(l,1)
i

>0}
. [5]

(13)
Let us give some explanations about the right-hand side of

this equation. The first term corresponds to external arrivals
of customers. The second term is used to describe an end
of service and departure to the outside while the third one
is associated to the completion of phase p of service. With
the fourth term we consider the case where a customer of
class k leaves queue i to queue j as a customer of class
l. The last term is associated with the restart: a signal
arriving at queue i restart a customer of class k and phase p
which joins queue i as a customer of class l at step 1 (term
[5]). For the sake of readibility the proof of the theorem is
transferred into an appendix. But it is also important to
prove that the necessary conditions of the theorem do not
exclude the existence of a feasible solution for Equations 4 to
7. Such a question is easy for Jackson’s networks because the
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necessary conditions are equivalent to a liear system which
is proved to be non singular or contracting depending on
the network topology. For G-networks, the problem is much
more complex: see for instance [10].

4.1 Existence of a solution to the f ow equa-
tion

We now have to prove that there exists a non-empty re-
gion of the set of parameters where the flow equation has a
solution. We reorganize the equations to simplify the pre-
sentation.

Let ~q be the vector of values ρ
(k,p)
i µ

(k,p)
i for all indices i,

k, p. Thus ~q takes value in IRNKP . The system of equation
can easily be written as a linear system:

~q = ~qG+ ~a,

where ~a is the renormalized arrival rate (i.e.

λ
(k)
i

µ
(k,p)
i

µ
(k,p)
i

+Λ−

i
α
(k,p)
i

) to take into account the signal. Proving

that (Id − G) is not singular is sufficient to guarantee the
existence of ~q. Thus we now consider matrix G and check if
the system has a unique solution. Note that we do not check
if the solution satifies Equation 8. We propose two solutions
to prove that (Id−G) is not singular.

The first idea consists in numerically compute matrix G
from the parameters. Then we can check that the matrix
is strictly sub-stochastic. Indeed, remember that if G is
sub-stochastic and does not have any recurrent class, then
(Id−G) is not singular. The strict sub-stochastic property
(every lines has a sum strictly smaller than one) implies
that the matrix does not have any recurrent class and it is
easier to check than the existence of recurrent classes. This
is stated in the following two properties.

Property 1. If G is strictly sub-stochastic, then Equa-
tions 4 to 7 have a solution in RNKP .

Property 2. If G is sub-stochastic and does not contain
any recurent class, then Equations 4 to 7 have a solution in
RNKP .

Let us now consider a slightly more complex technique
based on Brouwer’s theorem to establish the existence of a
fixed point system. We can easily decomposed matrix G into
two matrices:

G = G1 +G2,

where Matrix G1 models the PS queues where all the en-
tries have been multiplied by a damping factor equal to

µ
(k,p)
i

µ
(k,p)
i

+Λ−

i
α
(k,p)
i

and G2 represents the terms associated to

the arrival of restart signal. More precisely, the entries of
G1 and G2 are described by:

• Matrix G1 (row (i,k,1), column (j,l,q))

µ
(k,1)
i

µ
(k,1)
i + Λ−

i α
(k,1)
i

(H
(k)
i [q, 1] +H

(k)
i [q, 0]P

+(l,k)
j,i ).

• Matrix G1 (row (i,k,p), column (i,k,o))

H
(k)
i [o, p]

µ
(k,p)
i

µ
(k,p)
i + Λ−

i α
(k,p)
i

.

• Matrix G2 (row (i,k,1), column (i,l,p))

α
(l,p)
i

µ
(l,p)
i

R
(l,k)
i

µ
(k,1)
i

µ
(k,1)
i + Λ−

i α
(k,1)
i

Λ−
i .

The system can be written as:

~q(Id−G1) = ~qG2 + ~a,

where ~a has been previously defined. Let us now define S as
the stability set (i.e. the set of non negative values of values

of ρ
(k,p)
i which satisfy the constraints in Equation 8). We

have the following properties:

Property 3. Assume that Matrix (Id − G1) is not sin-

gular. One can find ~b such that ~q G2 ≤ ~b for all vectors ~q in
S.

Furthermore let ~q0 be the vector such that:

~q0 = (~a+~b) (Id−G1)−1.

~q0 exists because matrix (Id−G1) is not singular.

Proof: Indeed Matrix G2 is non negative and S is a closed
and convex subset of RNKP .

Definition 1. The network is superstable if ~q0 is in S.

Intuitively, superstability means that the network where sig-
nals are considered as arrival of fresh customers at the max-
imum rate allowed by the model is stable when considered
as an ordinary network of PS queues with ordinary cus-
tomers. Of course we expect that superstability implies sta-
bility. This is proved in Property 4. We begin by Brouwer’s
theorem.

Theorem 2. (Brouwer) Let F be a fixed point system,
(i.e x = F (x)) in Rn. If

1. function F is continuous on a subset H of Rn

2. H is non empty

3. H is a compact and convex subset,

4. F (H) ⊆ H

then x = F (x) has at least one solution.

Property 4. If the network is superstable, then there ex-
ist a solution to the equations 4 to 7 which satisfies the sta-
bility constraint of Equation 8.

Proof: We will build a set S2 such that the assumptions
of Brouwer’s theorem will be satisfied by the fixed point
function on S2. First note that F (~q) = ~qG+~a. Therefore F
is continuous on any subset of RNKP . Now let S2 be the set
of non negative vectors ~r such that ~r ≤ ~q0 component-wise.
S is compact, convex and non empty because ~q0 is non zero.
Furthermore G is non negative, therefore ~q ≤ ~q0 implies that
~qG ≤ ~q0G and F (~q) ≤ F (~q0) = ~q0. And F (~q) is clearly non
negative for a non negative vector ~q. Therefore F (S2) ⊆
S2. All the assumptions of the theorem are satisfied. There
exists a fixed point solution for F in S2.
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5. COMPUTATION OF MEASURES
Remember that the proof based on global balance has

shown that

p(~x) =

N
∏

i=1

pi(~xi), (14)

where

pi(~xi) = C(1−

K
∑

k=1

P
∑

p=1

ω
(k,p)
i )|~xi|!

K
∏

k=1

P
∏

p=1

(ω
(k,p)
i )x

(k,p)
i

x
(k,p)
i !

.

where C is a normalisation constant.

Property 5. The normalization constant C is equal to
1.

Proof: As the network is separable and all the states are
reachable, we just have to verify that for each queue the
sum of the probability is equal to one.

∑

~xi

pi(~xi) = C
∑

~xi

(1−
K
∑

k=1

P
∑

p=1

ρ
(k,p)
i )|~xi|!

K
∏

k=1

P
∏

p=1

(ρ
(k,p)
i )x

(k,p)
i

x
(k,p)
i !

.

We partition the summation on ~xi according to the norm of
~xi.

∑

~xi

pi(~xi) = C
∞
∑

m=0

(1−
K
∑

k=1

P
∑

p=1

ρ
(k,p)
i ) ∗

∑

~xi/|~xi|=m

|~xi|!
K
∏

k=1

P
∏

p=1

(ρ
(k,p)
i )x

(k,p)
i

x
(k,p)
i !

.

Substitute |~xi| by m in the previous equation. Remember
the definition of the multinomial

∑

~xi/|~xi|=m

m!
K
∏

k=1

P
∏

p=1

(ρ
(k,p)
i )x

(k,p)
i

x
(k,p)
i !

=

[

K
∑

k=1

P
∑

p=1

ρ
(k,p)
i

]m

After substitution we obtain:

∑

~xi

pi(~xi) = C
∞
∑

m=0

(1−
K
∑

k=1

P
∑

p=1

ρ
(k,p)
i )

[

K
∑

k=1

P
∑

p=1

ρ
(k,p)
i

]m

As by assumption we have
[

∑K
k=1

∑P
p=1 ρ

(k,p)
i

]m

< 1, the

sum converges and we get
∑

~xi
pi(~xi) = C. Thus the nor-

malization constant in the product form is equal to one.

Property 6. The former proof also establishes that the
probability to have exactly m customers in the queue is equal
to:

Pr(m customers) = (1−

K
∑

k=1

P
∑

p=1

ρ
(k,p)
i )

[

K
∑

k=1

P
∑

p=1

ρ
(k,p)
i

]m

.

This allows to get the expectation of the number of cus-
tomers.

Property 7. The expected number of customers in the
queue is equal to:

E [N ] =

∑K
k=1

∑P
p=1 ρ

(k,p)
i

1−
∑K

k=1

∑P
p=1 ρ

(k,p)
i

. (15)

To get the average queuing delay, one usually applies Lit-
tle’s law. However, one must be very careful when describ-
ing a G-network with signals in this context. Indeed, signals
may increase the queue size (see for instance the joint arrival
described in [4] or the resets). In general one must take into
account all these increases of the queue size when computing
an ”artificial” arrival rate into the queue. Here the situation
is relatively simple. Signals do not increase the number of
customers. Thus the arrival rate in Little’s law is exactly
the arrival of real customers.

6. EXAMPLES
We will now illustrate the approach using two examples.

We start exploring the modelling power of the G-networks
with restart using a relatively simple example. Through-
out this section we use our Mathematica implementation of
Eqn. 15.

6.1 Cycle of Erlangs
The first queueing-network we study consists of one queue

with K = 5 classes. Jobs arrive only to the first class at rate
λ = 0.1. In each class k = 1, . . . , 5 service times follow an
Erlang distribution of length 2. Subsequent classes have in-
creasingly higher rates. For a job in k = 1, . . . , 4, restart
causes the job to move from class k to class k + 1, which
implies that service gets faster upon restart. For jobs in
class 5, restart means that the job is moved back to class
1. This type of model is appropriate to study the effect
of restart in scenarios where the service becomes faster (or,
equivalently, service-demand is reduced) on subsequent tri-
als because the service was already partially completed on
previous attempts, but where the user aborts and repeats
the complete request, including all partial results, after sev-
eral restarts. For instance, this is often the case with down-
loads of files or websites from the Internet. A similar model
could also be used to study restart in a scenario with load-
balancing, where incoming and restarted jobs are assigned
to servers with different processing speeds.

The parameters are defined as follows: Jobs only arrive to
class 1 at rate λ1 = 0.1. The arrival rate to all other classes
k > 1 equals zero, i.e. λk = 0, for k > 1. The rates of

the Erlang service-time distributions are defined as µ
(1,p)
1 =

1, µ
(2,p)
1 = 2, µ

(3,p)
1 = 3, µ

(4,p)
1 = 4, µ

(5,p)
1 = 5. Signals arrive

at rate Λ to the queue, which we vary across the experiments.

Signals always lead to abort and restart, hence α
(k,p)
i =

1, ∀i, k, p. The matrix H is for the Erlang distribution in all

k classes Hk
1 =





1 0 0
0 0 1
1 0 0

.



 The routing matrix R sends

each job after restart to the next class, where it completes
the remainder of its service. If a job does not meet the
restart deadline in the final class it is reissued and starts all
over from scratch. The matrix R describes the change of
class from k1 to k2 as a job is restarted.

Ri[k1, k2] =











0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

.











Completed jobs leave the network with probability dki = 1.
In consequence, the probability Pr that a job remains in the
network after completion is zero. The parameters are not
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motivated by experimental data, they purely illustrate the
dynamics of the model.

The scenario is illustrated in Figure 1.
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Figure 1: Multiple class G-network with restart
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Figure 2: Simulation scenario

Figure 3 shows the results from this model. Several ob-
servations can be made. Even though restarts increase the
load, the system remains stable for the range of parameters
we investigate. Even stronger, for zero restart rate the sys-
tem behaves as a system without restart, which is the well-
known M/PH/1 queue with processor sharing discipline [?].
We can observe that for a suitably chosen restart rate the
utilisation of the system can be reduced with restart. Fur-
ther, we can see that the queue length and the waiting time
are a function of the utilisation ρ and hence both have the
same minimum as the utilisation with respect to the restart
rate. The waiting time is computed using Little’s law where
the restart rate is not included in the arrival rate of jobs.
Obviously, restart does not increase the number of jobs that
enter the system, but it does manipulate the time spent in
the system by each job.

In order to validate the results, we simulated the scenario
using the SFERA framework [3]. SFERA is a framework for
evaluation of restart algorithms using discrete-event simula-
tion. We implemented the model shown in Figure 2: The
client generates jobs as a Poisson process and sends them
to the server, where they are processed according to the
processor-sharing strategy. Upon completion of a job, the
server sends a response back to the client. Before sending
each job to the server, the client draws a restart interval for
that job from an exponential distribution. When the inter-

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1  1  10  100
restart rate

utilisation ρ
Mean queue length

expected waiting time

Figure 3: Expected queue length and expected wait-

ing time for different values of the restart rate

val elapses, the client sends a restart signal for this job to
the server. The server aborts the processing of the job and
restarts it in the next class, according to the configuration
of the restart acceptance and routing probabilities. We con-
figured the classes to form a circle, as for the G-network.
Note that this model is much more realistic than the G-
network model, in that it allows restart intervals specific to
each job. In contrast, in the G-network model the restart
signals arrive independently of jobs and affect random jobs.
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Figure 4: Average queue length and average re-

sponse time for the simulation

With SFERA we can observe the average queue length
in the server and the completion-times, as experienced by
the client. We show the results of the simulation in Fig-
ure 4. It is obvious that the simulation results also indi-
cate the existence of an optimal restart rate at which the
queue length and completion-times are minimised. Please
note that the optimal restart interval in Fig. 4 of approx-
imately 0.45 corresponds to an optimal restart rate of 2.2,
which is close to the optimal value shown in Figure 3. For
restart intervals larger than this value, the measures ap-
proach the case without restart, while for intervals below
it both measures increase because the server cannot com-
plete jobs within the allotted restart intervals. We also note
that the optimal value of the restart rate is slightly different
from the simulation results. We attribute this to the dif-
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ferences in the models, since the simulation model includes
dependencies between the job and the signal arriving pro-
cesses, which are not present in the G-network model. In
the simulation model each arriving job is assigned its indi-
vidual restart timeout that is sampled from an exponential
distribution at that time. The timeout could also be drawn
from an arbitrary distribution (including the deterministic).
Each event in the simulation, i.e. the arrival or departure
of a job, leads to a reschedule of all present deadlines but
the timeout is not resampled. In contrast, the semantics
of the analytical model imply that timeouts are not stored.
Instead, the time between signals (restarts) is a randomly
sampled sequence of non-overlapping time intervals.

While in the simulation a job at the head of the queue
experiences expiry of its timeout with higher probability
than a job at the end of the queue, in the G-network each
job in the queue is equally likely to be hit by a signal and
restarted. Through the decreasing timeout value the sim-
ulation includes some notion of age of a job, which is not
present in the G-network.

Taking into account that in real-world scenarios restart is
typically triggered by a job-specific timeout, rather than an
independent stream of signals, our simulation results thus
also illustrate that the predictions of the theoretical model
hold reasonably well in realistic scenarios.

6.2 A more complex model
In our second example we formulate a more complex, and

more realistic, model. The model again has only one queue,
which is a limitation in the implementation, not in the for-
malism. The model has 5 classes of customers. Jobs arrive
at rate λ = 0.004 to class 1 and at rate λ = 0.01 to class 2.
We make the following assumptions about the restart:

• Classes 1 and 2 represent ”fresh” customers while class
3 (resp. class 4 and 5) represent customers of class 1
(resp. class 2 and 3) which have been restarted once.

• It is not possible to restart a customer of class 4.

• When we restart a customer of class 5, it becomes a
customer of class 1 again.

We assume the following distributions for the service (the
first state of the PH has state number zero and it represents
the end of the PH (see page 1).

• Class 1 H1
1 =









1 0 0 0
0 0 0.9 0.1
1 0 0 0
1 0 0 0









with µ1,1
1 = 5,

µ1,2
1 = 2 and µ1,3

1 = 0.1. Thus the PH describes an
exponential of rate 5 followed by either an exponential
of rate 2 with probability 0.9 or an exponential of rate
0.1 (which means a long average time compared to the
other transitions).

We also assume the following about the effect of the
restart: if the customer selected at the queue by the
restart signal has class k and is in phase p, the restart

succeeds with probability α
(k,p)
i . We model the follow-

ing typical assumptions: restarts do only succeed with
probability 1/2 for customer of class 1 when it is in
phase 1 or 2. And it succeeds when it is in phase 3.

α
(1,1)
1 = 0.5, α

(1,2)
1 = 0.5, α

(1,3)
1 = 1.

• Class 2 H2
1 =









1 0 0 0
0 0 2/3 1/3

3/4 1/4 0 0
1 0 0 0









with µ1,1
1 = 1,

µ1,2
1 = 1 and µ1,3

1 = 0.1. Thus the PH has a directed
loop (this is possible; we are not restricted to acyclic
PH). Again phase 3 has a long average time compared
to the other transitions). Restarts do not succeed for

customer of class 2 when it is in phase 1 or 2, α
(2,1)
1 =

α
(2,2)
1 = 0. A restart succeeds with probability 1 when

it is in phase 3.

α
(1,3)
1 = 1.

• Class 3 represents restarted class 1 customers. We as-
sume an Erlang 3 with rate equal to 0.5. This is mod-

elled by matrix H3
1 =









1 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0









with µ3,1
1 =

µ3,2
1 = µ3,3

1 = 0.5. We assume that it is possible to
restart class 3 customers.

α
(3,1)
1 = 1, α

(3,2)
1 = α

(3,3)
1 = 2/3

• Class 4 represents restarted class 2 customers. We
assume an Erlang-3 with rate 0.5. This is modelled

by matrix H4
1 =









1 0 0 0
0 0 1 0
0 0 0 1
1 0 0 0









with µ4,1
1 = 0.5,

µ4,2
1 = 0.5, µ4,3

1 = 0.5. We assume that it is unlikely
to restart class 4 customers in phase 1 but quite likely
to restart them successfully in phase 2 and 3. Thus

α
(4,1)
1 = 0.1, α

(4,2)
1 = 2/3, α

(4,3)
1 = 2/3

• Class 5 represent customers which have been restarted
twice. The service is identical to that for class 4.

The customer can be restarted: α
(5,1)
1 = 0.5, α

(5,2)
1 =

0.5 α
(5,3)
1 = 1.

The routing matrix is as follows.

Ri[k1, k2] =











0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0

.











We show the analytical results for this model in Figure 5.
Again, we observe the existence of an optimal restart rate,
which for this model is around 10, and the typical increase
in the measures above and beyond this value.

7. APPLICATIONS
The G-Networks-based approach to the analysis of restart

we presented here can be used to evaluate the effects of
restart in systems that can be modelled as queueing net-
works, such as service compositions in service-oriented sys-
tems. The approach can be applied both by the designer or
operator of such systems and, to a limited degree, by the
service user.

In the following we sketch application of the approach in
the analysis of a practical system. We use a service-oriented
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Figure 5: Load ρ, average queue length and average

waiting time for the second model.

system as our example, where we assume that several ser-
vices are combined to form a service-composition. Each ser-
vice is implemented with a queue for incoming requests and
processing threads to handle the requests. The first step in
the evaluation then consists in obtaining a structural model
of the system. This structural model represents the differ-
ent services as queues with associated servers, and captures
the request flows between services in the routing matrix. In
the second step, the processing characteristics of the services
must be captured and modelled as phase-type distributions,
which will then be included as the service-time distributions
in the model. Adequate service-time distributions would
typically be obtained by measuring processing times and
fitting phase-type distributions to the samples, using one of
several well-known tools [13, 17, 15]. The impact of restart
can then be evaluated in the third step using Equation 15.
For instance, the designer or operator of the system may be
interested in whether the system will be stable under restart,
and for which range of restart intervals stability holds. This
is of particular importance with systems whose users are
likely to restart requests due to impatience, such as online
shopping. If the evaluation indicates that restart can en-
danger the stability of the system, countermeasures may be
applied, such as increasing the system’s capacity or prevent-
ing restart. On the other hand, application of Equation 15
allows a user of the system to compute an optimal restart
timeout. However, this application of the method is cur-
rently limited to cases where the service-time distributions
and the system architecture are published by the services.

The approach may also be employed in the development
and evaluation of algorithms to compute restart timeouts.
Here, the fact that subsequent restarts may encounter differ-
ent service-time distributions can be modelled explicitly, as
in our first example. Furthermore, the implications of many
users applying restart can be incorporated by increasing job
and signal arrival rates.

It should be mentioned that modelling restarts with G-
networks may come with some hardships. The possibility of
infinitely many restarts cannot directly be incorporated into
the model. We solve it with creating a cycle from the first to
the last queue. This only leads to an exact representation if
all service time distributions are equal. Then the model can
be reduced to two classes and jobs alternate between them.

We did not present models for a finite number of restarts
as we did not obtain optimal restart intervals for those and
found them otherwise difficult to validate. It is unclear
whether or not such an optimal restart interval exists with
finite trials. The formulation and solution of the model is
straight forward.

8. CONCLUSIONS
In this paper we considered multiple-class G-networks with

restart as an approach for studying the effectiveness of the
restart method in systems that can be modelled as queueing-
networks with multiple classes of users with class-dependent
service-times. The G-network formalism allowed us to show
that such systems can remain stable, and indeed superstable,
under restart. Furthermore, we showed that in this case
there exists an optimal restart rate at which the system
load, and consequently other measures of interest (such as
the waiting time), is minimised. Our comparison of the ana-
lytical results to simulation results indicates that this is also
the case in more realistic scenarios where the arrival pro-
cess of restart signals is not independent of the job arrival
process.
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Appendix: Proof of Theorem 1:
First remember the Chapman-Kolmogorov equation for the
steady-state distribution:
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We divide both sides by p(~x) and we take into account the
following simplications:
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Combining these relations we get:
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After substitution and simplification we get:
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First remark that
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we can simplify the left hand side of the equation.
Now consider the right hand side. We exchange some

indices to simplify the expressions:

• queues indices i and j in the fourth term

• class indices k and l in the fourth and the fifth terms

• and phases indices p and q in the third and fourth
terms.

It is now easy to factorize the first term with the term and
the fifth term. We obtain:
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p=1

K
∑

l=1

Λ−
i α

(l,p)
i ρ

(l,p)
i R

(l,k)
i

]

Now we remember that:

∆k,1
i =

P
∑

p=1

K
∑

l=1

Λ−
i α

(l,p)
i ρ

(l,p)
i R

(l,k)
i

and,

∇k,1
i =

N
∑

j=1

K
∑

l=1

P
∑

q=1

µ
(l,q)
j ρ

(l,q)
j H

(l)
j [q, 0]P

+(l,k)
j,i

We can now substitute all these relations in the balance
equation.

N
∑

i=1

K
∑

k=1

λ
(k)
i +

N
∑

i=1

K
∑

k=1

P
∑

p=1

[

µ
(k,p)
i + Λ−

i α
(k,p)
i

]

∗

x
(k,p)
i

|~xi|
11{|~xi|>0}

=

N
∑

i=1

K
∑

k=1

x
(k,1)
i

|~xi|ρ
(k,1)
i

11{|~xi|>0}∗

[

λ
(k)
i +∇k,1

i +∆k,1
i

]

+
N
∑

i=1

K
∑

k=1

P
∑

p=1

µ
(k,p)
i ρ

(k,p)
i H

(k)
i [p, 0]d

(k)
i

+
N
∑

i=1

K
∑

k=1

P
∑

p=1

x
(k,p)
i

|~xi|ρ
(k,p)
i

11
{x

(k,p)
i

>0}
∗

P
∑

q=1

µ
(k,q)
i ρ

(k,q)
i H

(k)
i [q, p]

(23)
Taking into account equations 4 to 7, all the state-dependent
terms cancel and we obtain:

N
∑

i=1

K
∑

k=1

λ
(k)
i =

N
∑

i=1

K
∑

k=1

P
∑

p=1

µ
(k,p)
i ρ

(k,p)
i H

(k)
i [p, 0]d

(k)
i (24)

This equation is a flow equation. Indeed the l.h.s. is the flow
of positive customers entering the system while the r.h.s rep-
resents the customers leaving the network. This is formally
proved in the next section.

9.1 Proof of the f ow equation
Let us now consider Equations 4 to 7 to prove formally

that equation 24 is a flow equation. Multiply ρ
(k,p)
i and

ρ
(k,1)
i by the denominator in equation 7 or 4 and make the

summation for all p.

P
∑

p=1

ρ
(k,p)
i (µ

(k,p)
i + Λ−

i α
(k,p)
i )

= λ
(k)
i

+
P
∑

p=1

P
∑

q=1

µ
(k,q)
i ρ

(k,q)
i H

(k)
i [q, p]

+
P
∑

p=1

K
∑

l=1

Λ−
i α

(l,p)
i ρ

(l,p)
i R

(l,k)
i

+
N
∑

j=1

K
∑

l=1

P
∑

q=1

µ
(l,q)
j ρ

(l,q)
j ∗

H
(l)
j [q, 0]P

+(l,k)
j,i .

(25)

Note that for all i, k, q we have:

P
∑

p=1

H
(k)
i [q, p] = 1−H

(k)
i [q, 0].

Thus equation 25 becomes after substitution and cancella-
tion :
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P
∑

p=1

ρ
(k,p)
i Λ−

i α
(k,p)
i +

P
∑

q=1

ρ
(k,q)
i µ

(k,q)
i H

(k)
i [q, 0] =

λ
(k)
i +

P
∑

p=1

K
∑

l=1

Λ−
i α

(l,p)
i ρ

(l,p)
i R

(l,k)
i +

N
∑

j=1

K
∑

l=1

P
∑

q=1

µ
(l,q)
j ρ

(l,q)
j H

(l)
j [q, 0]P

+(l,k)
j,i .

(26)

We now sum over all values of k and we take into account
that for all l we have

∑K
k=1 R

(l,k)
i = 1. We cancel some

terms.

K
∑

k=1

P
∑

q=1

ρ
(k,q)
i µ

(k,q)
i H

(k)
i [q, 0] =

K
∑

k=1

λ
(k)
i +

K
∑

k=1

N
∑

j=1

K
∑

l=1

P
∑

q=1

µ
(l,q)
j ρ

(l,q)
j H

(l)
j [q, 0]P

+(l,k)
j,i .

(27)

We now sum over all values of queue index i and we re-
member that for all j and l, we have:

N
∑

i=1

K
∑

k=1

P
+(l,k)
j,i = 1− d

(l)
j .

After substitution in Equation 27 and cancellation, we get:

N
∑

i=1

K
∑

k=1

λ
(k)
i =

N
∑

j=1

K
∑

l=1

P
∑

q=1

ρ
(l,q)
j µ

(l,q)
j H

(l)
j [q, 0]d

(l)
j ,

which is the same as Equation 24. Thus it is a flow equation
which is consistent with Equations 4 to 7

49




