Resource Availability Based Performance Benchmarking
of Virtual Machine Migrations

Senthil Nathan, Purushottam Kulkarni and Umesh Bellur
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai, India .)
{cendhu,puru,umesh}@cse.iitb.ac.in

ABSTRACT

Virtual machine migration enables load balancing, hot spot
mitigation and server consolidation in virtualized environ-
ments. Live VM migration can be of two types - adaptive,
in which the rate of page transfer adapts to virtual ma-
chine behavior (mainly page dirty rate), and non-adaptive,
in which the VM pages are transferred at a maximum pos-
sible network rate. In either method, migration requires a
significant amount of CPU and network resources, which can
seriously impact the performance of both the VM being mi-
grated as well as other VMs. This calls for building a good
understanding of the performance of migration itself and
the resource needs of migration. Such an understanding can
help select the appropriate VMs for migration while at the
same time allocating the appropriate amount of resources
for migration. While several empirical studies exist, a com-
prehensive evaluation of migration techniques with resource
availability constraints is missing. As a result, it is not clear
as to which migration technique to employ under a given
set of conditions. In this work, we conduct a comprehensive
empirical study to understand the sensitivity of migration
performance to resource availability and other system pa-
rameters (like page dirty rate and VM size). The empirical
study (with the Xen Hypervisor) reveals several shortcom-
ings of the migration process. We propose several fixes and
develop the Improved Live Migration technique (ILM) to
overcome these shortcomings. Over a set of workloads used
to evaluate ILM, the network traffic for migration was re-
duced by 14-93% and the migration time was reduced by
34-87% compared to the vanilla live migration technique.
We also quantified the impact of migration on the perfor-
mance of applications running on the migrating VM and
other co-located VMs.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]|: [Performance

attributes]; D.4.8 [OPERATING SYSTEMS]: Performance—

Measurements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

387

Keywords

Virtualization; Live Migration

1. INTRODUCTION

Advances in virtualization technologies have enabled host-
ing of applications and services in isolated and resource-
guaranteed virtual machines. Typically, a single physical
machine (PM) hosts multiple applications, each executing in
it’s own virtual machine (VM). In addition, today’s virtual-
ization technologies [4, 12, 6] allow VMs to be migrated from
one physical machine to another during execution (VM live
migration). This feature along with dynamic resource pro-
visioning for a virtual machine can be used to either balance
load [15, 11] across hosts (physical machines) in a data center
or to consolidate virtual machines [5, 14, 7] onto fewer phys-
ical machines for power savings and reducing operational
costs (i.e., server consolidation).

Live VM migration entails an iterative process which trans-
fers memory contents of a VM from one host to another.
Since the VM is executing, memory pages are dirtied while
migration happens. Thus, multiple iterations are required
to transfer the state. Further, the migration can be of two
types— a non-adaptive process in which a VM’s memory
pages are transferred at the maximum possible rate, and
an adaptive process in which the rate of page transfers is
tied to the page dirty rate. Heuristics for migration coupled
with memory usage patterns of the VM impact the perfor-
mance of live migration. The important performance/cost
metrics of migration are: migration time—the total duration
for the migration to complete; down time—the duration of
time for which the virtual machine is not executing (dur-
ing switchover); CPU and network resources consumed for
migration; and performance implications on migrating VM
and other co-hosted VMs.

The resource management heuristics [15, 11, 5, 16] em-
ployed in today’s virtualized data centers to mitigate over-
load situations are migration-aware and base their migration
decisions on factors such as resource utilization levels across
machines, the “size” of the virtual machine to be migrated,
the availability of resources at target machines, the number
of migrations to achieve dynamic provisioning goal, etc. Ac-
curate characterization of the cost-benefit trade-off between
performance/cost metrics and configurations of the migra-
tion process is vital for migration-based resource manage-
ment. Consider the following scenario, involving a cluster of
PMs, each hosting several VMs (a typical hosting situation).
A dynamic resource management problem is to modify re-
source allocations for the VMs to ensure SLA guarantees of

services/applications executing in the VMs. In such a sce-
nario, suppose the resources allocated to a VM need to be
increased but its host PM has no spare capacity (an over-
load condition). A migration based reconfiguration of VMs
migrate the highly loaded VM to a lightly loaded PM or
migrate other VMs to create additional local capacity. For
example, some existing approaches select VMs for migration
based on the size (e.g., memory size) of the VMs. Verifying
the efficacy and applicability of this basis is important. Se-
lection of input parameters for migration and characteristics
of the VM (e.g., memory size, memory usage dynamics etc.)
impacts the cost-benefit trade-off of migration-enabled re-
source management. This manifests into several interesting
questions, (i) given a cost metric (e.g., minimize interference
to other VMs due to migration) which set of VMs should
be migrated?, (ii) under which conditions would adaptive
migration be preferred over non-adaptive migration?, (iii)
which destination host should be selected, to minimize mi-
gration costs?, (iv) how much quantity of the CPU and net-
work resources should be allocated to the migration process
itself, to minimize migration costs?

While many studies related to migration performance ex-
ist in current literature, none of them answer all the ques-
tions mentioned above. A comprehensive empirical study of
migration performance and related cost-benefit analysis will
enable improved decision making for managing resources.
Our contributions are as follows:

e We performed a comprehensive empirical study of VM
live migration and compared the performance of adaptive
live migration and non-adaptive live migration with respect
to parameters which affect migration performance, such as
VM size, page dirty rate, resource availability.

e We identified and implemented optimizations to the mi-
gration technique based on the above studies. In particular,
we propose an enhanced migration process—the Improved
Live Migration (ILM) technique.

e We quantified the performance degradation in the mi-
grating VM and in other VMs during adaptive live migra-
tion, non-adaptive live migration and ILM technique.

In the rest of the paper, we present a short background
of live migration and motivate the need for a migration per-
formance study in Section 2. In Section 3, we describe the
experimental setup and methodology. An empirical compar-
ison of non-adaptive live migration and adaptive live migra-
tion is presented in Section 4. The Improved Live Migration
techniques and its evaluation are presented in Section 5. In
Section 6, we present the impact of migration on applica-
tion’s performance. Related work is presented in Section 7,
while Section 8 concludes the paper.

2. BACKGROUND

Virtual machine live migration [10] is a process of copying
memory pages of the virtual machine to the destination ma-
chine in rounds—known as as the iterative pre-copy phase.
Tteration #1 transfers all memory pages allocated to a VM.
Subsequent iterations transfer only pages dirtied during the
previous iteration. However, pages dirtied before their trans-
mission are skipped from transmission in the current iter-
ation, based on the expectation that these pages may get
dirtied again. The Xen live migration process [4] transfers
pages in batches, i.e., a set of pages at a time instead of one
page at a time. After a batch is transferred, the migration

388

process locates pages that were dirtied (with the help of Xen
shadow page tables) during the last batch transfer time. The
yet-to-be-transferred dirty pages are added to a skip list.
The rate at which pages are transferred is based on two
approaches—mon-adaptive and adaptive. Non-adaptive
live migration transfers pages at the maximum available net-
work capacity, whereas the adaptive technique adjusts the
rate of page transfers to the rate at which pages are dirtied
by the virtual machine. Iteration #1 transfers pages at the
rate of rmin Mbps, and subsequent iterations (i>1) transfer
pages at a rate r; Mbps, which is equal to

(1)
where Tmin, "maz and § are configurable variables. d;_1 is
the page dirty rate (unit in Mbps) during iteration #(i-1)
and is equal to,

r; = min { max(diq + 4, Tmm), Tmaz}

#pages dirtied in iter. #(i-1) x page_size @)
time taken by iter. #(i-1)

Based on the page dirty rate dynamics, the iterative pre-
copy may never complete. To avoid such situations, a stop-
and-copy condition is used. The switch from iterative pre-
copy to stop-and-copy occurs when either one of the follow-
ing four conditions occur:

di—1 =

1. a fixed number n of pre-copy iterations are completed.

2. the total network traffic generated is greater than a
threshold, i.e., m times greater than the VM size.

3. the number of pages dirtied during the current itera-
tion is less than a threshold, i.e., less than p pages.

4. the page dirty rate of the last iteration is greater than a
threshold, i.e., greater than 7,4, Mbps and the num-
ber of pages sent in the current iteration is greater
than the previous iteration (imply a decrease in the
page dirty rate).

With non-adaptive live migration, only the first three stop-
ping conditions are applicable, while all four conditions are
applicable for adaptive live migration. In the stop-and-copy
phase, the virtual machine being migrated is suspended and
pages dirtied during the last iterative pre-copy round are
transferred at a rate equal to the available network capacity
(with both adaptive and non-adaptive live migration tech-
niques). The performance of live migration process can be
evaluated in terms of:

(i) migration time—the time between the initiation of mi-
gration and the successful completion, and

(ii) downtime—the time for which the service provided by
the VM is unavailable, i.e., the time taken by the stop-and-
copy phase.

The cost of the live migration process can be evaluated in
terms of: (i) total CPU utilization at the source and des-
tination PMs to transfer and receive pages, respectively, (ii)
the total network traffic generated during migration—i.e.,
total number of pages transferred (some possibly multiple
times) during migration, (iii) migration rate—the rate at
which pages are transferred. Cost of migration is a function
of these parameters as each of them can impact the per-
formance of applications running in virtual machines at the
source and destination PMs as well as other machines which
share the network link.

Since the migration process consumes memory, network
and CPU resources, the following parameters affect the per-
formance and cost of the migration process:

1. Memory size allocated to the virtual machine.

2. Available CPU resource levels at the source and desti-
nation physical machines.

3. Available network capacity between source and desti-
nation physical machines.

4. The rate at which the application dirties memory pages.

2.1 Need for Migration Performance Study

Virtual machine migration based dynamic resource man-
agement opens up several questions:

e What amount of CPU and network resources should
be allocated for the migration process? Migration perfor-
mance itself is proportional to the resources allocated to it.
However, resource allocation for the migration process usu-
ally comes at a cost of degraded performance in other VMs,
from which resources are taken away to enable migration.
Should we then treat the migration activity as secondary?
Or should we speed it up in order to free resources on the PM
from which the VM is migrating? These questions can only
be answered by a thorough understanding of the dependen-
cies between migration performance and resource allocation.

e Given an operating state of the VMs, which migration
technique is best suited to minimize migration cost?

e What parameters should be considered while selecting
a VM for migration? Existing solutions either select a VM
randomly or consider only size of the VM to reduce migra-
tion time, downtime and migration cost. Is considering only
VM size adequate?.

e What are the factors need to be considered while select-
ing a new destination PM for a VM? Existing approaches
select a PM which is least loaded. Should the network band-
width availability between source and destination PM, and
CPU availability at destination PM for migration process be
considered?

e How do the four stop-and-copy conditions impact the
performance of live migration?

1. It is not clear how the number of iterations affects
migration time and downtime.

2. What should be the threshold for iterative pre-copy
condition 27

3. The iterative pre-copy condition 4 is applicable for
adaptive live migration but not for non-adaptive live
migration. It is not clear what will be the impact of
condition 4 on adaptive live migration.

While many studies of migration performance exist in the
literature, we are not aware of any that have explored all
of these questions. A comprehensive empirical study of mi-
gration performance can answer these and related questions.
This will help to make effective resource-availability based
decisions for virtual machine based load balancing and server
consolidation.

3. METHODOLOGY AND SETUP

In order to compare the performance of adaptive live mi-
gration and non-adaptive live migration and answer other
questions, migrations of VMs hosting four different work-
loads are performed by (i) varying the VM size and by keep-
ing the load level of each workload constant, (ii) varying the
load level of each workload (to create different page dirty
rates) and by keeping the VM size and available resources
constant, and (iii) varying the available resources and by

389

PMA1 (source) ‘
.VM logger
migration

w

PM2(destvivr"1;fiv(‘)n) logger

Figure 1: Experimentation setup for performance
benchmarking.

1 Gbps
Controller

[NFs] [NTP]

Gawitch>

keeping the load level of each workload and virtual machine
size constant. We measured migration time, downtime, total
network traffic generated and CPU resource utilization. We
performed experiments on the Xen virtualization platform.

We used the following workloads as application running
within VMs (to be migrated). We picked these workloads
as each one has a different page dirty pattern.

1) Linux idle: an idle Linux installation that does not
host any application. This workload is mainly used as a
baseline for comparison.

2) RUBIS [2]: an auction site prototype modeled after
eBay.com. Clients perform browse and bid on existing items,
register and sell items. We used the PHP implementation
of RUBIS v1.4.3 with MySQL. We hosted the RUBiS web
server (Apache/PHP) and database server (MySQL) on two
different virtual machines. This workload results in high
CPU usage and low I1/O usage. The load was varied by
varying the number of clients in the RUBIS workload gen-
erator.

3) File Server: an HTTP file server that hosts several
files of different sizes. We used four clients to download
four different files of size ranging from 1 GB to 4 GB using
wget. This is mainly an I/O intensive workload. Unless
otherwise specified, the default transfer rate is 240 Mbps.
We controlled the transfer rate with the help of wget --rate-
limit parameter.

4) Kernel Compile: a CPU intensive workload that
compiles the Linux kernel v2.6.39 with the default config-
uration. Unless otherwise specified, the default number of
threads used for compilation was 2.

Migrations of these workloads were performed using the
setup shown in Figure 1. Our setup consisted of five physical
machines, each with a 2.8 GHz Intel Core i5 760 CPU (4
cores), and 4GB of main memory. Out of the five physical
machines, three acted as a controller whereas the other two
physical machines (PM1 and PM2) were installed with Xen
hypervisor v4.0.1. All five machines were connected through
a 1 Gbps D-Link DGS-1008D switch. All physical machines
and virtual machines were installed with the Ubuntu Server
10.04 64-bit Linux distribution.

We used three controllers to make sure that it does not be-
come a bottleneck during the experiments. Each controller
acted as a Network File System (NFS) server (i.e., shared
storage) providing a specific set of virtual machine’s disk
and swap images. It also acted as Network Time Protocol
(NTP) server (for time synchronization). Each controller
executed a load generator daemon which issued commands
to (i) create or destroy a virtual machine, (ii) specify the
size of a VM and allocate CPU for the migration process,
(iii) migrate the VM from PM1 to PM2, and (iv) generate
load for the virtual machines.

The logger daemon executed in the management domain
(Dom0) of PM1 and PM2. The Dom0 runs the Xen man-

migration time (adaptive)
migration time (non-adaptive) ®

n/w traffic (adaptive) —&—
n/w traffic (non-adaptive) ----

7150 g2 5. @150 gy _
2120 — I P 48 2120 JUP g 2 8
= 90 g 3g = | .74 115 ¢
< -1 £ = < - =
2 60 g 2g 2 60 Q1 g8
5 Jdos 2 = s 37.7 =
k=) 30 7.8 12.7 18.3 7| Y- % 1 % k=3 30 11.8 16.5 213-0.5 é
E o 0 0 0 E o N N I | 0

.5GB 1GB 1.5GB .5GB 1GB 1.5GB .5GB 1GB 1.5 GB
VM size VM size VM size
& (a) RUBIS web server w’e‘ (b) file server w’e‘ (c) kernel compile
£ 600 T file server -5+ ! x I x 500 512MB — ! !
gigg _web server ~@- 3 | 8100 3 400 1024 MB =
£ L 1 E web server = 300 1536 MB ===
2 300 = 7] g DB server ===~ : 200 3 3
g 200 = % 50 ; . ,-d—"" ___ qé, 100 : y : : :
5100 e 1 " mmmemmmmmmmmETTITTT L N T T T T
Z o0 1 1 1 = el 1 1 9 / I I I I
2 .5 GB 1GB 1.5GB S 0 20 40 60 80 100 120 &8 0 20 40 60 80 100 120
VM size k] elapsed time (sec) =] elapsed time (sec)
(d) Network overhead : non-adaptive (e) #pages dirtied - 512 MB VM size (f) #pages dirtied - file server
Figure 2: Effect of VM size on the performance of live migration
Table 1: Application’s downtime during live migration
VM size (GB)
05GB | 1GB [1.5GB [05GB | 1GB [1.5GB | 05GB | 1GB | 1.5GB
Benchmark adaptive migration rate (Mbps) | adaptive downtime (ms) non-adaptive downtime (ms)
RUBIS web server 122 108 106 33 37 43 33 35 41
RUBIS db server 108 107 106 27 32 34 26 31 33
kernel compile 132 120 112 541 640 696 362 377 475
file server 243 252 263 822 988 1149 23 28 28

agement tool stack that performs the migration of virtual
machine. The logger daemon recorded the CPU utiliza-
tion of DomO0 (using Xentop[1]) and network utilization (us-
ing /proc/net/dev file) during migration. The duration of
each iteration, number of pages dirtied, the number of pages
transmitted, the migration rate, etc. during each pre-copy
iteration were logged in /var/log/xen/ by the Xen hyper-
visor. The DomO of PM1 and PM2 were configured with
512 MB of main memory and 1 CPU core for all the exper-
iments. The logger daemon utilized less than 2% of Dom0
CPU per second and was considered as negligible. In all
experiments, a virtual machine was migrated from PM1 to
PM2. Each migration experiment was repeated 10 times
and results reported are averaged over 10 trails.

In Xen Hypervisor, by default, the following values were
assigned to variables in iterative pre-copy termination con-
ditions, i.e., n = 29 iterations, m = 3, p = 50 pages and
Tmaz = 500 Mbps. In equation (1), the variables ¢ and rmin
were assigned with 50 Mbps and 100 Mbps, respectively.

4. COMPARISON BETWEEN ADAPTIVE
AND NON-ADAPTIVE LIVE MIGRATION

In this section, we compare the performance of two vari-
ants of the live migration process and try to answer the
questions presented in Section 2.1.

4.1 Change in VM size

In a virtualized server environment, each virtual machine
is allocated some amount of memory along with other re-
sources to handle its peak workload. To evaluate the per-
formance of adaptive live migration and non-adaptive live
migration, we migrated VMs of different memory sizes host-
ing the four workloads described in Section 3.

Figures 2(a), (b) and (c) plot the migration time and the

total volume of network traffic generated over different mem-
ory sizes for both adaptive and non-adaptive live migration.

Observation 1: The time taken by adaptive live mi-
gration was three to eight times higher than that of non-
adaptive live migration. This is because migration rates
with adaptive live migration were three to eight times lower
compared to non-adaptive live migration. Table 1 shows
the migration rate of adaptive live migration. The network
bandwidth utilized by non-adaptive live migration for the
file server workload was 640 Mbps (which was the available
capacity), whereas for the other workloads it was observed
to be 830 Mbps to 900 Mbps (network bandwidth require-
ment of other workloads was lower as compared to the file
server workload).

Observation 2(a): The total volume of network traf-
fic generated (i.e., cost of migration) was on average 2.45
times higher with adaptive live migration for the file server
workload as compared to non-adaptive live migration. The
reasons for this result are: (i) Adaptive live migration spent
more time in each iteration as compared to non-adaptive live
migration as the migration rate was low. Further, the num-
ber of unique pages dirtied increased significantly over time
for the file server workload — refer Figure 2(e). Hence, the
number of unique pages dirtied and the number of pages
transferred during an iterative pre-copy iteration were al-
ways higher with adaptive live migration compared to the
corresponding iteration in non-adaptive live migration. (ii)
Both adaptive live migration and non-adaptive live migra-
tion with the file server workload executed more or less same
number of iterations (/10 iterations).

Observation 2(b): For the kernel compile workload, the
total network traffic generated was on average 1.75 times
lower with adaptive live migration compared to non-adaptive
live migration. Similarly, for the RUBiS workload it was

390

migration time (adaptive)

migration time (non-adapative) M n/w traffic (adaptive) =

n/w traffic (non-adaptive) -*--
116.4

5120

5120 |

7120 0T =T = B 1028 35
(V] [} Q
g 90 S g 9 S g 90 29,
- Q = (3] - (3]
.E 60 § E 60 § § 60 1§
© < ® v B L. Ly 216 by
5 30 % 5 30 % 5 30 %
£ £ £
0 800 0 400 800 1200 0 0 80 160 240 0
#clients — #clients — transfer rate (Mbps)
(a) Web Server e (b) Database Server = (c) File Server

w120 T T 3a 2120F T fthfead ¥— T - T3] X120F T400dients — T—— | S—
Q 87 ° — : - . —_ :
g 90 82.6 7.3 O 2 g9l 2 threads 2 go 800 clients o p—
'-: O - 2}_:; = 3 threads 5
5 6o 5 £ : g 60
IS R A i L SRS o S S N
5 2 g g 30
E o - - 0: ® 9 * 0

1 2 s 0 20 40 60 80 100 120 & 0 20 40 60 80 100 120

#threads ° elapsed time (sec)] elapsed time (sec)

(d) Kernel Compile

(e) #pages dirtied with kernel compile

(f) #pages dirtied with web server

Figure 3: Effect of page dirtying rate on the performance of non-adaptive live migration

1.08 times lower. The reasons for this behavior are: (i)
Though the time for each iteration was higher with adap-
tive live migration as compared to the corresponding itera-
tion with non-adaptive live migration, the number of unique
pages dirtied and the number of pages transferred during an
iteration increased only marginally. Figure 2(e) shows the
slowly increasing page dirty rate of the RUBIS and the ker-
nel compile workloads. (ii) The non-adaptive live migration
and adaptive live migration of these two workloads executed
29 iterations and 12 iterations, respectively. The adaptive
live migration aggressively terminated iterative pre-copy due
to the “page dirty rate is greater than a threshold” condition
which is not used as a stopping condition for non-adaptive
live migration. With increase in the number of iterations
executed, the network traffic generated increased.
Takeaway: Irrespective of the migration technique, the net-
work traffic generated during migration depends on the page
dirtying characteristics of the VM and the migration rate.

Observation 3: With non-adaptive live migration, mi-
gration time for RUBiS web server workload with 1 GB of
memory and kernel compile workload with .5 GB of memory
were almost the same. Similarly, the total network traf-
fic generated during the migration of these two workloads
were observed to be same. The reason is that 27 out of 29
iterations spent less than 20 seconds for both of the work-
loads. The number of unique pages dirtied (refer Figure
2(e)) during those 27 iterations was higher with kernel com-
pile workload as compared to RUBIS web-server workload.
Takeaway: Considering only VM size to reduce the migra-
tion cost (i.e., migration time and Tesource utilization) is
not adequate. It is necessary to account for page dirty rate
of VM as well. Though number of pages dirtied per sec-
ond with kernel compile workload (25,000 pages/sec) was
higher than file server workload (8,000 pages/sec), number
of unique pages dirtied over time was higher with file server.
Hence, only the number of unique pages dirtied over time
should be considered.

Observation 4: The downtime with adaptive live migra-
tion was observed to be higher as compared to non-adaptive
live migration. The reasons are as follows: (i) For an it-
eration #i, the number of unique pages dirtied with adap-
tive live migration was always higher than non-adaptive live
migration (as mentioned in point (i) of observation 2(a) &

391

2(b)). (ii) Number of pages dirtied in iteration #i was al-
ways lesser than iteration #(i-1) for both adaptive live mi-
gration and non-adaptive live migration. This is because
the iteration time decreased with increase in iteration num-
ber as the number of pages to be transferred per iteration
decreased. As number of iterations with adaptive live mi-
gration was always lower as compared to non-adaptive live
migration and also due to the reason (i) mentioned above,
the number of pages to be transferred during stop-and-copy
phase was higher.

Observation 5: With increased VM size, the network
overhead, i.e., the difference between total metwork traffic
generated and size of the VM, increased. This is plotted in
Figure 2(d). As the size of the VM increased, the time taken
by iteration #1 increased. As a result, the total number of
unique pages dirtied during iteration #1 increased. Thus,
the time taken by later iterations and the unique number of
pages dirtied per iteration also increased. Further, with the
file server workload, increase in VM size resulted in increase
in size of the page caches. This resulted in higher number of
pages dirtied per second. Figure 2(f) shows the increasing
application page dirty rate of the file server workload for
different VM sizes.

Increase in time per iteration and pages dirtied per itera-
tion resulted in larger number of pages to be copied in the
stop-and-copy phase. As a result, the downtime of appli-
cations increased with increase in VM size, as reported in
Table 1.

Observation 6: The migration rate of adaptive live mi-
gration decreased as the VM size increased except for the
file server workload. Table 1 presents the migration rate of
adaptive live migration. This is because increase in VM size
increased the duration of each iteration significantly but in-
crement in the number of unique pages dirtied per iteration
was less significant. As a result, the migration rate calcu-
lated using equation (1) and (2) for each iteration decreased
with increase in the VM size. With the file server work-
load, the number of unique pages dirtied per iteration also
increased significantly. As a result, the migration rate in-
creased with increase in the virtual machine size of the file
server workload.

Observation 7: CPU utilization at the destination PM
was observed to be higher than at the source PM. For exam-

Table 2: Migration rate with adaptive live migra-

tion.
Benchmark migration rate (Mbps)
load L1 load Lo load L3
RUBIS web server 104 106 117
RUBIS db server 105 107 109
kernel compile 105 119 121
file server 102 165 237

ple, with non-adaptive live migration, with a migration rate
of 640 Mbps, Dom0O CPU utilization at the source and desti-
nation PMs was observed to be 24% and 48%, respectively.
The reasons for this behavior are: (i) At the source PM, the
TCP segmentation offload feature was enabled to reduce the
CPU overhead of TCP/IP. (ii) As decoding of packets at the
destination PM tend to be more expensive than encoding at
the source, CPU utilization was higher. (iii) In addition,
memory write operation (i.e., storing memory pages of VM)
at the destination PM is higher in cost compared to page
read at the source.

Through these experiments, we observe that page dirty
rate and migration rate play an important role in deciding
the performance and cost of the live migration process. In
the following sections, we study the impact of page dirty
rate and resource availability (indirectly the migration rate)
on the performance and cost of virtual machine migration.

4.2 TImpact of Page Dirty Rate

In this section, we analyze and quantify the impact of the
page dirty rate on the performance of the migration pro-
cess. In order to generate different page dirty rates, we
executed three workloads each with three different config-
urations (load levels). As expected, the number of unique
pages dirtied increased as the load levels increased. All VMs
were allocated memory of 1 GB each and the available net-
work capacity for the migration process was 600 Mbps.

Figures 3(a), (b), (c), and (d) plot migration time and to-
tal network traffic over different load levels for both adaptive
live migration and non-adaptive live migration. The number
of unique pages dirtied over time at different load levels for
kernel compile and RUBIS web server workloads are plotted
in Figures 3(e), and 3(f), respectively.

Observation 8: With adaptive live migration, only the
migration time of the RUBiIS workload increased as the load
level increased, whereas the migration time of the file server
and the kernel compile workloads decreased. The reason is
that, with the file server and kernel compile workloads, the
migration rate increased significantly as the page dirty rate
increased. Remember that page dirty rate is calculated using
equation (2). With the RUBIS workload, the increase in
migration rate was not significant. Table 2 presents the
migration rate for adaptive live migration. This is because
most of the iterations with adaptive live migration of all
three workloads spent less than 10 seconds. The unique
number of pages dirtied during that period was larger for
the file server and kernel compile workloads (Figures 3(e)
and 3(f))) compared to the RUBIS workload.

Observation 9: The total volume of network traffic in-
creased as the load level increased, except with adaptive live
migration of VM hosting kernel compile workload. This is
because the total number of pages dirtied during any partic-
ular iteration increased as the page dirty rate increased. As
a result, the number of pages transmitted during any partic-
ular iteration also increased. However, when three threads

392

were used in the kernel compile workload, the total network
traffic generated was lower (due to fewer iterations) than
the two-threaded kernel compile workload. As the page dirty
rate of three threads kernel compile workload was higher, the
iterative pre-copy phase terminated aggressively with fewer
iterations due to the “page dirty rate of previous iteration is
greater than a threshold and #pages sent in current iteration
is greater than previous iteration” condition as compared to
the two threads kernel compile workload.

In order to understand the impact of page dirty rate fur-
ther on network traffic, we performed migration of a VM
hosting a micro-benchmark, where we can configure the num-
ber of pages dirtied per second (n), and a hot-page factor
(h), which denotes the percentage of “n” pages that are dirt-
ied every second (i.e., same pages). The remaining 100 — h
percentage of “n” pages are selected randomly. The size of
the VM was 1 GB and the available network capacity for
the migration process was 1 Gbps.

Takeaway: Allocation of network resources to non-adaptive
live migration process should be much higher than the page
dirty rate of the VM that is being migrated to reduce total
network traffic. When the number of pages dirtied per sec-
ond is greater than the network capacity, it is better to reduce
the threshold value in iterative pre-copy condition 2 to reduce
magration cost.

The reasons are as follows: Figure 4(a) plots total network
traffic generated with non-adaptive live migration over dif-
ferent number of pages dirtied per second. When the number
of pages dirtied per second was less than the network capac-
ity (i.e., < 32768 pages), the iterative pre-copy phase termi-
nated due to the “number of pages dirtied in current itera-
tion is less than a threshold” condition. This is because the
rate at which pages dirtied during every iteration was less
than the migration rate. As a result, the number of unique
pages dirtied decreased in each iteration, as the number of
iteration increased. When the number of pages dirtied per
second was greater than the network capacity, the iterative
pre-copy phase terminated due to the “total network traffic
generated is greater than a threshold” condition. This is be-
cause the rate at which pages dirtied during every iteration
was greater than the page transfer rate. With a decrease in
the hot-page factor (h), the total network traffic increased
as more pages were dirtied.

Takeaway: To reduce the total network traffic generated
with adaptive live migration, it is better to remove part (ii)
from iterative pre-copy condition 4. This reduces the total
resource utilization significantly but with little increase in the
downtime.

The reasons are as follows: Figure 4(b) plots the total
network traffic generated with adaptive live migration over
different number of pages dirtied per second. With a hot-
page factor of 100%, the total network traffic generated is
almost same for different number of pages dirtied per sec-
ond. This is because the iterative pre-copy phase terminated
at iteration #3 due to the “(i) page dirty rate of the last it-
eration is greater than a threshold and (ii) #pages sent in
current iteration is greater than the last iteration” condition
(the dirty rate is calculated using equation (2)). When the
hot-page factor was less than 100% (implying increase in the
page dirty rate), we expected the iterative pre-copy to ter-
minate at iteration #3 or earlier due to the above mentioned
iterative pre-copy condition. However, a larger number of

o 1]

6 T T T 6 T T T 6 T T T O 5 T T T 95 T T T
o |100% hot-page ---e--- @ |100% hot-page ---e--- @ |100% hot-page ---e--- }';4 1100% hot-page ---e--- |] 4 |100% hot-page ---@--- |
& 5 [75% hot-page ---©--- - (&5 |-75% hot-page ---©--- 4 (55 |-75% hot-page ---©--- 4 & 75% hot-page ---©--- s 75% hot-page ---©---
s | 50% hot-page - o | 50% hot-page ---¥--- o | 50% hot-page ---*--- & 3 -50% hot-page —---- - & 3 [-50% hot-page - -
"@4 I 25% hot-page - o 54 -25% hot-pz}g@\:ﬂﬁf 4 %4 |-25% hot-page ---E--- 22 | 25% gé)t-page - E 5 | 25% hot-page ---E--- |
= = S = ~E = -
£3 P o 3| A% *\%%é 4 x3t 1z ® 2B 4 S1 ¥ 4
9 i g Y oo e Q Ejt s o AN] LN
H Jults S * o = BN TO[®-e._ _\%) 41 ®0[@-e.) 1
B2 A 182 [1821 PR, 18 o By c .\

c o] c K c ’ RN €4 L “No--@g 4 0O | * .
_ Py _ @-- ot _ 4 EF — 38— o B\ c .
s 1| @ a 4 ®1} o --0--0--0-0 | T1| @ .o o-0o--6-8 | € - T g
s s 5 a2 [Te-e | 82T Beg
0 1 1 1 0 1 1 1 0 1 1 1 g_s 1 1 1 3_3 1 1 1
0 16384 32768 49152 0 16384 32768 49152 0 16384 32768 49152 & o 16384 32768 49152 E 0 16384 32768 49152
#page dirtied (per sec) #page dirtied (per sec) #page dirtied (per sec) #page dirtied (per sec) #page dirtied (per sec)

(a) Non-adaptive live migration (b) Adaptive live migration (c) madap live migration (d)(adap-non.adap) n/w traffic (e)(madap-non.adap) nw traffic
Figure 4: Impact of page dirtying rate on the migration generated network traffic

Table 3: Downtime with adaptive and modified-
adaptive live migration (madap) techniques.

#pages adaptive(secs) madap(secs)

dirtied n h=25 h=75 h=25 h=75
16384 0.22 0.44 0.5 0.67
32768 1.2 3.4 1.52 5.09
49152 2.2 5.3 3.2 5.47

iterations were required to meet “# pages sent in current
iteration is greater than the last iteration” condition. As a
result, the network traffic was higher.

To speed up termination of the migration process and
hence reduce the network overhead, we eliminate the stop-
ping condition #(ii) and study its impact on the perfor-
mance and cost of migration. We call this updated technique
the modified-adaptive (madap) migration technique. Figure
4(c) plots the total network traffic generated with modified-
adaptive live migration over different number of pages dirt-
ied every second. The total network traffic observed was
quite low compared to adaptive live migration. However,
the downtime of the VM increased and is presented in Table
3. The reason is that, the number of iterative pre-copy it-
erations executed with modified-adaptive live migration was
less than adaptive live migration. However, with the four
workloads listed in Section 2, we did not observe a signifi-
cant difference (< 100 MB) in network traffic with adaptive
live migration and modified-adaptive live migration and we
observed that the downtime increased on average by 500
milliseconds.

Observation 10: When the number of pages dirtied per

second s greater than the network capacity, the total network
traffic generated with adaptive live migration and modified-
adaptive live migration was less than non-adaptive live mi-
gration. This behavior occurs because adaptive live migra-
tion and modified-adaptive live migration executed fewer it-
erations when the number of pages dirtied per second was
greater than the network capacity. The iteration terminated
due to iterative pre-copy termination condition #4 (refer
Section 2). Figures 4(d) and 4(e) plot the difference in net-
work traffic generated by adaptive and modified-adaptive
live migration (madap) with respect to non-adaptive live
migration.
Takeaway: If we enable iterative pre-copy termination con-
dition #4 for mon-adaptive live migration, the total net-
work traffic generated with non-adaptive will become less
than adaptive. We present the impact of this modification
on non-adaptive live migration in Section 5.1.

In these experiments, we do not restrict the resources to
be utilized by the migration process. However, dynamic
resource management techniques may constrain the avail-

393

ability of resources for migration—finite resources are dy-
namically distributed to balance performance and resources
utilized over all VMs on a host. In the following section,
we study the performance of the migration processes with
resource constraints.

4.3 Impact of Resource Availability

In this section, we quantify the impact of resource avail-
ability, (i) network capacity, and (ii) DomO CPU, on the
performance of VM migration process. First, we performed
adaptive and non-adaptive live migration of VMs by restrict-
ing the network bandwidth utilization. To restrict the band-
width utilization of a migration process, we introduce a new
variable named maz_bw_limit in the source code. As a re-
sult, the migration process’s transfer rate does not exceed
maz_bw_limit Mbps. To achieve this, we re-used some lines
of code from the adaptive live migration. The RUBiS work-
load was configured with 1,200 clients and all VMs were
allocated 1 GB of memory.

Figures 5(a) and 5(b) plot the migration time of the four

workloads over different available network capacities for non-
adaptive live migration and adaptive live migration, respec-
tively. Increase in the available network capacity results in
a non-linear decrease in the migration time. The time to
migrate the file server workload was higher than the other
workloads, as the unique number of pages dirtied over a
given period was higher. Also (referring to Figure 2(e)), mi-
gration time is directly proportional to the unique number
of pages dirtied over a period of time. The downtime of the
workloads are presented in Table 4 for different available
network capacities.The downtime decreased as the available
network capacity increased.
Takeaway: Allocating low resource level for the VM migra-
tion process results in disproportionately higher migration
time and downtime. Hence, we should not allocate too low
resources for migration process.

Observation 11: Adaptive live migration under-utilizes
available resources, which results in higher migration times.
The reasons are as follows: Migration time decreased till
the available network capacity reached the page dirty rate,
and then it became constant. This is because adaptive live
migration fixed the migration rate to the rate at which pages
were dirtied. The page dirty rate of the workloads was lower
than the available network capacity.

Observation 12: With increase in the available network
capacity, the network traffic for migration either decreased
non-linearly or remained more or less constant. Figures 5(d)
and 5(e) plot the total network traffic generated during mi-
gration over different available network capacities for the file

ker. comp. : adaptive —€—

350
3 o] ! ! _6F T ker. comp. : Hon-adaptive - *- -
: 8 5 file server : adaptive —*—
300 ‘ ; = 54 - ile_server : non-adaptive —5--
‘ ‘ ol E & :
file server HEN | O 150 G 3
A250 RUBIS web server [~ 7] g100 =2
L i kernel compile 1 ['€ 50 €1
2 1 - " E 0 oLl | | | | |
E200/ 8 RUBIS database server "~ 100 200 300 400 100 200 300 400 500 600
s } Linux idle X avail. bandwidth (Mbps) avail. bandwidth (Mbps) _
K=l 0 i : : 1 (b) adaptive live migration (d) network traffic - file server, kernel compile
g0 g
E’ 8 :\;50 —slrc. CP'U o~ I T I_ _ 4 I web server: adaptive =%
~ — . - 5 - ——
100 € 4pfdest.CPU —== Lt a web 5‘::*’- - non a:ap:fve
2 gL xosave B T |5 2s5F server : adap !ve _
50 3 S xc-restor 5 DY R : adaptive i
: ; : E20 LR SRS Satih o - &
1 . . =1 0
‘ : : z
2 10 ‘ ; J4 S 1S5 oo - —
0 ﬁ H@IHRIH@'TD 3] 5 i € i St -Juisisithcainint i
100 200 300 400 500 600 0

avail. bandwidth (Mbps)
(a) non-adaptive live migration

100 200 300 4
avail. bandwidth (Mbps)
(c) CPU utilization (non-adaptive)

00 500 600

1
100 200 300 400 500 600
avail. bandwidth (Mbps)

(e) network traffic - RUBIS

Figure 5: Impact of available network capacity on migration time, network traffic and Dom0 CPU utilization

Table 4: Impact of available network capacity on downtime of the application

migration rate (Mbps)
100 | 200 | 300 | 400 | 500 | 600 | 100 | 200 | 300 | 400 | 500 | 600
Benchmark downtime : adaptive (sec) downtime : non-adaptive (sec)
RUBIS web server 15.1 2.54 2.2 0.65 0.46 0.36 8.78 0.63 0.41 0.61 0.32 0.3
RUBIS database server 2 0.57 0.4 0.26 0.22 0.17 1.38 0.63 0.43 0.33 0.29 0.25
kernel compile 9.6 4.2 2.96 1.86 1.45 1.21 7.19 3.41 1.73 1.32 1 778
file server 74.6 33.5 6.9 3 2.41 2.01 74.6 36.7 6.62 0.12 0.09 0.05
rver, kernel compile, an Bi rkl r ively. & <
This s beennse with & fecrense in the mgrabion e, the 2af TR T % Sam[Fegammm @
’ = X z skipped % (db) -x
time spent on each iteration increased. As a result, the to- S | B 528 60
tal number of unique pages dirtied per iteration increased. ge - 603 gzo
Hence, the network traffic generated also increased. This is e % £16 lao
because higher network traffic may result in higher overall 34'#”32%5’):22%2 823 M 40§ 312_
performance degradation. However, with the kernel compile g #pages sent (kc) -x- 3 g sl %y 20
workload, the total network traffic increased. The reasons éz' *****;{ 20 é al TR KKK
are as follows: As the migration rate increased, efficiency = =
of the skip list decreased. Figure 6 plots the percentage 205 00° s 0 200 400 0

of dirtied pages skipped during the migration of the kernel
compile and RUBIS database server workloads over different
available network capacities for non-adaptive live migration.
As the available network capacity increased, total number
of pages dirtied decreased for both the kernel compile and
RUBIS database server workloads (for other workloads as
well) because of decrease in time taken by each iteration.
Also, the percentage of the dirty pages skipped decreased
as the migration rate increased. The reason is that, with
increase in the migration rate, the batch-transfer time (re-
fer Section 2.1) decreased. As a result, only a few pages
were added to the skip list and more pages were dirtied
after their transmission. When the migration rate was low,
more pages were added to the skip list and fewer pages
were dirtied after their transmission due to the high batch-
transfer time. However, the total number of pages dirtied
increased with decrease in migration rate. With the kernel
compile workload, the percentage of the dirty pages skipped
decreased significantly, whereas with RUBIS database server
workload, the decrease in percentage was not significant.
Also, the total number of pages dirtied was higher with the
kernel compile workload (implies decrease in the skip-list ef-
fectiveness with increase in migration rate).. As a result, the

394

200 40 6!
available network rate (Mbps)
(a) kernel compile

00
available network rate (Mbps)
(b) RUBIS DB Server

Figure 6: Efficiency of skip list over different avail-
able network capacity for non-adaptive live migra-
tion

amount of network traffic generated increased with increase
in the available network capacity for non-adaptive live mi-
gration of kernel compile workload.

Takeaway: Non-adaptive live migration with finite resources
allocated to the migration process provides a tuning knob to
adjust the performance and cost of migration. With higher
resources allocated for migration, migration time, down time
and network traffic decrease monotonically. Quantum of re-
sources allocated can be determined based on minimizing the
impact of migration on application performance of other co-
located VMs.

Skip-list effectiveness: To understand the effectiveness
of the skip list, we migrated the workloads by disabling the
skip list functionality (in source code) for the adaptive and
non-adaptive live migration. Table 5 presents the perfor-
mance of non-adaptive live migration with and without the
skip list functionality for the RUBIS web server and the ker-
nel compile workloads. Without the skip list functionality,

% pages skipped

migration time, network traffic and downtime were higher
(almost double) as compared to the migration with the skip
list functionality.

Observation 13: As the available network capacity in-
creased, the migration rate increased linearly and so did the
CPU utilization at the source and destination physical ma-
chines. The process zc_save that implements the live mi-
gration algorithm transfers memory pages from the source
PM to process xc_restore which receives memory pages and
starts the virtual machine at the destination PM. The CPU
utilization (excluding network activity) of these two pro-
cesses is reported in Figure 5(c). The CPU utilization of
zc_save and xc_restore were similar and increased linearly.

Further, we migrated virtual machines by restricting the
Dom0 (the management domain in Xen) CPU utilization
levels of zc_save and zc_restore processes with the help of
the cpulimit tool. We performed three sets of experiments by
restricting Dom0 CPU utilization level of (i) the zc_save pro-
cess, (ii) the zc_restore process, and (iii) both zc_save and
zc_restore processes. The CPU levels allocated to zc_save
and zc_restore were the same as the values plotted in Figure
5(c). As the Dom0 CPU availability decreased, the migra-
tion rate decreased linearly and the migration time and net-
work traffic were similar to the experiment which restricted
available network capacity. We observed that, the migration
rate was proportional to the minimum of (i) available Dom0
CPU for zc_save process and (ii) available Dom0 CPU for
zc_restore process.

As a result, each allocated CPU level has a corresponding
network rate which can be supported, and either of which
can be used to allocate network resources to the migration
process.

S. IMPROVED LIVE MIGRATION

The two main qualitative inferences from the empirical
evaluation (presented in the previous section) are: (i) Cost
of migration—migration time, downtime, network traffic for
migration, is lower for non-adaptive live migration as com-
pared to adaptive live migration. The exception to this be-
ing workloads with high page dirty rate. (ii) The adaptive
migration technique seldom uses all the available resources
for migration, whereas the non-adaptive technique does not
account for “available” resources.

We propose to combine the benefits of both the adaptive
and non-adaptive techniques by simultaneously being sen-
sitive to both page dirty rate of applications and available
resources for migration. Towards this we propose the Im-
proved Live Migration (ILM) technique. The spirit of the
Improved Live Migration technique is to use non-adaptive
live migration but with finite resources for migration (to re-
duce interference towards other applications) and to be sen-
sitive to an application’s page dirty behavior (to reduce the
cost of migration). We propose three main improvements as
part of ILM:

(i) Stopping criteria tuned to page dirty rate: The
“page-dirty-rate-greater-than-threshold” condition in the adap-
tive migration technique aggressively terminates the migra-
tion process if the dirty rates are very high (see results in
Section 4.2). The exact condition being, page dirty rate of
previous iteration is greater than a threshold and number of
pages sent in current iteration is greater than previous it-
eration. Since no such condition exists in the non-adaptive
technique we often observed that the procedure terminated

395

only after higher number of iterations (see results in Section
4). The first component of ILM is to add this condition as
a stopping criteria to the non-adaptive live migration pro-
cedure.

(ii) Finite resources for migration: The non-adaptive
migration technique attempts to use as many resources as
possible to reduce the migration time and downtime metrics.
This is oblivious to the fact that other applications may need
to pay the “cost” during migration. To balance the benefits
of improved migration performance and minimize the im-
pact on other applications, we allot deterministic resources
to the non-adaptive migration procedure.

The two main resources consumed by the migration pro-
cedure are network bandwidth and Dom0 CPU (for the Xen
architecture). Restricting usage of these resources will mini-
mize interference with other applications. For the purpose of
this work we assume that the “available” levels of resources
for migration are known. This level of resource availabil-
ity depends on the left-over (unallocated) resources after
accounting for resources needed to meet the SLA require-
ments of other VMs. We assume that this estimation hap-
pens through a higher-level migration decision process and
is orthogonal to the migration procedure optimization.

Further, as seen in Section 4.3, the network utilization of
the migration process and the Dom0 CPU utilization are
directly (and linearly) related. Hence, as the second compo-
nent of ILM, we propose to restrict the maximum network
bandwidth available to then migration process.

(iii) Omly transfer required pages: Conventional mi-
gration procedures transfer free-pages and page-cache pages
as part of the migration process. Transfer of free-pages and
page-cache pages is not required for the correctness of the
migration process—free-pages have no relevant content and
page-cache misses result in additional disk reads. The use-
fulness of the page-cache depends on the I/O access patterns
and the associated hit rates. As part of ILM, we trade-off
the potential I/O access benefit to reduce in the migration
cost. Reduction in migration cost is more deterministic, as
it is based on reducing the number of pages transferred as
compared to the utility of the page cache pages. The third
component of ILM is to ignore free-pages and page-cache
pages from the set of pages to be migrated to the destina-
tion machine.

In the next section, we evaluate the performance of the
Improved Live Migration technique (ILM) and compare it
with the conventional adaptive and non-adaptive live migra-
tion techniques.

5.1 1ILM Evaluation

To quantify the improvement in performance and cost of
live migration techniques resulting from the proposed mod-
ifications, we performed migrations of a VM (of size 1 GB)
hosting four different workloads with adaptive live migra-
tion, non-adaptive live, Improved Live Migration technique
without dropping free-pages and page-cache pages (we call
this ILM-fc) and Improved Live Migration technique (ILM)—
with all three modifications.

Table 6 presents the network traffic (NT), migration time
(MT) and Downtime (DT) with conventional live migration
techniques and Improved Live Migration techniques. The
network traffic generated with ILM-fc was 1 to 2.24 times
lower as compared to adaptive live migration and 1.21 to
1.41 times lower as compared to non-adaptive live migration.

Table 5: Effectiveness of skip list functionality.

Benchmark with skip-list without skip-list
migration network traffic downtime migration network traffic downtime

time (s) (GB) (ms) time (s) (GB) (ms)

RUBIS web server 28.1 1.68 325 40.3 2.43 1257

kernel compile 27.7 1.67 1000 53.8 3.26 1707

Table 6: Available Network Capacity = 400 Mbps
Benchmark adaptive non-adaptive ILM-fc ILM

NT MT DT NT MT DT NT MT DT NT MT DT
(GB) (sec) (sec) (GB) (sec) (sec) (GB) (sec) (sec) (GB) (sec) (sec)
RUBIS web server 1.46 100.1 0.69 1.71 39.5 0.61 1.34 27.8 0.65 1.25 26 0.98
RUBIS db server 1.13 89.2 0.39 1.32 27.5 0.33 1.09 23 0.35 0.14 6.5 0.2
kernel compile 1.16 81.9 1.86 1.64 33.62 1.32 1.16 24.48 2.2 0.21 4.7 1.38
file server 3.39 105.8 3 1.94 40 0.12 1.51 35.8 0.2 0.23 5.2 0.24

nfs server controller

PM1
cpu-1
t-2 398 Mbps ; .

rut;lig-ws-Z c 40 Mbps Link ¢ : 808 Mbps
rubis-db-1 Link d : 11 Mbps

net-1 cpu-2
rubis-ws-1 [410 Mbps 40 Mbps| rubis-db-2

PM2 PM3

Figure 7: Experimentation setup used for measuring
performance degradation.

The reason is that, ILM-fc and adaptive live migration exe-
cuted more or less the same number of iterations and lower
than non-adaptive live migration. We already observed that
the higher the number of iterations, the higher the network
traffic and shorted the downtime. As a result, downtime
with ILM-fc was 1.06 to 1.66 times higher as compared to
non-adaptive live migration and 1.06 to 15 times lower as
compared to adaptive live migration.

The network traffic generated with ILM was 1.16 to 14
times lower as compared to adaptive live migration and
1.3 to 8.4 times lower as compared to non-adaptive live
migration. The RUBIS web server workload did not have
more free-pages and page-cache pages. As a result, the im-
provement in performance and cost of migration was low.
Whereas, in case of other workloads, the memory was mainly
occupied with page-cache pages.

In the following section, we study the impact of migration
with and without resource restrictions on an application’s
performance

6. IMPACT OF MIGRATION ON APPLICA-

TION PERFORMANCE

To quantify the impact of migration techniques on the per-
formance of applications running in the VMs, we performed
experiments with the setup shown in Figure 7. We used
three machines (PM1 to PM3, whose configurations were
same as the one reported in Section 3). The set of work-
loads collectively hosted on the three PMs are: two web
servers (rubis-ws-1 and rubis-ws-2), two RUBis database
servers (rubis-db-1 and rubis-db-2), two file server workloads
(net-1 and net-2) and two CPU intensice PHP scripts (cpu-1
and cpu-2). RUBIS-1 (rubis-ws-1+rubis-db-1) and RUBIS-2
(rubis-ws-24rubis-db-2) represent the two RUBIS applica-
tions. An initial mapping of workloads (running in VMs) to
PMs is show in Figure 7. The average network utilization of
each link is also marked in Figure 7.

396

We allocated resources for each workload to handle a spe-
cific load level. We used Apache JMeter to generate requests
for each workload. The throughput (7) of each workload is
presented in Table 7 (refer column Twithout—migration). Lhe
throughput of the VM hosting CPU intensive PHP script
(cpu-1) was 8 requests/sec. We introduce an overload sit-
uation in physical machine PM1 by increasing the request
arrival rate of cpu-1 from 8 requests/sec to 23 requests/sec,
which requires an additional 50% of CPU. However, there is
not enough CPU resource available at physical machine PM1
to allocate for the cpu-1. Hence, this overload situation can
be solved only through VM migration. In order to mitigate
the hot-spot, we migrated rubis-ws-2 (allocated with 100%
of CPU) of size 1 GB from PM1 to PM3 (we assume that we
cannot migrate cpu-1) to free CPU resources. The average
network utilization of the link connecting PM1 to PM3 was
808 Mbps (it varied from 700 Mbps to 940 Mbps). Hence,
network link was the bottleneck during VM migration and
observations made below are considering this bottleneck sce-
nario. The available Dom0 CPU at PM1 and PM3 were
adequate to migrate a VM at a rate of 1 Gbps. We mea-
sured the performance degradation in terms of throughput
(regs/sec) of the workloads with adaptive live migration,
non-adaptive live migration, and ILM-fc with four differ-
ent migration rates. Table 7 presents migration time (MT),
downtime (DT), migration rate (MR), network traffic gener-
ated (NT), throughput of each workload without migration
(Twithout—migration), and throughput drop (7qrop) during mi-
gration.

Observation 14: The throughput drop per second (Tarop)
for RUBiS-1, RUBIS-2, net-1 and net-2 workloads with non-
adaptive live migration was observed to be 1.6 to 2.4 times
higher than with adaptive live migration. However, the total
#requests dropped for each workload was lower with non-
adaptive live migration and are presented in Table 8. This
is because the total amount of resources utilized was higher
with adaptive live migration. The network traffic generated
with adaptive live migration was 1.23 times higher than non-
adaptive live migration. Also, the downtime of adaptive live
migration was three orders of magnitude higher than non-
adaptive live migration.

Observation 15: As the migration rate of the ILM-fc
technique increased, the total number of requests dropped
during migration decreased. This is because with increase in
migration rate, the total network traffic generated decreased
(refer Section 4.3). As a result, the impact of migration on
other applications also decreased.

As the migration rate of ILM-fc decreased from 400 Mbps
to 100 Mbps, the percentage of the throughput drop was de-

Table 7: Impact of migration on the performance of application

Technique MT| DT | MR | NT Twithout—migration T€q/s Tdrop r€q/s
sec | msec | Mbps| MB

rubis-1 rubis-2 net-1 net-2 rubis-1 rubis-2 net-1 net-2
adaptive 79 1,251 | 135 | 1,293 412 591 117 223 0 0.35
non-adaptive 26 3 350 1,051 448 545 287 363 0.07 0.81
TLM-fc (100 Mbps) 96 2,972 | 108 1,405 410 596 3.95 0.7 53 262 0 0.12
TLM-fc (200 Mbps) 52 | 2,632 205 | 1,283 419 592 ’ ’ 157 273 0 0.46
ILM-fc (300 Mbps) 34 2,700 [298 1,205 433 563 253 293 0.03 0.76
ILM-fc (400 Mbps) 26 4 351 1041 448 545 288 360 0.07 0.82

Table 8: Total number of requests drop per workload during migration

Technique rubis-1 (#reqs) | rubis-2 (#reqs) | net-1 (#reqs) net-2 (#reqs) cpu-1 (#reqs) | total #reqs
adaptive 9,243 17,617 0 27 1,185 28,072
non-adaptive 7,462 9,438 2 21 390 17,313
ILM-fc (100 Mbps) 5,088 25,152 0 12 1,440 31,692
TLM-fc (200 Mbps) 8,164 14,196 0 22 780 23,162
ILM-fc (300 Mbps) 8,602 9,962 1 26 510 19,101
TILM-fc (400 Mbps) 7,488 9,360 2 22 390 17,262

creased disproportionately from 66% to 43% for RUBIS-2
workload. Whereas with RUBiS-1 workload, it decreased
from 64% to 12%. This is because of the impact of enabling
the shadow page table and retrieving the dirty bitmap after
every batch transfer to construct skip list during migration.
These two operations increased the CPU utilization of rubis-
ws-2 during migration, making the CPU a bottleneck even
at lower migration rate (i.e., 100 Mbps). The CPU utiliza-
tion of rubis-ws-2 was always between 50% and 70% before
the migration. However, during the migration, the CPU
utilization was often at 100%. As a result, even with lower
migration rate, the throughput drop was higher.
Takeaway: In a network bottleneck scenario, if we migrate
VMs at low network rate, the throughput drop (requests per
seconds) of applications will be low but the total #requests
dropped (during migration) will be high.

In this section, we studied the impact of migration on the
performance of web applications by making network link as
bottleneck during migration. As a part of future work, we
would like to quantify the performance degradation by mak-
ing Dom0 CPU as the bottleneck. Also, we need to study
the impact of dropping page cache pages on the application
performance.

7. SUMMARY

e We conducted a comprehensive empirical study of mi-
gration techniques along the axes of migration time, down-
time, and network traffic generated during migration. We
showed that non-adaptive live migration performs better
(implies lower migration time, downtime and network traf-
fic) than adaptive live migration in most of the cases.

e We showed that only considering VM size as a parame-
ter to reduce migration cost is inadequate. The page dirty
rate of the VM along with the migration rate (indirectly
governed by the available network capacity) are vital pa-
rameters deciding the cost of migration.

e Adaptive live migration under utilizes available CPU
and network resources and cannot minimize the migration
cost. We proposed ILM, an improved migration technique,
which allocated finite resources to the non-adaptive live mi-
gration technique, and delivers the least migration cost as
compared to the other techniques.

e Resource allocation levels for the migration process af-

397

fects the throughput drop (requests per second) and the to-
tal #requests dropped (during migration) in opposite pro-
portions. Allocation levels should follow the user’s require-
ments in such cases.

8. RELATED WORK

The parameters of migration and related performance met-
rics considered in studies so far are summarized in Table 9.

Huang et al. [8] studied the performance of non-adaptive
live migration with both the Xen [4] and KVM [12] virtu-
alization technologies. Their study was restricted to two
workloads—a Java virtual machine benchmark and a CPU-
intensive benchmark. Xen and KVM implementations of
non-adaptive live migration were compared based on down-
time, migration time, total volume of network generated,
and the performance degradation of the benchmark in the
VM which was migrated. This work did not consider the
different system parameters that can affect migration per-
formance.

Akoush et al. [3] presented a simulation model to predict
migration time and downtime of non-adaptive live migra-
tion. The migration technique was simulated using the page
dirty trace collected from Xen shadow page tables. The
model assumed that the recorded set of pages dirtied will
be approximately representative of the application and will
repeat under similar environments. Experiments were per-
formed with 100 Mbps, 1 Gbps and 10 Gbps link capacity,
and different VM sizes. However, the impact of available
resources on the performance of non-adaptive live migration
was not studied.

Hai et al. [9] evaluated the performance of non-adaptive
live migration against page dirty rate using a micro-benchmark.
Only downtime of the VM was measured and discussed.
They also performed migration of idle VMs by reserving
Dom0 CPU for migration and reported migration time. How-
ever, the impact of resource availability on downtime, to-
tal network traffic and CPU utilization were not discussed.
Also, the impact of page dirty rate of the workloads was not
explicitly considered or discussed.

Clark et al. [10] studied the performance of adaptive live
migration for various workloads. However, only the page
dirty rate was considered as a parameter which affected the
performance. How each iteration’s migration rate and net-
work traffic in each iteration varied were shown for different

Table 9: Parameters and Performance metrics accounted in current literature

Huang et. Akoush et. Liu et. al. Clark et. Hai et. al. Kejiang et. Our work
al. [8] al. [3] [13] al. [10] 9] al. [17]
Live Migration Algorithms Evaluated
Non-adaptive v v NV NV
Adaptive VA v v IV
Parameters Considered
VM Size Vi Vi
Page dirtying rate v v/ v/ v/ N
Network bandwidth v NV
Dom0 CPU v/ v/
Performance Metrics Accounted
Migration time, downtime v/ v/ V4 V4 V4 V4 V4
Network traffic v Vi v NV
CPU utilization V4

workloads. The effect of migration on web server transmis-
sion rates was also studied. However, this work did not study
the impact of page dirty rate on the CPU resources required
for migration and performance of non-adaptive migration.

Liu et al. [13] presented mathematical models and tech-
niques to predict the energy consumption, migration time,
downtime, and total volume of network traffic for an adap-
tive live migration. The model used resource-usage and
migration-related parameters from past VM migrations to
predict the migration performance parameters. However,
this work covered only the page dirty rate parameter while
evaluating the migration technique.

Ye et al. [17] evaluated the performance of adaptive live
migration (only migration time and downtime) against avail-
able Dom0 CPU level at the source and destination ma-
chines. As adaptive live migration utilizes lower resources,
they could not find any significant impact of available Dom0
CPU level. Migration rate, CPU utilization of migration
process and page dirty rate of the workloads were not re-
ported.

As can be seen, no prior work benchmarks the perfor-
mance of VM migration comprehensively— against all pa-
rameters that affect migration and measure all performance
metrics. Our work fills this gap and comprehensively evalu-
ates the impact of all systems parameters on migration per-
formance. Also, this is the first study to compare both non-
adaptive live migration and adaptive live migration tech-
niques.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented a comprehensive empirical
study of the Xen live migration techniques—adaptive live
migration and non-adaptive live migration. We showed how
the four parameters—VM size, Dom0 CPU, network capac-
ity and application page dirty rate affect the performance
of live migration in terms of migration time and downtime,
and migration cost in terms of total CPU utilization and
total network traffic. We also compared adaptive live mi-
gration and non-adaptive live migration, identified short-
comings and proposed three improvements. For our exper-
imental setup and workloads, the Improved Live Migration
technique (ILM) reduced network traffic for migration re-
duced by 14-93% and migration time reduced by 34-87% as
compared to the vanilla live migration techniques.

As a part of future work, we intend to create a mathemat-
ical model to predict migration performance. The aim of
model would be to predict migration time, downtime, total
network traffic and CPU utilization by taking VM size, re-

398

source availability and application page dirty rate as inputs.
Such prior predictions can be utilized for effective migration
decisions for purposes of load balancing, consolidation and
hot-spot mitigation within a virtualized environment.

10 REFERENCES

[1] http://linux.die.net/man/1/xentop.

[2] RUBIS: Rice University Bidding System.
http://rubis.ow2.org/.

S. Akoush, R. Sohan, A. Rice, A. W. Moore, and

A. Hopper. Predicting the Performance of Virtual Machine
Migration. In MASCOTS, Aug. 2010.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In SOSP, Oct. 2003.

T. Das, P. Padala, V. N. Padmanabhan, R. Ramjee, and
K. G. Shin. LiteGreen: Saving Energy in Networked
Desktops using Virtualization. In USENIX ATC, June 2010.
E. L. Haletky. VMware ESX Server in the Enterprise:
Planning and Securing Virtualization Servers. 1 edition.
F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and

J. Lawall. Entropy: a Consolidation Manager for Clusters.
In VEE, March 2009.

D. Huang, D. Ye, Q. He, J. Chen, and K. Ye. Virt-LM: a
Benchmark for Live Migration of Virtual Machine. In
ICPE, March 2011.

H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live Virtual
Machine Migration with Adaptive, Memory Compression.
In IEEE CLUSTER, Aug. 2009.

C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In NSDI, May 2005.

G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application
Performance Management in Virtualized Server
Environments. IEEE/IFIP NOMS, April 2006.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: The Linux Virtual Machine Monitor. In OLS, June
2007.

H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao.
Performance and Energy Modeling for Live Migration of
Virtual Machines. In HPDC, June 2011.

A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and
Migration Cost Aware Application Placement in
Virtualized Systems. In Middleware, Dec. 2008.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.
Black-box and Gray-box Strategies for Virtual Machine
Migration. In NSDI, April 2007.

J. Xu and J. Fortes. A Multi-objective Approach to Virtual
Machine Management in Datacenters. In ICAC, June 2011.
K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang. Live
Migration of Multiple Virtual Machines with Resource
Reservation in Cloud Computing Environments. In IEEE
CLOUD, July 2011.

(3]

(4]

[5]

[6]

(8]

[9

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

