
Further Implementation Aspects
of the Server Efficiency Rating Tool (SERT)

Klaus-Dieter Lange
Hewlett-Packard Company

klaus.lange@hp.com

Nathan Totura
Intel Corporation

nathan.totura@intel.com

Jeremy A. Arnold
IBM Corporation

arnoldje@us.ibm.com

John Beckett
Dell Inc.

john_beckett@dell.com

Hansfried Block
Fujitsu Technology Solutions GmbH

hansfried.block@ts.fujitsu.com

Mike G. Tricker
Microsoft Corporation

mike.tricker@microsoft.com

ABSTRACT

The Server Efficiency Rating Tool (SERT) has been developed
by the Standard Performance Evaluation Corporation (SPEC) at
the request of the US Environmental Protection Agency (EPA).
Almost 3% of all electricity consumed within the US in 2010
went to running datacenters. With this in mind, the EPA released
Version 2.0 of the ENERGY STAR for Computer Servers
program in early 2013 to include the mandatory use of the SERT.
Other governments world-wide that are also concerned with
growing power consumption of servers and datacenters are
considering the adoption of the SERT.
Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms
Design, Experimentation, Measurement, Performance, Reliability,
Standardization.

Keywords
SPEC, Benchmark, Energy Efficiency, Server, System
Performance, Performance Engineering, Memory, System
Discovery, Affinitization, Framework, Reporting, Energy Star,
Environment Protection Agency (EPA).

1. INTRODUCTION
This paper builds on those published in 2011 [2] and 2012 [4],
which described the initial design and development phases of the
SERT [5].

As the SERT is now released, this paper first provides an
overview of the SERT explaining its different components, a
description of the Chauffeur framework, the graphical user
interface (GUI), and the automated discovery of hardware and
software information. Next, this paper states the challenges of
automation of processor affinitization. The SERT is an efficiency
evaluation tool that does not offer a single scoring model or

metric (unlike a benchmark [8]); therefore, in a section of this
paper, the memory subsystem is taken as an example in order to
provide a detailed description of how the scores are derived.

A future aspect of the SERT is addressed with initial test results
and comparisons between DC and AC powered servers.

2. SERT OVERVIEW
The use of multiple power analyzers and temperature sensors is
supported by the SERT in order to measure a large scope of
system configurations. The most basic SERT measurement
configuration requires one power analyzer, one temperature
sensor, a system under test (SUT), and a Controller system.

The SERT’s test harness, named Chauffeur, controls the software
installed on the SUT and Controller. Chauffeur also handles the
logistical side of measuring and recording the power consumption
and inlet temperature of the SUT.

The SUT gets instructed by the Director (Chauffeur instance) to
execute the suite, which is comprised of a set of workloads. The
workload consists of a set of Worklets, which exercise the SUT
while Chauffeur collects the power and temperature data. The
Worklets are the actual code designed to stress a specific system
resource or resources, such as the CPU, memory, or storage IO.
Each power analyzer and temperature sensor interacts with its
dedicated instance of the SPEC PTDaemon, which gathers their
readings while the Worklets are executed.

The Reporter, executed after all measurements phases are
completed, compiles all of the environmental, power, and
performance data for a complete test run into an easy-to-read
HTML report as well as an extensible markup language (XML)
report; the HTML report includes a graphical visualization of the
results.

Storage
Workload

Workload
SPEC PTDaemon

SPEC PTDaemon

Controller System Under Test

Temperature Sensor

Power Analyzer

Worklet A

Worklet B

Worklet C

PSU

PSU

NetworkChauffeur

CPU CPU

Memory

Reporter

GUI

Figure 1 - Discovery Workflow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright © 2013 ACM 978-1-4503-1636-1/13/04...$15.00.

349

3. CHAUFFEUR FRAMEWORK
SPEC implemented the Chauffeur framework to support most of
the following common functionality, and built the SERT on top of
this framework. Future tools and benchmarks could be developed
more quickly by taking advantage of Chauffeur.

Energy Measurements
One of the key features of Chauffeur compared to other
benchmark frameworks is support for measuring power
consumption under a variety of loads. The SPEC PTDaemon
interfaces to power analyzers and temperature sensors, and
Chauffeur makes the necessary calls to PTDaemon in order to
collect the data for the appropriate time intervals. The resulting
data is stored together with the runtime performance information
so that the data does not have to be correlated after the test run is
completed.

The ability to run at multiple utilizations is also an inherent
property of Chauffeur. This support is based on the same
principles used in SPECpower_ssj2008 to vary the load by first
determining the maximum transaction throughput during a
calibration process, and then scheduling transactions with
appropriate delays to drive the system at lower levels of
utilization. This support is implemented generically in Chauffeur
and can be applied to any workload that is composed of a series of
short-running transactions.

Scalable
The Chauffeur framework is inherently multi-process and multi-
threaded, providing scalability across a wide range of servers.
Multiple-node runs are also supported, enabling Chauffeur-based
workloads to run across multiple blade servers. This support also
could be extended to do runs that span multiple virtual servers on
one or more physical hosts, although the SERT does not currently
allow this.

Chauffeur's Director (the component that instructs the Host JVM
to start executing the workload) normally runs on a system other
than the SUT, and is usually collocated with the SERT GUI and
SPEC PTDaemon. It communicates with a host process that runs
on each system that is being measured. The Chauffeur Host will
automatically launch one or more Client JVMs as needed, using
platform-specific affinity commands as described in Section 4.

Chauffeur can adjust heap settings for each Client JVM based on
the amount of memory in the system and the number of Clients
being used. The algorithms for calculating heap sizes can be
adjusted for individual Worklets; for example, the SERT uses
nearly all available memory when running the memory Worklets,
but normally uses only 256 MB per processor for CPU Worklets.

Ease of Use
Benchmark configurations can be complex, particularly when
power measurements are involved. Chauffeur includes a number
of features intended to simplify testing as much as possible.

A particular challenge for industry standard benchmarks and tools
like SERT is reporting a complete and accurate description of the
system configuration. To assist users in this process, Chauffeur
supports automatic collection of system configuration data. This
data is included in the results file, and also made available to the
SERT GUI to allow users to review and edit the information.
This process is described in more detail in Section 4.

Chauffeur also supports automatic validation of results, both at
runtime and for completed results. These validation checks can
confirm that the configuration is valid, that transactions did not
fail, that power analyzer data met the requirements specified by
the run rules, and various other requirements. The current
validation checks in Chauffeur are defined for the SERT, but the
framework is generic to allow checks to be added, changed, or
removed for other workloads. This validation gives users
confidence that the workload is configured and running properly
and that the results are accurate.

Portable
Chauffeur is implemented primarily in Java to simplify portability
across different systems. The SERT currently supports 64-bit
Windows and Linux on x86 processors, and AIX on the Power
architecture. Limited testing has also been performed on other
platforms with minimal difficulty.

Platform-specific code is included in two areas of Chauffeur:
System Configuration Discovery (see Section 4) and Affinity (see
Section 5). In both cases Chauffeur will continue to run on
platforms without explicit support. Future versions of Chauffeur
can be extended easily by adding support for these features on
other platforms.

Although the framework is written in Java, Worklets can make
use of other programming languages, as the Storage Worklets in
the SERT do. Communication between the Chauffeur Host and
Clients is intentionally language-neutral, enabling a possible
future native implementation of the Chauffeur Client.

Flexible
Chauffeur implements the core functionality required for the
SERT. It also offers flexibility for changing the runtime behavior,
either for research purposes or for future Chauffeur-based
benchmarks. Many aspects of Chauffeur behavior can be changed
via configuration files, without modifications to Chauffeur itself.
For example, a virtualization benchmark may require the ability
to run different virtual servers at different utilization levels in
order to mimic dynamic heterogeneous usage patterns. Chauffeur
does not currently support this usage model, but a custom
implementation of a “Sequence” [6] could be implemented and
plugged in through the configuration file.

It is often desirable to collect a variety of different types of data
during a benchmark run, particularly for research and
development purposes. Chauffeur provides a Listener interface
that allows custom data collection to be performed without
modifications to Chauffeur. These listeners are notified at various
stages of the run, such as at the beginning and at the end of each
measurement interval. Listeners can launch platform-specific
tools or collect data that is not directly supported by Chauffeur.
Data obtained by listeners can be included in the main Chauffeur
results file so it does not need to be correlated after the run
completes.

The Chauffeur Reporter is also designed for flexibility. It reads
the XML-based results file from a Chauffeur run and produces
HTML or plain-text reports. The contents of these reports are
defined using an XSL transform, which allows changes to be
made to the reports without code changes to Chauffeur. Advanced
users can create their own reports, or generate output in comma-
separated values (CSV) format for easy import into spreadsheets
or statistical packages.

350

4. SYSTEM CONFIGURATION
DISCOVERY
One of the largest challenges in benchmark and rating tool
submissions is correctly identifying and capturing all of the
characteristics of the SUT. Unintentional errors readily occur
when collecting identification details of the various hardware
components and recording the details into the benchmark report.
Formatting errors overlooked while entering data may only
become obvious once the final report is ready for submission.
Correcting such errors and oversights in the final report can be
cumbersome. The SERT addresses these issues with an automated
hardware discovery process and an easy-to-use GUI workflow
that assists the user in generating high quality accurate reports.
The GUI therefore reduces the burden of test configuration,
execution and report editing so that the user can focus on
obtaining results.

4.1 Workflow
The relationship between the main components (Hardware
Discovery, Test Environment Editor, and Preview Report) of the
SERT discovery workflow is shown in Figure 2.

Test Environment Editor

Controller / GUI

Preview Report

Hardware Discovery

System under Test

Figure 2 - Discovery Workflow

The initial phase of discovery occurs immediately after the SERT
host is started on the SUT. On Windows systems, the hardware
discovery scripts execute on the SUT using Windows
Management Instrumentation (WMI). The solution on Linux
distributions is a combination of scripts that parse the data found
in the /proc and /sys file systems. The burden added to startup
is small, and hardware discovery on the Windows platform
completes within approximately 15 seconds. The process is
efficiently executed once for the lifetime of the SUT host. Once
the Controller connects to the SUT host, the discovered data is
transferred and is made available for multiple purposes. The data
is first used to attach directly to the final report. This ensures that
the report reviewer always has an unmodified reference of the
discovered data for any discrepancies encountered while
reviewing. The discovered data is then sent to the GUI for
assisting the user in updating the test environment configuration.
The GUI makes a request to the Controller to retrieve the
discovery data as part of one of the first workflow panels the user
encounters. The discovered name value pairs are presented in a
list and the end-user has an opportunity to review the individual
discovered items.
Once the user reviews the data, the GUI workflow is advanced
and the discovered data is inserted into the final test configuration
file. A mapping is contained within the raw discovered data that
assists the GUI in aligning discovered values with the
corresponding test environment configuration values. One of the
GUI’s main responsibilities is to provide an interface for the end-
user to access the test environment configuration values. The Test
Environment Panel of the GUI, as seen in Figure 3, serves this

purpose and is used for verifying, editing, adding, removing, and
viewing test environment configuration values.
The panel in Figure 3 illustrates some of the main features of the
GUI that assist the user with system reporting. Color coding and
status of the individual sections draw the user’s attention to the
components that still need manual intervention. “Incomplete”
items are colored red and indicate that a value within the
collection is completely missing.

Figure 3 - Screenshot: SERT Test Environment Panel

Sections that contain default values are color-coded yellow and
have a status of “Defaults in use”. The default values are used to
provide a hint to the user as to what a report value should contain.
These default values are demarked with a leading underscore.
The section editor dialog is visible in Figure 4 and is opened
when editing a specific section.

Figure 4 - Screenshot: SERT Section Editor Dialog

The example Memory Information section contains several values
and demonstrates a couple of key GUI features. Visible is the
value for “Operating Mode” set to “_Mirrored”; the leading
underscore indicates a parameter is currently at a default value
and needs updating. The default value is there to give an example
of what type of information is expected in this field.
The remaining Memory Information values were automatically
populated by the hardware discovery process and a user simply
needs to verify that the values represent the system correctly. In

351

the example, the Size (MB) field is not formatted in the best
possible human readable format. The user now has the
opportunity to edit each line and fix any other issues. The benefit
of hardware discovery is evident in the “Description of DIMM”
item value. Determining the dual in-line memory module
(DIMM) description without the assistance of hardware discovery
would have been tedious and error prone if a lengthy description
such as this was entered by hand.
Once all items have been reviewed and updated, the GUI contains
a very useful “Preview Report” button that launches a browser
with a SERT Report populated with the current test environment
values. Figure 5 is an example of a SERT Report preview. A
similar status color coding is used to draw attention to values that
still need to be updated.

Figure 5 - Screenshot: SERT Preview Report

Another key feature of a SERT Report is the hyperlink found on
each field name. Following the link brings the user to a help page
with a full, detailed description and definition of the field.
The GUI additionally provides “Save” and “Load” buttons to
organize test configurations, a useful feature if one Controller
system is used for multiple SUTs. Each new configuration can be
saved under a descriptive unique name and the applicable
configuration file can be reloaded easily when needed.
Configurations can also be moved to different machines to serve
as a starting point or reference for the next system to test.

4.2 Implementation Challenges
Several major challenges presented themselves when scoping the
effort of automated Hardware Discovery. Perhaps one of the
greatest challenges among these was the realization that,
depending on the system where Discovery was run, different
vendor implementations meant that hardware information was
reported in varying ways. To better understand how to filter and
format the discovery results, a survey was undertaken by the
SPECpower Committee. This survey characterized an early
version of the discovery script in order to analyze which fields
were consistent across vendor platforms. It also identified which
fields could be salvaged with additional post-discovery script
logic, for inclusion in the final formatted SERT result output.
This survey sampled 21 separate platform types across five
vendors. It enabled the researchers to characterize the suitability
of each discovery field in determining which fields were

consistent across vendors, and which fields needed additional
logic to transform varied output strings into data that could be
useful for the final report. The survey found that many details
required interpretation and transformation across platforms.
Vendor-specific fields such as Vendor and Model number were
generally consistent, but other elements such as CPU details,
Memory DIMM population, and Disk information were less
easily interpreted. In addition other elements, such as Network
Device information, were hampered by large numbers of pseudo
network interface controller (NIC) devices, depending on the
software installed on the target SUT.
In the analysis of CPU details, many separate elements were
characterized such as the name, characteristics, frequency, core
and thread counts, and the total number of CPUs populated on the
system. The survey showed that while many of these elements
were correct, others needed considerable rework in order to return
correct and relevant information. In particular, the CPU cache
fields presented problems. Reporting L1 and L2 cache in a per
physical processor combined manner made it difficult to parse
and almost impossible to transform into per-core information that
would match with standard processor vendor specifications. The
number of cores and threads per core were also initially
problematic, but allowed for the insertion of additional logic to
transform these values into data that could be readily transformed
to a per-core/per-processor/per-system format.
Memory population details were another challenging area of the
discovery process implementation. All the servers tested were
correctly reporting the total installed memory and individual
DIMM capacity in a consistent manner. However, elements such
as individual slot population and memory manufacturer
information could differ significantly depending on the platform.
Another focal point of the discovery process was reporting the
number and type of storage devices on the SUT, and the Host Bus
Adapter (HBA) to which these devices were connected. It was
also observed that almost all RAID HBAs analyzed would hide
detailed information about the storage device vendor and any
other element beyond simple capacity information. However, if
the HBA was a simple SATA controller, this information was
typically not obscured and additional detail could be derived from
the underlying storage devices.
One of the persistent challenges in the development of the
discovery process was filtering out extraneous NIC information
that is common in some operating systems (OS) and driver
models. In some cases, many pseudo-NIC devices were being
discovered along with the actual network adapters that were the
target. In such circumstances, it was determined that additional
logic needed to be added to the discovery script to avoid reporting
additional OS pseudo-NIC devices and other interface entries
created by VPN and similar drivers. Significant effort was made
to correctly determine which interface was connected and to
report the connection speed accurately. As it is common on many
servers for multiple NIC devices of the same type to be present
but only one connected for the SERT run, the discovery process
needed to be able to account for this in a fashion that could be
correctly interpreted for the purposes of creating a final report.
Another major challenge for the implementation of the discovery
mechanism was the fact that some fields were found to be
duplicates of one another in cases where multiple instances of the
same type of device were discovered. This applies not only to
multiple processors, but also to DIMMs, NICs, and storage
devices. To allow latter portions of the discovery process to

352

operate correctly on this information after the discovery script
itself was executed, an additional key/value pair was added for
discovery elements where this behavior was present. The
“_Uniquefields” tag was added to the discovery script output for
subsets of elements that could be identified as multiples of the
same device type, which enabled the Reporter to automatically
generate device counts and correctly represent device elements.
The SERT Automated Discovery process supports two major
operating systems: Microsoft Windows Server and multiple Linux
distributions. The challenges presented in implementing the
Windows discovery process were somewhat more straightforward
than Linux due to the common Windows Management
Instrumentation (WMI) query structure provided by Microsoft.
For Linux, there was no unified query mechanism that could be
counted on being installed by default on any major distribution.
This meant that all the major discovery elements that were
successfully discovered in Windows needed to be compiled into a
list, and a determination made as to what Linux resources could
be queried in Linux to report the same information. System files
in the /proc and /sys filesystems that could be queried either
directly or through common commands made the writing of the
Linux Perl discovery script less challenging than originally
envisioned. After refinement, both the Windows and Linux
discovery scripts reliably report the same information in similar
formats.

4.3 Additional Advantages
The SERT Automated Discovery process significantly eases the
user burden in documenting and tracking different SUT
configuration details. In addition, the discovery data can be used
to cross-check the validity of user edits made to the included data
after the fact during the submission checking process. Discovery
is executed independently of the GUI for any SERT run, and that
information is encoded into the results.xml file. This gives the
result reviewer the ability to detect whether the final report
system description details vary significantly from what was
actually found during initial discovery. Almost all the system
description fields that show up in the final text and HTML reports
can be user-modified, either through the GUI or after the run is
complete and the HTML report is regenerated. However, this
could lead to erroneous or intentional obfuscation of important
system hardware configuration details, misrepresenting the state
of the platform that was characterized by a particular SERT run.
Since the raw discovery data is present in a form that prevents
tampering the result reviewer has greater confidence that the
result was actually executed on the same type of hardware as
described by the submitter in the HTML report.

5. PROCESSOR AFFINITIZATION
A major challenge in the design of SERT was the need to remove
the burden of manually setting Java client (JVM) core affinity.
This is required to take the best advantage of processor cache
sharing and non-uniform memory access (NUMA) nodes present
on multi-socket systems. One of the major design goals was to
automate this sometimes complex and burdensome process with
an automated affinity generator. This was required to operate
across three separate operating systems, one- to eight-processor
sockets, up to two NUMA nodes per processor socket, and with
different platform ACPI presentations to the OS. The SERT
affinity generator also needed to generate the correct affinity
masks regardless of how many JVMs needed to be affinitized.
This was due to the JVM count being expected to vary depending

on the processor type, populated socket count, and workload
choice.
Proper NUMA node affinity for multi-socket systems is important
for optimal performance. This may be impacted by the additional
latency costs incurred when a thread requests memory non-local
to the core to which that worker thread is bound. It is therefore
critical to be able to identify the NUMA layout of a particular
system. This information will be used to group worker threads of
a JVM instance to a single physical CPU for maximal resource
sharing through explicit binding, and to ensure that memory
allocation occurs only on the local NUMA node. Failure to adhere
to these best practices will cause performance degradation and
high run-to-run variability.
All three OS families supported by the SERT, including
Microsoft Windows Server, 64-bit Linux Server distributions, and
IBM AIX, were enabled with automatic affinity generator
support. Some assumptions were made regarding the topology of
the SUT to reduce complexity. Among these assumptions are that
the total number of logical processors on the system is evenly
divisible by the number of JVMs. It is also assumed that the total
JVM count will be evenly spread across all NUMA nodes of a
given system. This assumption should hold true if each NUMA
node has the same number of logical processors. There are
potential situations where these assumptions may not hold true, in
which case the SERT will still operate correctly but the affinity
may not be completely optimal. The SERT developers expect that
configurations with which automatic affinity generators perform
sub-optimally will be very rare.

5.1 Linux Affinity
In Linux operating systems, the cores enumerated during kernel
boot time are based on the presentation by the ACPI table. This
ACPI presentation differs considerably between separate vendors
and even between platforms and BIOS releases in some cases.
This means that two platforms from different vendors populated
with the same processor type and socket count can order cores
very differently due to the ACPI table presentation. It was
therefore recognized during the SERT development process that
the Linux affinity generator needed to be able to handle any type
of core enumeration strategy.
Figure 6 and Figure 7 display two different core enumeration
strategies utilizing the same 8-core Intel Xeon processor type and
socket count with Hyper-Threading enabled. The NUMA Node
notations show which set of memory is local to which physical
processor and associated cores. Note that the numbers separated
by the “/” character indicate the real core and Hyper-Threaded
sibling from an OS logical processor enumeration standpoint. As
an example, if one were to compare the actual location of OS
CPU 1 between the two illustrations, one would see that the first
example is located as the first core on the second socket with
memory local to NUMA Node 1. The second illustration shows
OS CPU 1 as the second core on the first socket, with memory
local to NUMA Node 0. These illustrations show two of several
enumeration strategies known to exist. It is clear, given the
disparate enumeration strategies encountered, that the SERT
developers were unable to count on consistency from vendor to
vendor, so all affinity strategies needed to be calculated on a per-
system basis.
Modern server-oriented 64-bit Linux distributions come with
tools such as numactl to determine the NUMA node count as
well as displaying which cores are local to any given NUMA

353

node. However, the challenge of Hyper-Threaded platforms
meant that it was also necessary to be able to pair individual cores
with their Hyper-Threaded siblings. This meant that all logical
processor data from the Linux /proc/cpuinfo file needed to
be parsed to locate this information in order to ensure optimal
affinity mask generation.

N
U
M
A
 N
od

e
0 OS CPU

0 / 16
OS CPU
2 / 18

OS CPU
4 / 20

OS CPU
6 / 22

OS CPU
8 / 24

OS CPU
10 / 26

OS CPU
12 / 28

OS CPU
14 / 30

CPU 0

Socket 0

OS CPU
1 / 17

OS CPU
3 / 19

OS CPU
5 / 21

OS CPU
7 / 23

OS CPU
9 / 25

OS CPU
11 / 27

OS CPU
13 / 29

OS CPU
15 / 31

CPU 1

Socket 1

N
U
M
A
 N
od

e
1

Figure 6 – Core Enumerations – Example 1

N
U
M
A
 N
od

e
0 OS CPU

0 / 16
OS CPU
1 / 17

OS CPU
2 / 18

OS CPU
3 / 19

OS CPU
4 / 20

OS CPU
5 / 21

OS CPU
6 / 22

OS CPU
7 / 23

CPU 0

Socket 0

OS CPU
8 / 24

OS CPU
9 / 25

OS CPU
10 / 26

OS CPU
11 / 27

OS CPU
12 / 28

OS CPU
13 / 29

OS CPU
14 / 30

OS CPU
15 / 31

CPU 1

Socket 1

N
U
M
A
 N
od

e
1

Figure 7 – Core Enumerations – Example 2

Each JVM needs a different affinitization command, which is
provided as a set of OS CPUs in a comma-separated list, and
added to a numactl command which will pin the JVM instance
to the logical processor list and closest NUMA node.

5.2 Windows Affinity
Unlike Linux operating systems, the Microsoft Windows Server
OS variants enforce their own core enumeration strategy
regardless of ACPI presentation. This means that for two
platforms with the same processor type and socket count, the
location of each core or Hyper-Threaded sibling will be the same
regardless of the vendor. This advantage was balanced with the
difficulty of easily detecting the number of NUMA nodes on a
given system, where no default system tools exist to discover this
information.
The lack of the ability to easily determine the NUMA node count
meant that the SERT developers needed to design a method for
determining this information as part of the SERT package. This
was accomplished with .dll helper files called through Java JNI
that call specific Windows APIs to provide the NUMA node
count and total number of logical processors.
Given the discovered JVM and NUMA node counts the
WindowsAffinityProvider Java class generates individual
hexadecimal affinity masks for each JVM as it is being spawned.
These individual hexadecimal masks are appended to a Windows
start /affinity command. This ensures that each JVM
being spawned is bound to a particular set of logical processors
that are on the same physical CPU and NUMA node, and are
capable of sharing cache resources for optimal performance. In
addition, the /NODE switch is used in cases where there is more
than one NUMA node on a particular platform. This ensures
correct NUMA node locality and makes hexadecimal masks
considerably shorter for systems with a high logical processor
count. In addition, the use of the /NODE switch allows correct
affinity masks to be generated for systems with greater than 64
logical processors for Windows Server 2008 R2 and newer
operating systems.

5.3 AIX Affinity
The IBM AIX automatic affinity generator was developed after
the Linux implementation was complete, and shares some of the
same general structure. However, AIX system commands for
topology discovery and affinitization are completely different,
and the IBM Power Processor Architecture shares little similarity
with x86 implementations. Much like the Linux affinity
generator, the AIX affinity generator relies on system commands
to discover NUMA topology and core/thread enumeration and to
bind JVM instances to specific processor resources. The lssrad
command is used to determine the logical CPU set associated with
each NUMA node. The smtctl command is utilized to identify
which logical processors are actually hardware threads on the
same physical processor core. This is used because, although OS
logical processors are typically grouped in a predictable fashion,
Symmetrical Multi-Threading (SMT) levels can change post-boot
in AIX environments. Using this command allows the SERT to
handle processors in ST (single-thread), SMT-2 (two threads per
core) and SMT-4 (four threads per core) modes. The execrset
command is used to launch JVM instances and bind them to a list
of appropriate hardware threads. To ensure correct memory
allocation on local NUMA nodes, MEMORY_AFFINITY=MCM
environmental variable is set.

6. MEMORY WORKLETS
The Memory Worklets included in the SERT [1] RC1 release
have been used for an extensive series of experiments on various
system configurations, including different numbers and models of
CPUs and DIMMs. The tests were executed on a Fujitsu
PRIMERGY computer server model with 24 DIMM slots under
both Microsoft Windows Server 2008 R2 and Red Hat Enterprise
Linux (RHEL) 6.2. SPEC PTDaemon was employed for the
power measurements of total system power.

The reporting capabilities of the SERT were used to document the
performance and power results of these experiments. The scaling
properties of the two memory Worklets, comparing performance
and power consumption of the tested configurations at different
load levels, are shown.

The server side Java (SSJ) workload of SPECpower_ssj2008 [7]
was the first industry-standard benchmark for measuring
computer server efficiency. It primarily stresses the CPU and a
limited amount of main memory of computer servers. Higher
memory capacities do not increase SSJ performance but do
increase power consumption, thus worsening the efficiency result.
This deficit restricts its usability for governmental regulatory
programs; e.g. the EPA ENERGY STAR [1].

The Memory Worklets developed for SERT generate synthetic
loads on server storage devices mimicking basic access patterns
from real world usage models. The design goals specified in the
SERT Design Document [6] state that the Memory Worklets
should give credit to higher bandwidth, lower latency, and
increased total size of computer server main memory. The tests
described in this paper were performed to check the suitability of
the implementation for the designed purpose, especially testing
whether these design goals are met.

6.1 Test Configurations
The experiments described in this paper are based on the RC1
version of SERT. The results are representative for this specific
SERT release and may differ for the final release.

354

In order to show the scaling capabilities of the Memory Worklets,
a series of tests was executed on a two-socket Fujitsu
PRIMERGY RX300 S7 rack server with 24 DIMM slots.
Throughput and power consumption have been measured running
the SERT Memory Worklets under different CPU and Memory
configurations.

6.1.1 Power Measurement Setup
For the experiments described in this paper the SERT standard
power measurement setup was used, only measuring the total
system power at the Power Supply Unit (PSU) input. Because no
adapters for measuring memory power consumption on the
system main board have been available for our tests, only overall
system power can be provided.

A temperature sensor was used in all test scenarios to measure the
ambient temperature and ensure that it always stays above the
required minimum of 20°C.

6.1.2 The SERT Memory Workload
The SERT memory workload includes two memory Worklets
named Flood and Capacity, briefly introduced below. A detailed
description of these Worklets is given in the SERT Design
Document [6].

Memory Flood Worklet
The Flood Worklet is based upon STREAM, a popular benchmark
that measures memory bandwidth across four common and
important array operations. For the long (64-bit) integer arrays
used in Flood, the following amounts of memory are involved per
assignment:

1. COPY: a(i) = b(i) ‐‐ 8 bytes read + 8 bytes write
2. SCALE: a(i) = k * b(i) ‐‐ 8 bytes read + 8 bytes write
3. ADD: a(i) = b(i) + c(i) ‐‐ 16 bytes read + 8 bytes write
4. TRIAD: a(i) = b(i) + k * c(i) ‐‐ 16 bytes read + 8 bytes write

The Flood score is based upon the aggregate system memory
bandwidth calculated from the average of these four tests
multiplied by the amount of physical memory installed in the
SUT. While Flood is based upon STREAM, it uses no STREAM
code and is implemented entirely in Java.

Memory Capacity Worklet
The Capacity Worklet uses modified code from the SERT
XMLvalidate Worklet, which exercises Java’s XML validation
package.
Memory scaling in Capacity is done through a scheme known as
input data caching (IDC). In IDC, the universe of possible input
data (here, randomized XML file data) is pre-computed and then
cached within memory before the start of the workload. During
workload execution, the input data for a particular transaction
instance is then chosen randomly and retrieved from this cache
rather than computed on the fly.
The data store size is increased incrementally with each interval.
If the data store size is less than the amount of physical memory
available to the Worklet, data is retrieved from the cache. Once
the data store size is larger than the maximum size of the data
cache, a ‘cache miss’ penalty is incurred when the transaction
randomly chooses a data store element that is not currently in the

cache. When this occurs, multiple iterations of re-generating a
cache element are performed to apply a cache miss penalty and
the transaction rate decreases. The more memory the system has,
the larger a data store access can be executed before the
transaction rate begins to lower as a result of cache misses.
In addition to the transaction characteristics, the maximum cache
size is applied to the scoring algorithm. Cache size is computed
as: Physical Memory * data-cache-to-heap-ratio (currently 0.6)
While this Worklet does contain transactions that are memory-
oriented, there is still a component that is influenced by CPU
performance.

Memory Workload Execution
The Flood Worklet uses the SERT fixed iteration execution model
(i.e., it always deploys a fixed number of iterations). The amount
of memory under test will automatically adjust to fully utilize
installed DRAM, so runtime will vary depending upon system
configuration.
The Capacity Worklet measurement intervals run for a fixed
amount of time, 2 minutes plus pre- and post-measurement phases
of 15 seconds Each interval consists of a No Delay Series (i.e., the
code runs unrestricted at highest possible speed), where the
parameter data-store-size changes with each interval. Table 1
describes the load levels of the two Memory Worklets.

6.1.3 The Tested Configurations
The basic configuration of the SUT used for the test series is
described below. The CPU and memory configuration as well as
the OS, have been varied to measure how these configuration
changes influence Worklet performance and power consumption.

• CPU: 2 x Intel Xeon E5-2690, E5-2620, E5-2603
• RAM: 8, 16, 24 x 16GB PC3L-12800R DIMMs

 8, 16, 24 x 8GB PC3L-12800R DIMMs
• OS: Microsoft Windows Server 2008 R2

 Red Hat Enterprise Linux 6.2
• JVM: Oracle HotSpot 1.7.0_09-b05
• RAID Controller: 1 x LSI 2108 SAS
• Storage Device: 1 x 146GB SAS 2.5” 10k rpm (boot dev.)
• PSU: 1 x 800W/230V AC CSCI Platinum Standard

 1 x 800W/48V DC CSCI Gold Standard

Table 1. Memory Workload Load Levels

Worklet Load Levels Description

Flood Full, Half 2 load levels using full and half of
the available memory capacity

Capacity
4, 8, 16, 32,

 64, 128, 256,
512, 1024

9 load levels with increasing IDC
data store sizes specified in GB

Due to time constraints, each of these configurations was tested
with a single SERT run only. The SERT test configuration file
(config-all.xml) was modified to execute the Flood, Capacity, and
Idle Worklets only, resulting in a reduced execution time of about
40 - 50 minutes per test run depending on the configuration.

6.2 Memory Worklet Test Results
This section presents the results of the experiments executed on
the different configurations. Specifically, it shows the scaling
capabilities of the memory Worklets and compares their power

355

consumption. The different configurations tested are described in
Table 2. Pairs of three Intel Xeon CPU models with differing
number of cores/threads and clock frequencies were used. All
tested CPUs include an on-chip memory controller providing four
memory channels (i.e. a total of eight memory channels). DIMMs
of size 16GB and 8GB have been tested in configurations of 8, 16
and 24 [i.e., 1, 2, and 3 DIMMs Per Channel (DPC)]. Table 2
shows the effective memory frequencies which are defined by the
capabilities of DIMMs and CPUs (e.g., the E5-2603 CPU restricts
memory frequency to 1066MHz although the tested DIMMs
support up to 1600MHz). For all CPU models the memory
frequency is reduced to 1066MHz for configurations with 24
DIMMs or 3 DPC.

Table 2. Memory Scaling Configurations

Configuration Description
1 E5-2690 8C/16T 2.90G.Hz, 8x16=128GB@1600MHz
2 E5-2690 8C/16T 2.90GHz, 16x16=256GB@1600MHz
3 E5-2690 8C/16T 2.90GHz, 24x16=388GB@1066MHz
4 E5-2690 8C/16T 2.90GHz, 8x8=64GB@1600MHz
5 E5-2690 8C/16T 2.90GHz, 16x8=128GB@1600MHz
6 E5-2690 8C/16T 2.90GHz, 24x8=192GB@1066MHz
7 E5-2620 6C/12T 2.00GHz, 8x8=64GB@1600MHz
8 E5-2620 6C/12T 2.00GHz, 16x8=128GB@1600MHz
9 E5-2620 6C/12T 2.00GHz, 24x8=192GB@1066MHz

10 E5-2603 4C/4T 1.80GHz, 8x8=64GB@1066MHz
11 E5-2603 4C/4T 1.80GHz, 16x8=128GB@1066MHz
12 E5-2603 4C/4T 1.80GHz, 24x8=192GB@1066MHz

In the following description we will reference the tested
configurations using the numbers defined in Table 2.

6.2.1 Memory Flood Results
Figure 8 shows the performance results of the Flood Worklet for
both load levels, Full (solid lines) and Half (dotted lines), on all
tested hardware and software configurations. The corresponding
values are printed in Table 3.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

1 2 3 4 5 6 7 8 9 10 11 12

Performance
Score

Configuration

SERT Memory Flood performance scores

Flood_Full RHEL6.2
Flood_Half RHEL6.2
Flood_Full W2K8 R2
Flood_Half W2K8 R2

Figure 8 – Flood Worklet Performance Scores

Remarks:
• The performance scores presented here are calculated by the

Flood Worklet code from measured aggregate system memory
bandwidth multiplied by the amount of physical memory.

• The scores increase with capacity for configurations with the
same bandwidth [e.g., (1, 2), (4, 5), (7, 8) and (10, 11, 12)].

• Configurations 3, 6, and 9 show a smaller performance increase
with capacity because of lower bandwidth due to reduced
memory frequency.

• The scores from the load level Half are lower because tested
physical memory is cut by half for both measurement and score
calculation (i.e., although the bandwidth is about the same the
score is halved). This load level was included in the Flood
Worklet to facilitate higher efficiency scores with memory
power management potentially powering off unused DIMMs.

• The scores are almost identical under both OSs.

Generally, the measured results reflect the desired behavior.

Table 3. Flood Worklet Performance Scores
 RHEL6.2 W2K8 R2

Full Half Full Half
1 6,434 3,163 6,396 3,200
2 13,185 6,743 13,189 6,591
3 13,698 7,216 13,901 7,005
4 3,257 1,622 3,238 1,620
5 6,586 3,345 6,659 3,331
6 6,940 3,451 6,991 3,502
7 2,192 1,117 2,860 1,433
8 5,747 2,836 5,752 2,875
9 6,826 3,460 6,926 3,501

10 1,790 897 2,283 1,143
11 4,454 2,231 4,538 2,274
12 6,493 3,274 6,651 3,365

In order to get performance values in the same order of magnitude
from all Worklets the individual performance scores of each
Worklet are divided by a fixed reference score. The reference
score for each Worklet was determined by averaging the
performance scores across several SERT test runs on a well-
defined reference configuration under different operating systems.
Figure 9 shows the normalized performance results of the Flood
Worklet for the peak load level (i.e., Full, on all tested hardware
and software configurations together with the corresponding
power readings and Idle power).
The bars represent the normalized performance score (left y-axis)
and the lines show the corresponding power consumption in watt
(right y-axis).

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

Power Consumption
[watt]

Normalized
Performance

Configuration

SERT Memory Flood normalized
performance and power

RHEL6.2 norm. perform.
W2K8 R2 norm. perform.
RHEL6.2 Full watts
W2K8 R2 Full watts
RHEL6.2 Idle watts
W2K8 R2 Idle watts

Figure 9 – Flood Worklet Normalized Performance and

Power
Normalized performance follows the basic performance score
described previously. Idle power for all configurations is almost
the same and is only marginally influenced by the number and the
capacity of the DIMMs. Peak load power is dominated by CPU
power as can be seen from the three power levels in Figure 9
corresponding to the 3 CPU models. Within each group power

356

increases with the number of DIMMs. Configurations 6 and 9
show a smaller power increase or even decrease due to lower
bandwidth caused by reduced memory frequency. This effect is
countered by higher DIMM power consumption in configuration
3. Power consumption is the same under both operating systems.

0

50

100

150

200

250

300

350

400

450

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

Power Consumption
[watt]

Worklet
Score

Configuration

SERT Memory Flood worklet
efficiency score and power

RHEL6.2 worklet score
W2K8 R2 worklet score
RHEL6.2 Full watts
W2K8 R2 Full watts

Figure 10 – Flood Worklet Efficiency Score and Power

Figure 10 finally shows the Flood efficiency scores which are
calculated as the sum of the normalized performance for each
interval divided by the sum of the average-watts for each interval.
Efficiency for the Idle Worklet is undefined as the performance
part is missing by definition. Please note that Idle power is not
included in the per Worklet efficiency score calculation.
Efficiency is best for the high end configuration and it increases
for most configurations with memory capacity, which is due
mainly to the high weight of capacity in the performance
calculation. Only configuration 3 has a lower efficiency than the
smaller configuration 2, caused by the big increase of power
consumption.

6.2.2 Memory Capacity Results
Figure 11 shows the performance results of the Capacity Worklet
for selected load levels, 4GB, 64GB, 128GB, and 1024GB data
store size, on all configurations with 8GB DIMMs under
RHEL6.2 OS. The corresponding values are printed in Table 4.

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

4 5 6 7 8 9 10 11 12

Performance
Score

Configuration

SERT Memory Capacity performance scores

Capacity_4
Capacity_64
Capacity_128
Capacity_1024

Figure 11 – Capacity Worklet Performance Scores

Remarks:
• The performance scores presented here are calculated by the

Capacity Worklet code as explained in chapter 6.1.2.
• Performance is dominated by CPU capabilities as can be

seen from the three performance levels in Figure 11
corresponding to the three CPU models.

• In the peak load level the complete data store of 4GB can
always be cached completely in available physical memory
(i.e., there are no cache misses and the XML transformation
rate only depends on CPU capabilities). This load level
defines the upper performance limit.

• In the lowest load level, the 1024GB data store never fits
into available physical memory resulting in high cache miss
rates causing high CPU load for regenerating cache
elements. It defines the lower performance boundary.

• Because of additional memory overhead needed for XML
translation work, the 64GB physical memory in
configurations 4, 7, and 10 is not sufficient for fully caching
the 64GB data store. For the configurations with 128GB and
192GB the performance is close to the 4GB results because
now the data store is totally cached.

• Cache hit rates increase significantly with additional
physical memory for 128GB data store, but it cannot be
cached fully in the 192GB configurations due to the
overhead explained above.

• The remaining load levels are not shown in this chart for
better readability. They reach scores between the upper and
lower limit defined by the 4GB and 1024GB data store sizes
depending on how much data can be cached.

Generally, the measured results reflect the desired behavior.

Table 4. Capacity Worklet Performance Scores
 Capacity Performance Scores RHEL6.2
Load 4 64 128 1024

4 4,752,281 3,192,736 2,864,201 2,621,257
5 9,629,606 9,116,005 6,334,995 5,264,811
6 14,395,461 14,464,419 10,978,881 8,130,920
7 2,219,895 1,437,212 1,302,491 1,213,172
8 5,085,719 5,221,489 3,369,048 2,886,206
9 7,508,036 7,602,138 5,730,170 4,362,105

10 1,192,931 516,047 490,574 467,977
11 2,712,958 2,469,347 1,203,025 1,084,737
12 4,011,082 4,053,182 1,936,115 1,621,643

Figure 12 shows the normalized performance results of the
Capacity Worklet for the peak load level on all tested hardware
and software configurations together with the corresponding
power readings and Idle power.

0

50

100

150

200

250

300

350

400

450

500

0

100

200

300

400

500

600

700

800

900

1,000

1 2 3 4 5 6 7 8 9 10 11 12

Power Consumption
[watt]

Normalized
Performance

Configuration

SERT Memory Capacity normalized
performance and power

RHEL6.2 norm. perform.
W2K8 R2 norm. perform.
RHEL6.2 Peak watts
W2K8 R2 Peak watts
RHEL6.2 Idle watts
W2K8 R2 Idle watts

Figure 12 – Capacity Worklet Normalized Performance and
Power
Normalized performance follows the basic performance score.
Peak load power is dominated by CPU power as can be seen from
the three power levels in Figure 12 corresponding to the three

357

CPU models. Within each group both power and performance
increase with the number of DIMMs.
Performance is significantly higher under the Windows Server
2008 R2 OS compared to Red Hat Enterprise Linux 6.2. Power
increases proportionally with the performance. Currently, there is
no explanation for these differences. Additional experiments are
required to analyze this anomaly.

0

50

100

150

200

250

300

350

400

450

500

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1 2 3 4 5 6 7 8 9 10 11 12

Power Consumption
[watt]

Worklet
Score

Configuration

SERT Memory Capacity worklet
efficiency score and power

RHEL6.2 worklet score

W2K8 R2 worklet score

RHEL6.2 Peak watts

W2K8 R2 Peak watts

Figure 13 – Capacity Worklet Efficiency Score and Power

The Capacity efficiency scores are shown in Figure 13. Again,
efficiency is best for the high end configurations and it increases
for all configurations alongside memory capacity, which is
mainly due to the high weighting of capacity in the performance
calculation. Although performance was higher under Windows,
the efficiency scores are close to each other or even equal for
some configurations. This is due to the higher power consumption
under Windows which compensates the performance advantage.

7. AC-DC COMPARISON
The EPA has received requests from stakeholders to support DC-
powered servers with Version 2.0 of the ENERGY STAR
Enterprise Servers Specification [1]. Currently, this cannot be
achieved because the SERT does not support DC loads, as stated
in the SERT Design Document [6]. The general SERT design
allows for such measurements, once a DC-capable version of the
SPEC PTDaemon becomes available. In order to evaluate the DC
capabilities of the SERT and to compare the characteristics of AC
and DC power consumption a modified version of SPEC
PTDaemon has been implemented, which supports DC
measurements for a test series. Typically the power analyzer
uncertainties of DC measurements are significantly higher than
those of AC measurements, specifically with lower voltages. In
order to stay below the 1% uncertainty threshold required for
SERT measurements, a high precision power analyzer had to be
used. This special beta version of the SPEC PTDaemon is for
internal use only. Currently there are no plans for releasing this
version with the final SERT kit.
Three consecutive full SERT runs have been executed on the test
system described in chapter 6.1.3 with 8 x 8GB DIMMs using an
800W/230V AC PSU. A second series of full SERT tests was
performed on the same configuration but exchanging the PSU
against an 800W/48V DC model.

Figure 14 shows the normalized peak performance for all SERT
Worklets in both configurations and the corresponding power
consumption values.

0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

70

80

90

Power Consumption
[watt]

Normalized
Performance

Worklet

SERT RC1 AC‐DC comparison

AC norm. perf.

DC norm. perf.

AC watt

DC watt

Figure 14 – SERT RC1 AC – DC Comparison

The detailed result values are provided in Table 5, which also
includes a column showing the power consumption delta.

Table 5. SERT AC – DC comparison test results

PSU 800W AC
CSCI Platinum

800W DC
CSCI Gold Delta

Worklet
Norm.
Perf.@
100%

Avg.
Watts

@
100%

Norm.
Perf.

@
100%

Avg.
Watts

@
100%

DC - AC
watts

Compress 11.1 228 11.1 233 2.2%
CryptoAES 10.9 270 10.9 277 2.8%
LU 8.3 222 8.3 229 3.1%
SOR 10.5 235 10.5 240 2.0%
XMLvalidate 8.3 222 8.2 227 2.1%
Sort 9.1 242 9.1 240 -1.0%
SHA256 9.6 248 9.6 253 1.9%
Flood 54.9 290 54.9 296 2.0%
Capacity 79.0 212 79.0 216 2.1%
Sequential 3.5 106 3.5 110 3.4%
Random 2.4 106 2.4 110 3.9%
SSJ 13.7 280 13.7 287 2.6%
Idle 94 97 3.6%

7.1 AC-DC Comparison Results
The performance scores are almost identical for all Worklets.
Power consumption is however typically 2 – 4% higher for the
DC PSU configuration. Only the Sort Worklet consumes less
power in the DC configuration. This is probably due to high run-
to-run variations seen during our test, which may be caused by the
aggressive JVM tuning flags currently used by default. These
flags will be revised for the final SERT release with the goal of
minimizing run-to-run variations.
The higher power draw of the DC configuration is partly caused
by the lower efficiency standard of the DC PSU, which is CSCI
Gold compared to CSCI Platinum for the AC PSU. Based on the
efficiency curves for both PSUs, it is estimated that about half of
the power delta is due to higher power losses in the DC model.
Generally it is assumed that DC PSUs would show the higher
efficiency because AC-DC conversion losses will not occur.
These tests have shown the opposite behavior. This is most
probably due to the lower voltage of the DC PSU (48V) compared
to the AC PSU (230V), which results in much higher currents
having to be handled by the PSU for voltage conversion. Higher

358

currents cause increased power loss and this effect dominates the
missing AC-DC conversion loss.
Repeating this comparison with a 400V DC PSU would most
probably end in favor of the DC configuration, because of the
absence of AC-DC conversion losses and lower currents resulting
in reduced voltage conversion losses.

8. CONCLUSION
The SERT was released in February 2013, for use in Version 2.0
of the EPA ENERGY STAR for Computer Servers program.
While previous papers described the initial design and
implementation of the SERT, this one has focused on the design
decisions, implementation trade-offs and validation performed to
actually deliver the tool.
This paper discusses in detail the design decisions taken to
simplify configuring and running the SERT, with customer
feedback during the beta phases as a key input. Experience gained
with customers of SPECpower_ssj2008, and the results reviewed
by the SPECpower Committee also inspired simplification of use.
Five years of ssj2008 submission highlighted some of the
complexities of configuring test hardware and power analyzers to
perform measurements. This directly drove the development of
the affinity mask generator, and most significantly, the GUI and
hardware discovery components.
It has been stressed throughout the development of the SERT that
it is not a benchmark. However there continue to be requests for
scores and metrics that can be used to help differentiate between
similar servers from different vendors.
The SERT implementation also shows that the underlining
Chauffeur framework provides the features needed for future
performance and energy efficiency benchmark implementations.
Finally, this paper describes some of the future evolution of the
SERT that is under active development or consideration. Adding
support for DC power is in the experimental phase. The SERT is
currently providing results that realistically represent what might
be observed with production workloads on servers running on DC
power. The intent is for a future release to add this support,
broadening the appeal and usability of the SERT to non-
traditional server industries, such as telecommunications.
Considerable interest has been shown in the SERT by several
countries. It is therefore reasonable to hope for widespread
adoption in the next few years. This should enable consistency
across markets, which will benefit computer manufacturers and
users, as well as the environment as a whole.

The SERT offers ease of use, cross platform support, a strong
range of synthetic Worklets, and a highly modular and extensible
architecture. These features are intended to ensure its ability to
evolve along with the computer industry, leading to a common
baseline for server power measurements across geographies.

Work is already underway to further improve and extend the
SERT. It is hoped that this leads to even broader adoption across
other industries, and for other types of workloads.

9. ACKNOWLEDGMENTS
The authors would like to acknowledge Karin Wulf for providing
a modified version of SPEC PTDaemon supporting DC power
measurements, as well as Thomas Brand and Charlie Cha for
executing numerous measurements for this paper.

The authors also wish to acknowledge current and past members
of the SPECpower Committee who have contributed to the
design, development, testing, and overall success of the SERT:
Sanjay Sharma, Greg Darnell, Karl Huppler, Van Smith, Paul
Muehr, David Ott, Cathy Sandifer, Jason Glick, and Dianne Rice,
as well as the late Alan Adamson and Larry Gray.

SPEC and the names SERT, SPEC PTDaemon, and
SPECpower_ssj are registered trademarks of the Standard
Performance Evaluation Corporation. Additional product and
service names mentioned herein may be the trademarks of their
respective owners.

10. REFERENCES
[1] ENERGY STAR Enterprise Servers Specification Version

2.0: http://www.energystar.gov/products/specs/node/142
[2] Lange, K. D., and Tricker, M. G. 2011. The Design and

Development of the Server Efficiency Rating Tool (SERT).
In Proceedings of the second joint WOSP/SIPEW
international conference on Performance engineering
(Karlsruhe, Germany, March 14 - 16, 2011). DOI=
http://dx.doi.org/10.1145/1958746.1958769

[3] Lange. K. D., Identifying Shades of Green: The SPECpower
Benchmarks, IEEE Computer, V42 #3 2009, 95-97, DOI=
http://dx.doi.org/10.1109/MC.2009.84

[4] Lange, K. D., Tricker, M. G., Arnold, A. A., Block, H., and
Koopmann, C. 2012. The Implementation of the Server
Efficiency Rating Tool (SERT). In ICPE '12 Proceedings of
the third joint WOSP/SIPEW international conference on
Performance Engineering (Boston, USA, April 22 - 25,
2012). DOI= http://dx.doi.org/10.1145/2188286.2188307

[5] Server Efficiency Rating Tool - Home Page:
http://www.spec.org/sert/

[6] Server Efficiency Rating Tool - Design Document:
http://www.spec.org/sert/docs/SERT-Design_Document.pdf

[7] SPECpower_ssj2008 - Home Page:
http://www.spec.org/power_ssj2008/

[8] SPEC Power and Performance Benchmark Methodology:
http://www.spec.org/power/docs/SPEC-
Power_and_Performance_Methodology.pdf

359

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

