
Adaptive Deployment in Ad-Hoc Systems Using Emergent
Component Ensembles: Vision Paper

Lubomír Bulej1,2 Tomáš Bureš1,2 Vojtěch Horký1 Jaroslav Keznikl1,2
1Charles University in Prague 2Academy of Sciences of the Czech Republic

Faculty of Mathematics and Physics Institute of Computer Science
Malostranské náměstí 25 Pod Vodárenskou věží 2

118 00 Prague 1, Czech Republic 182 07 Prague 8, Czech Republic

{bulej,bures,horky,keznikl}@d3s.mff.cuni.cz

ABSTRACT
Mobile cloud computing in the context of ad-hoc clouds
brings new challenges when offloading computation from
mobile devices. The management of application deployment
needs to ensure that the offloading provides users with the
expected benefits, but it suddenly needs to cope with a highly
dynamic environment which lacks a central authority and in
which computational nodes appear and disappear.

We propose an approach to the management of ad-hoc
systems in such dynamic environment using component en-
sembles that connect mobile devices with more powerful
computation nodes. Our approach aims to address the chal-
lenges of scalability and robustness of such systems without
the need for central authority, relying instead on simple pat-
terns that lead to reasonable adaptation decisions based on
limited and imprecise information.

Categories and Subject Descriptors
[Computer systems organization]: Other architectures

— Self-organizing autonomic computing, Distributed architec-
tures — Cloud computing; [Software and its engineer-
ing]: Extra-functional properties — Software performance

Keywords
ad-hoc cloud, ensembles, adaptive deployment

1. INTRODUCTION
Increasing capabilities of handheld devices and improve-

ments in mobile network infrastructures pave the way for
mobile cloud computing [1], an architectural solution where
mobile devices offload computation to the cloud to gain ad-
vantage for example in increased computing power or reduced
battery usage. Another motivation is the emergence of ad-
hoc clouds [2], whose computing power comes from pooled
resources of nearby general-purpose computing devices rather

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

than from dedicated servers. Our work, carried out in the
scope of the ASCENS project [3], aims to combine and ex-
tend the two trends by blurring the traditionally strict [4]
boundary between the client devices and the cloud infras-
tructure. We envision an ad-hoc cloud formed as a multitude
of dynamically emerging groups of computational devices
that share their computing power. The groups will typically
involve a number of mobile devices along with locally situ-
ated general-purpose computers, potentially connected to a
remotely situated dedicated cloud infrastructure.

Important specifics of our ad-hoc cloud concept are that it
has a dynamic, mostly uncontrollable architecture with fluc-
tuating computing power and partially limited resources, e.g.
the available battery charge for mobile devices. The promise
of the ad-hoc cloud is in maintaining the usual benefits asso-
ciated with offloading computation to a cheap, flexible and
resilient environment—however, the ad-hoc cloud applica-
tions must dynamically adapt their deployment to deliver
the expected user experience in such specific conditions.

The challenge in application adaptation is related to the
open character of the ad-hoc cloud. Where a common cloud
application can react to increased utilization by requesting
additional computing resources, an application in an ad-hoc
cloud must act in presence of other adapting applications
that share the same resources. Even the scheduling solutions
for computational grids, which do cope with shared resources,
assume a degree of centralization knowledge and control over
the grid that is not available in the ad-hoc cloud [5]. We
therefore believe that the application of adaptation solutions
in ad-hoc clouds will not assume the shape of complex al-
gorithms that compute close-to-optimal deployment under
dynamic conditions, but rather the shape of relatively simple
patterns that lead to reasonable adaptation decisions relying
on limited and imprecise information.

In this vision paper, we focus on the problem of adaptive
deployment planning in ad-hoc clouds and outline an adapta-
tion approach based on a component system with emergent
component ensembles [6, 3]. We assume an external mecha-
nism would be responsible for the actual migration [7]. We
discuss the potential benefits and scalability of this approach.

2. MOTIVATING EXAMPLE
Besides smart phones, we consider tablet computers to

be a perfect target for mobile computing in ad-hoc clouds—
modern applications take advantage of their relatively high
computational power and users tend to use them both for

343

work and entertainment. However, they are still constrained
by the limited battery life.

We start our vision with an example, where we consider a
user travelling in a train or a bus, who wants to do produc-
tive work using her tablet computer or review travel plans
and accommodation. Her tablet registers the presence of an
offload server machine located in the bus itself, and to save
battery, it offloads most computationally intensive tasks to
that machine. Later, when the bus approaches the destina-
tion, the offload server notifies her tablet that its service will
soon become unavailable and tasks will start moving back
to the tablet. When the bus enters the terminal, the tablet
will discover another offload server, provided by the terminal
authority, and move some of its tasks to the newly found
machine.

Many similar examples can be found, and they would
follow similar pattern. Abstracting away from the details,
we can try to capture such examples formally under one
general umbrella. Assume a mobile device M (tablet in
our example) and two stationary devices S and T (offload
servers in our example). M executes application A, which is
internally split into two parts: a frontend Af, responsible for
the interaction with a user, and a backend Ab, responsible
for the computationally intensive tasks.

In our scenario, M discovers S and assesses that offloading
the computationally intensive Ab to S could save M’s battery.
After some time, S signals that it is going to be unavailable,
but M discovers that there are other devices available. Ab
is thus migrated to the one that appears most suitable for
running Ab—device T in our scenario.

The challenge is in predicting which deployment scenario
will—in the context of ad-hoc cloud—deliver the expected
user experience. We assume that each application will have a
simple performance model that, given specifics of the execu-
tion environment and other constraints, will provide a rough
estimate of the expected user experience (e.g. what frame
rate could be achieved given CPU and GPU budget). The
application deployment would be then planned dynamically,
taking into account the expected user experience estimated
by the model, possibly corrected for measured accuracy of
the model from past deployments.

3. COMPONENT ENSEMBLES
Although the scenario of the running example is relatively

straightforward, it is relatively difficult to realize due to
the inherent dynamicity of the whole ecosystem (i.e. all
applications and devices). Further, the combination of the
dynamicity and the autonomy of the applications and devices
imply the absence of the notion of a global state. In fact,
every information about the ecosystem has the form of a
“belief” – i.e. an information valid to only a certain extent.

To cope with these issues, we suggest in this paper to
take advantage of a component system based on emergent
component ensembles [6, 3] and use it to represent situation
in such a dynamic ecosystem and to manage the belief about
it. To this end, we outline in the rest of the section the basic
principles of component ensembles and explain their use in
addressing the adaptation in Section 4.

Emergent component ensembles are based on the idea of
implicit communication via implicit bindings. Specifically,
an ensemble is a dynamically formed group of components,
where a component constitutes knowledge (i.e., data) and
processes (i.e., active threads operating upon the knowledge).

The membership of a component in an ensemble is determined
dynamically (the task of the component system runtime
framework) according to the membership condition of the
ensemble specified upon the knowledge of the components. In
an ensemble one component plays the role of the ensemble’s
coordinator while others play the role of members. A single
component can be member and/or coordinator of multiple
ensembles at the same time; thus an ensemble forms an
independent logical overlay over components.

The interaction among the components forming an ensem-
ble takes the form of knowledge exchange, carried out implic-
itly (by the runtime framework); i.e., the runtime framework
transfers knowledge from one component of the ensemble to
another independently on the components’ execution.

The benefit of such ensembles is that they allow for cap-
turing communication (i.e., exchange of knowledge) among
a (potentially) large, declaratively defined set of components
in a concise way.

4. ADAPTATION ARCHITECTURE
To address the aforementioned challenges, we present a

generic architecture of adaptation logic, based on emergent
component ensembles. The proposed adaptation architecture
follows the following basic principles.

To ensure separation of concerns, the adaptation logic
forms a separate overlay architecture mirroring the architec-
ture of the adapted application.

Additionally, the entities important for deciding adap-
tation, i.e., (a) computation nodes (and their NFPs), (b)
individual adapted applications (and their NFP preferences),
and (c) the applications’ components (and their NFPs), are
explicitly reflected in the adaptation architecture.

4.1 Adaptation architecture components
The adaptation architecture (Figure 1) is formed by fol-

lowing components:
Planner. Each adapted application, and particularly its

NFP preferences, are represented by the Planner compo-
nent. Specifically, the Planner selects a (potentially optimal)
deployment of the application, given the alternatives for de-
ploying each of the application’s components. We assume
an external mechanism [7] to interpret the deployment plan
provided by the Planner and perform the adaptation (e.g., by
migrating a component). The alternatives comprise impor-
tant NFP-related data (NFPData) indicating the (potential)
performance of the corresponding application component in
that particular deployment (e.g., FPS, energy, etc.). The
Planner also advertises definitions of Monitors for individual
application components (MonitorDef); see Device.

Monitor. Each application component, particularly each
of its deployment alternatives, is reflected by the Monitor
component, which is responsible for obtaining the NFPData
for that particular alternative. Monitor operates in one of
the two modes, depending on the actual deployment of the
corresponding application component.

• Monitor is in the running mode if it resides on the
same computation node as the corresponding applica-
tion component, i.e. it reflects the actual deployment.
NFPData is obtained by performance measurement and
analysis of the running application component.

• Monitor is in the mock mode if it resides on a differ-
ent computation node, i.e. it represents a potential
deployment alternative. NFPData is obtained from

344

Monitor(Ab)
<<running>>

<<mock>>

Mobile device Stationary device

Monitor(Af)
<<running>>

Planner(A)

NFPData(Ab) MonitorDef(A*)

NFPData(Af)

MonitorDef(*)

NFPData(A*)

DeploymentPlan(A)

MonitorDef(*)

Monitor(Ab)
<<mock>>

<<running>>
NFPData(Ab)

(2) The Device spawns a new monitor
in the mock mode for each MonitorDef
(3) After external ly migrating-in
the application component the Device
turns the monitor into running mode

NFPDeviceData(*)
(2, 3)

Device(S)

(2)

(1) The Device spawns a new
monitor in the mock mode for each new MonitorDef
(3) After external ly migrating-out the application
component the Device turns the monitor into mock mode

Device(M)

NFPDeviceData(A)
(1, 2)

(3)

NFPDeviceData(A)

NFPDeviceData(*)

(3)

(2, 3)

(2)

(3)

(1, 2, 3)

(1, 2, 3)

(1, 2, 3)

Distributes only models
that are allowed to be
migrated on the device

Figure 1: Adaptation architecture of the running example: phases 1 (M isolated), 2 (S discovered), and 3 (Ab
migrated to S). Phases 1,2,3 are in the figure denoted by (1), (2), (3).

the included performance dependency model of the
corresponding application component (e.g., the func-
tion CPU × GPU → FPS). In other words, Monitor
predicts – based on the model – the performance of
the application component if it would be deployed on
that computation node. The model might depend on
particular machine-specific performance data (NFPDe-
viceData, e.g., available CPU speed, etc.); see Device.

Device. Each computation node is reflected by the De-
vice component. Specifically, a Device component ensures
management of the Monitors (e.g., it instantiates Monitors
advertised by newly discovered Planners) and it provides
NFPDeviceData for Monitors in the mock mode.

4.2 Adaptation architecture ensembles
The expectation is that the number of available computa-

tion nodes, as well as the number of Monitors, changes dynam-
ically. Therefore, the communication among the components
exploits the concept of emergent component ensembles. The
architecture involves the following ensembles (Figure 1):

Planner and Device(s). Each Planner is a coordinator
of an ensemble that distributes MonitorDefs (including the
performance dependency model) of application components
to Devices representing currently available computation nodes
(including the one the Planner is running on). The Planner is
able to constraint which MonitorDefs should be distributed
to which Devices (effectively constraining the potential mi-
gration destinations for a particular application component).
A simplified example of a definition of this ensemble is in
Figure 2. It specifies that only reachable devices within
2 network hops are to be considered and that this check is
to be performed every 15 seconds. The distribution of the
MonitorDefs is performed by adding the MonitorDef to the
target component’s knowledge.

Planner and Monitor(s). Each Planner is a coordinator
of an ensemble that aggregates NFPData from all Monitors
corresponding to the components of the application reflected
by the Planner. Thus, this ensemble aggregates all the de-
ployment alternatives for the application.

1 ensemble PlannerToDevice:
2 coordinator: Planner
3 member: Device
4 membership: HopDistance(Planner.device, Device) ≤ 2
5 knowledge exchange:
6 Device.monitorDef[Planner.app] := Planner.monitorDef
7 scheduling: periodic(15s)

Figure 2: Example of an ensemble definition.

Device and Monitor(s). Each Device component is a
coordinator of an ensemble that distributes NFPDeviceData to
the Monitors in the mock mode residing on the corresponding
computation node.

4.3 Adaptation architecture in action
In this section, we illustrate on the motivation example

the adaptation architecture interaction at runtime.
At first (phase 1, Figure 1), the ensemble distributes the

MonitorDefs of both Af and Ab from Planner of A to the Device
component of the mobile device (M), which subsequently
spawns Monitors for both components and sets them to the
running mode. The Monitors start measuring NFPData of the
running components which are then aggregated back to the
Planner. So far no deployment alternatives are discovered.

After the stationary device (S) is discovered (phase 2,
Figure 1), the ensemble propagates MonitorDefs of the com-
ponents that could be (potentially) migrated (i.e., Ab) to its
Device component, which spawns a new Monitor. Since Ab is
deployed on a different Device this Monitor runs in the mock
mode. Thus, the Device component of the stationary device
feeds the Monitor with NFPDeviceData allocated for A. Based
on this NFPDeviceData and the performance dependency
model of Ab the Monitor produces NFPData reflecting the
expected performance of Ab on S. Consequently, another
ensemble aggregates all the currently produced NFPData
for Af and Ab to the Planner. The Planner thus eventually
discovers that there are two deployment alternatives for Ab
(i.e., one actually running on M and one modeled on S) and
finally decides to deploy Ab on the stationary device.

345

After Ab is migrated to the stationary device (phase 3,
Figure 1), the Monitor on S is set to the running mode, while
the Monitor on M is set to the mock mode and the whole
monitoring and planning process repeats.

In the case of discovering further stationary devices, new
Monitors in the mock mode are spawned which eventually
results in new deployment alternatives aggregated in the
Planner (similarly, if devices disappear).

5. BENEFITS
Scalability and robustness. By exploiting the features

of the ensembles, the adaptation architecture scales well with
the number of computation nodes, applications, and compo-
nents per application. In fact, the adaptation architecture
does not require any changes when increasing the number
of nodes/applications/components. Furthermore, it is very
robust with respect to emergence of computation nodes.

Transparent trade-off management. Due to the de-
clarative nature of ensembles, it is possible to easily manage
the trade-offs between the benefit of migration and the effort
necessary for monitoring and planning. For instance, Mon-
itors do not have to be spawned on all available nodes but
only on a subset; e.g., only the nodes in the same subnet.

Respecting interests of all involved parties without
central authority. Although each application is planned
autonomously, it is possible (without any centralized author-
ity) to take into account the interests of the other applications
and of host devices by regulation of the NFPDeviceData and
management of the application’s Monitors — e.g., the NF-
PDeviceData may reflect only a portion of device’s resources.

Flexible NFP data acquisition. The NFPData pro-
duced by Monitors may contain any information important for
deciding adaptation as along as it is obtainable via measure-
ments and/or performance dependency model, e.g., latency
between Ab and Af, expected up-time of the computation
node (for detecting shutdowns), etc. Moreover, a Monitor can
decide between accepting NFPDeviceData given by Device
and measuring its own, e.g., Monitor(Ab) can either individ-
ually measure latency to Af or rely on the network latency
information given by Device(S). Although the performance
dependency model employed by a Monitor will usually provide
only a rough approximation of the expected performance, it
can be potentially improved by actual measurements.

Scalable extensions. Being declarative, the ensembles
allow the design to scale with respect to potential extensions
of the basic architecture. For instance the Planner itself can
be subject to migration in case the application does not
have any frontend. Additionally, when understanding the
Planner as an entity controlling the NFPs of the application,
it is possible to foresee the existence of multiple Planners per
application, thus hierarchically decomposing the adaptation.

6. RELATED WORK
In our previous work [8] we proposed to use Stochastic

Performance Logic (SPL) [9] to express rules for adaptation
in component systems based on real and predicted perfor-
mance of individual components. The rules controlling the
adaptation are similar to the decision logic of the Planner
that compares deployment alternatives for Ab.

The issue and challenges of dynamic deployment adapta-
tion has been formulated [4] and addressed [10] previously.
However, in spite of the variety of solutions to the indi-

vidual challenges (e.g., parameters of decision, migration
to stationary only or also to mobile devices, acquisition of
NFP-related data, etc.), in the majority of the approaches a
predetermined solution is used. On the other hand, our adap-
tation architecture is dynamic enough to allow for combining
multiple solutions simultaneously and selecting among them
dynamically. It also provides general means to address the re-
maining challenges (e.g., scheduling of NFP data acquisition
or estimation of cost for running before real execution).

A significant body of work has been devised in the related
area of Mobile Cloud Computing (MCC) [1]. Although many
of the challenges and solutions can be adopted in ad-hoc
clouds, there is a significant difference in perceiving the
role of the mobile device, i.e., MCC considers the mobile
device as separate from the cloud while ad-hoc clouds do not
distinguish among the role of the devices.

We assume an external mechanism responsible for the
deployment/migration-related aspects of our approach since
it has been intensively researched separately, e.g., in [7].

7. CONCLUSION
In this paper, we have presented our vision on addressing

the problem of planning deployment adaptation in ad-hoc
clouds. In particular, we have described a generic architecture
for deployment adaptation logic that is based on the concept
of emergent component ensembles. We have also discussed
the potential benefits and scalability of this architecture.

8. ACKNOWLEDGEMENTS
This work has been supported by EU project 257414

ASCENS and GACR project P202/10/J042 FERDINAND.

9. REFERENCES
[1] L. Guan et al., “A survey of research on mobile cloud

computing,” in Proc. ICIS’11, pp. 387–392, IEEE CS,
2011.

[2] G. N. C. Kirby et al., “An approach to ad hoc cloud
computing,” CoRR, vol. abs/1002.4738, 2010.

[3] M. Hölzl et al., “Engineering Ensembles: A White
Paper of the ASCENS Project.” ASCENS Deliverable
JD1.1, 2011. Online: http://www.ascens-ist.eu.

[4] B.-G. Chun and P. Maniatis, “Dynamically partitioning
applications between weak devices and clouds,” in Proc.
MCS’10, pp. 1–5, ACM, 2010.

[5] C. Jiang et al., “A survey of job scheduling in grids,” in
Advances in Data and Web Management, vol. 4505 of
LNCS, pp. 419–427, Springer, 2007.

[6] J. Keznikl et al., “Towards Dependable Emergent
Ensembles of Components: The DEECo Component
Model,” in Proc. WICSA/ECSA’12, IEEE, 2012.

[7] S.-H. Hung et al., “Executing mobile applications on
the cloud: Framework and issues,” Computers &
Mathematics with Applications, vol. 63, no. 2, 2012.

[8] L. Bulej et al., “Performance awareness in component
systems: Vision paper,” in Proc. COMPSAC’12
Workshops, pp. 514–519, IEEE CS, 2012.

[9] L. Bulej et al., “Capturing Performance Assumptions
using Stochastic Performance Logic,” in Proc. ICPE’12,
pp. 311–322, ACM, 2012.

[10] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and
taxonomy of cyber foraging of mobile devices,” IEEE
Commun. Surveys Tuts., vol. 14, 2012.

346

