CloudScale: Scalability Management for Cloud Systems

Gunnar Brataas***
Erlend Stav*
* SINTEF ICT, ** IDI, NTNU
Trondheim, Norway
{Gunnar.Brataas,

Erlend.Stav}@sintef.no

Sebastian Lehrig
Steffen Becker
Universitét Paderborn
Paderborn, Germany
{Sebastian.Lehrig,
Steffen.Becker}

Goran Kopcak
Darko Huljenic
Ericsson Nikola Tesla
Zagreb, Croatia
{Goran.Kopcak,
Darko.Huljenic}@ericsson.com

@uni-paderborn.de

ABSTRACT

This work-in-progress paper introduces the EU FP7 STREP
CloudScale. The contribution of this paper is an overall de-
scription of CloudScale’s engineering approach for the design
and evolution of scalable cloud applications and services. An
Electronic Health Record (EHR) system serves as a moti-
vation scenario. The overall CloudScale method describes
how CloudScale will identify and gradually solve scalability
problems in this existing applications. CloudScale will also
enable the modelling of design alternatives and the analy-
sis of their effect on scalability and cost. Best practices for
scalability will further guide the design process. The Cloud-
Scale method is supported by three integrated tools and a
scalability description modelling language. CloudScale will
be validated by two case studies.

Categories and Subject Descriptors

D.2.2 [Software|: Programmer workbench; H.1.0 [Infor-
mation Systems|: Models and Principles, General; D.2.11
[Software]: Patterns

Keywords

Scalability, Cloud, Software architecture, Provisioning, Do-
main specific modelling language, Tools

1. INTRODUCTION

Cloud providers theoretically offer their customers virtually
unlimited infrastructure resources for their applications on
an on-demand basis. However, scalability is not only deter-
mined by the available resources, but also by how the control
and data flow of the application or service is designed and
implemented. Implementations that do not consider their ef-
fects can either lead to low performance (under-provisioning,
resulting in high response times or low throughput) or high
costs (over-provisioning, caused by low utilisation of infra-
structure resources).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

335

CloudScale [2] aims at providing an engineering approach
for building scalable cloud applications and services with the
following objectives:

1. Make cloud systems scalable by design so that they can
optimally exploit the elasticity of the cloud, as well as
maintaining and also improving scalability during sys-
tem evolution. At the same time, a minimum amount
of computational resources shall be used.

2. Enable model-driven analysis of scalability of basic and
composed services in the cloud.

3. Ensure industrial relevance and uptake of the Cloud-
Scale results so that design for scalability becomes eas-
ier for cloud systems.

CloudScale’s engineering approach for scalable applications
and services will enable small and medium enterprises as
well as large players to fully benefit from the cloud paradigm
by building scalable and cost-efficient applications and ser-
vices based on state-of-the-art cloud technology and software
know-how. Furthermore, the engineering approach reduces
risks and costs for companies entering the cloud market.

The consortium for the EU FP7 STREP CloudScale con-
sists of five partners and is lead by the independent research
institute SINTEF. SAP and Ericsson Nikola Tesla (ENT)
are industrial partners, while the University of Paderborn
(UPB) is an academic partner. XLAB is responsible for
tool implementation and hosting activities.

The contribution of this work-in-progress paper is an over-
all description of the CloudScale approach to scalability man-
agement. The paper is structured as follows: First, we
describe a motivating scenario in Section 2. CloudScale’s
Method, i.e., its engineering approach, is explored in Sec-
tion 3. Validation and demonstrators are discussed in Sec-
tion 4. Finally, Section 5 offers conclusions and an outlook
on future activities.

2. SCENARIO

Ericsson Nikola Tesla (ENT) provides the Ericsson Health-
care Exchange (EHE) platform as part of its healthcare port-
folio. The EHE platform is deployed on a national level in
Croatia and several platform services are integrated in many
healthcare provider institutions as shown in Figure 1. For
example, the e-Prescription service is integrated in 2300+
general practitioner offices, 2500+ dentist offices, 192 paedi-
atrician offices, 180 gynaecologist offices, and 1100+ phar-
macies.

One of the main components of EHE is Electronic Health
Records (EHR), which provide digitally stored health in-
formation for patients supporting care, education and re-
search [7]. EHR stores information on medications, past
medical history, immunisations, laboratory data, radiology
reports etc [3]. The EHR system, as part of the EHE plat-
form, needs to share data with healthcare providers, insur-
ance institutions, government agencies, and patients.

= %

Hospital Pediatrician

W

Nurse

Physician

P

Laboratory

Eg’,j

Pharmacy

o7

o8

Health Insurance Fund

96

Gynecologist

1%
B

Meca

School Medicine

Electronic
Healthcare

=0 &

Patient Register | i F\\
| i Messaging

System

Health
Resources
Register

Home Care

Ministry of Health Public Health Institution

Figure 1: Ericsson Healthcare Exchange Platform.

The current non-cloud version of the EHR system is cen-
tralised and consists of the EHR database and a service
layer developed above this database. Users can access EHR
data either via direct database access or via the service
layer. However, the main resource is always the database.
Database mechanisms such as database clusters, connection
pools, and database replication ensure system scalability and
responsiveness up to some level that can be guaranteed by
a large, but limited, system size. The resource demand per
database user is non-linear.

A cloud-based solution is desired because of cost advan-
tages, but also because of EHR requirements for scalability
and elasticity. A cloud solution would also facilitate the
provisioning of healthcare products and services to patients
located in remote areas and others with limited access to
quality medical services. EHR has the following characteris-
tics which are particularly relevant for CloudScale’s setting:

Variable load Since this solution is developed on a na-
tional level, the number of patients for which the health-
care records will be generated is known. Although the
number of patients is predictable, the total number of
EHR users can grow because of new services and inte-
gration of new institutions. Ericsson may also want to
deploy the EHR technology in larger countries.

For specific annual events like regular flu or even major
(not so frequent) events like bird flu, large earthquakes,
or tsunami, there is a need for elastic system scale up.
However, in holiday periods the system needs to scale
down to reduce operational costs.

Constant system monitoring is necessary to be able to
determine when and how to adjust the system size.
Hence, a major advantage of a cloud based EHR so-

336

lution, compared to the current non-cloud based solu-
tion, is system size elasticity.

Increasing work The size of the records will grow unpre-
dictably, and some of EHR data records can be very
large, e.g., treatment images, video files, sensor data
(for remote patient monitoring).

Service Level Agreements (SLAs) Patient records may
be required immediately. Users can be segmented in
different hierarchy groups with different access prior-
ity, e.g., users from emergency healthcare institutions
could have high priority.

Simple switching to a cloud infrastructure does not solve
these problems without additional analysis and refactoring.
Using CloudScale’s approach, it should be possible to vali-
date new requirements, evaluate system scalability, and pro-
vision an optimal amount of infrastructure resources. Now,
it is very hard to predict the appropriate amount of sys-
tem resources in a cost effective way, especially for custom
defined user requirements.

In the process of switching from non-cloud EHR solution
to the cloud infrastructure, Ericsson can use the CloudScale
method and tools to monitor and optimise system scalabil-
ity and also for predicting system size for a given workload.
CloudScale can offer techniques analysing the existing so-
lution, detecting architectural problems, and propose good
architectural patterns for system evolution. When develop-
ing new services and identifying new customer requirements,
design-time predictions could be made and this would also
enable tuning of system specifications. In that way, EHR
provider can forecast scalability properties and necessary
system resources and have early operation cost predictions.
During runtime, a constant monitoring processes can pro-
vide system elasticity to changes in workload.

3. METHOD

To illustrate how CloudScale aims at achieving the solution
to the issues explained in Section 2, this section presents
CloudScale’s Method, its engineering approach for scalable
cloud applications. We describe (1) the process steps as dic-
tated by the Method, (2) main artefacts used in the Method
(the scalability description language ScaleDL as well as (scal-
ability) patterns and anti-patterns), and (3) the three tools
Analyser, Extractor, and Spotter.

The proposed Method builds on an overall system life-
cycle process illustrated in Figure 2 that focuses on scal-
ability. As any other development process, it starts with
requirements identification (Process (1)). During require-
ments identification, the main focus is on describing the
load and work scaling path, i.e., the anticipated evolution
of load and work on the system. The resource scaling path
describes how our cloud platform can increase its amount of
infrastructure resources, and a quality metric describe what
is acceptable system quality to the users, e.g., a particu-
lar response time. For example, an emergency room using
the EHR system could require to get one particular health
record in less than one second. This process results in a
requirement specification document.

Based on this requirement specification, the process of
system construction and analysis starts (Process (2)) where
we will use a model for specifying the system. We can do
this in two ways:

/ | |
Start > | | (2) System Construction and Analysis | l
- , | Y) | l
| .. Existing Extractor & | [< ~«optional» _ | :
| [—> System Spotter N
A4 (Scalability) N - System Model [
: > ~— Analyser |
(1) Requirements Requirements Reverse / ScaleDL Analyser Tt
Identification Specification Instance (3.1) (3.5) fell :
A 1 O -)I\ |
|
| ' :
| | A A___No Requirements |
| l l l Patterns & | met?
N _‘| !_ o J_ Anti-Patterns | __| e
(3.2)
(6) Monitoring < (5) Operation '« (4) Deployment € (3) Realisation
Legend o~
Tool-driven — S Data & Control flow Data flow

Start

Process

Process
_—

——

\ Document

-]

Figure 2: The overall CloudScale Method.

e Reverse engineer using an existing code base for cre-
ating an initial or adapting an existing system model.
This process is driven by our tools Extractor and Spot-
ter as described in Section 3.3 3.4, respectively.

e (Re-)Designing a system on the model level using our
Analyser tool as described in Section 3.5. For speci-
fying this model, we will use the ScaleDL language in
Section 3.1.

We guide our design decisions along the requirements speci-
fication and support it with known patterns for good archi-
tectures regarding scalability in cloud environments. Sec-
tion 3.2 provides details on patterns and anti-patterns.

The next step involves the analysis of the modelled system
to check whether it meets the identified requirements. This
process is driven by our Analyser tool as described in Sec-
tion 3.5 and is repeated with different system alternatives
until the requirements are met. The system construction
and analysis process finally ends by reaching satisfactory re-
sults. We may also find that our requirements are infeasible
and, therefore, have to relax them by reducing the complex-
ity (and consequently work) of the services offered during
high load.

After that, the system will be implemented (Process (3)),
deployed (Process (4)), and put in operation in a cloud en-
vironment (Process (5)). For operation, it has well-defined
resource requirements that enable cloud infrastructure pro-
vider to provision resources and fulfil load and work require-
ments of the deployed application reflecting the application
evolution path.

Monitoring is another process (Process (6)) that is active
during the system operation and enables control of system
behaviour. Collecting measurements for performance pa-
rameters also belongs in this step. Based on the operational
parameters and system quality metrics, monitoring control
can require some changing system requirements and trigger-
ing the need to rerun our process cycle (evolution).

337

3.1 ScaleDL

ScaleDL will be a language for making precise models of the
scalability properties of basic and composite cloud services.
ScaleDL models will include structural elements of the sys-
tem, parameters affecting scalability such as their resource
usage, and elasticity information. Infrastructure resources
will be described in a uniform manner, so that different con-
figurations can be compared with each other. Among the
resources to include in the model are processors, storage
and network connections.

ScaleDL models can be created manually by the modeller
based on knowledge and educated guessing, automatically
by code analysis, measurements and predictions, or a com-
bination of these. Ultimately, the scalability models can be
used to determine resource scalability and cost scalability
of the system, and help service providers to determine, e.g.,
what capacity the system will provide for a given cost. One
of the design criteria for ScaleDL is that it must be useable
in combination with scalability requirements specifications
for the system, allowing the analysis of different scenarios
and of fulfilment and consequences of the requirements.

ScaleDL will build on and extend existing languages and
concepts where practical and appropriate. This includes the
performance prediction language PCM of Palladio [5], the
concept of system size from the scalability framework de-
scribed in [6], and languages such as MARTE [4]. The design
of ScaleDL will also be aligned with the ongoing develop-
ment of the CloudML modelling language [1] which focuses
on deployment models for cloud services.

3.2 Patterns and Anti-Patterns

Best practice scalability patterns show service providers how
to build cloud systems with good scalability, while anti-
patterns describe typical ways of making systems with poor
scalability. For each anti-pattern, a recommended pattern is
provided as well as a process for the transformation. Our
EHR system can, for example, be suggested to be restruc-
tured according to a pattern that removes scalability issues
with its database connection pool.

3.3 The Extractor

In case there is already existing code, the service provider
can use the Extractor to extract an initial ScaleDL model to
start from. This tool will enhance the reverse engineering
tool Archimetrix [8] to take scalability parameters into ac-
count. The Extractor is also used during system evolution
to keep the code and the scalability model in sync. In the
EHR system, the Extractor would, e.g., find the data store
component and its properties.

3.4 The Spotter

CloudScale’s Spotter supports the service provider in spot-
ting the places in a system that may cause scalability prob-
lems. It uses a ScaleDL model, AST’s of code, monitoring
data, and performance predictions to detect scalability anti-
patterns. The Spotter can, e.g., be used to identify what
needs to be changed to comply with new requirements and
load/work plans. In the EHR system, the Spotter could,
identify any non-linearites in the connection pooling that
cause too many required connections when new users arrive.

3.5 The Analyser

Sooner or later, changing requirements or a changing work or
load plan will trigger system redesign to still operate cost ef-
ficiently. The Analyser tool will make scalability predictions
both of completely new designs or of redesigns based on ex-
isting systems. It will also analyse composed services. Using
the Analyser, design alternatives can be analysed for their
effect on scalability and cost. Internally, model transforma-
tions are employed to create scalability prediction models
that build on established performance analysis approaches.
We will base ourself on the open source tool set Palladio [5],
which supports simulation as well as analytical solving.

Regarding our requirement that the EHR system should
respond within one second, the Analyser may predict that it
is capable of handling the increased load in case a bird flue
occurs. Particularly, the Analyser takes the cloud systems’
elasticity into account for its analysis.

4. VALIDATION AND DEMONSTRATORS

Demonstrators will show all the aspects of CloudScale in the
form of prediction, analysis, metrics, measurements, anti-
patterns, etc. They will provide a story line to support
dissemination and make a platform for exploitation. The
demonstrators will be completely open and realistic and will
overcome any confidentiality issues of the industrial partners
SAP and ENT in presentation of their internal systems.
The validation of CloudScale’s showcases will collect ev-
idence that (a) the CloudScale methods and tools spot the
right bottlenecks, (b) our scalability predictions are sound,
and (c) near optimal scalability improvements of a system
are suggested. We also validate the feasibility of the Cloud-
Scale Method and report on the efforts needed to use it.

S. CONCLUSIONS

This paper has presented the CloudScale project at an over-
all level. The planned results of CloudScale are aimed at
different types of people, organisations and roles, offering
benefits to each.

338

e Fnd users being satisfied also during peak loads be-
cause of improved scalability of the systems.

For developers of software services, improved scalabil-
ity management becomes a selling point. CloudScale
tools help developers to make sensible decisions about
which parts of the system which require extra care.

System architects are able to understand and predict
the scalability of services resulting from compositions.

Service providers are able to make timely decisions
about purchase or deployment of more hardware in
order to prevent scalability bottlenecks before they
show up. They are also able to plan reduction in non-
essential features to retain core functionality during
periods of extreme demand.

IaaS (Infrastructure as a Service) providers will op-
timise their business due to more effective use of re-
sources by their customers, thanks to improved scala-
bility. Moreover, they are able to serve more customers
with the same hardware through better management
of scalability of their own systems. Thereby, they can
operate with a smaller safety margin and greater profit.

The CloudScale project started in October 2012 and will
continue until September 2015. The first versions of the re-
sults are planned in October 2013. This includes a refined
Method, ScaleDL, the three tools Analyser, Spotter, and Ex-
tractor, as well as patterns and anti-patterns.

6. ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant no 317704 (CloudScale).

7. REFERENCES
[1] Cloud modelling language (CloudML).

www.cloudml.org.

CloudScale Project. www.cloudscale-project.eu.
Healthcare Information and Management Systems.
www.himss.org.

Modelling and Analysis of Real-Time and Embedded
Systems (MARTE). www.omgmarte.org.

S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3 —
22, 2009.

G. Brataas, P. H. Hughes, J.-A. Fagerli, and O. C.
Landmark. Exploring Architectural Scalability.
Software Engineering Notes, 29(1):125 — 129, 2004.

I. Takovidis. Towards personal health record: current
situation, obstacles and trends in implementation of
electronic healthcare record in Europe. International
Journal of Medical Informatics, 52(1-3):105 — 115, 1998.
M. Platenius, M. von Detten, and S. Becker.
Archimetrix: Improved software architecture recovery
in the presence of design deficiencies. In Software
Maintenance and Reengineering (CSMR), 2012 16th
European Conference on, pages 255 —264, march 2012.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130225163802
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130225163802
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

