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ABSTRACT

Energy management has become a significant concern in
data centers to reduce operational costs and maintain sys-
tems’ reliability. Using virtualization allows server consoli-
dation, which increases server utilization and reduces energy
consumption by turning off unused servers. However, server
consolidation and turning off servers can cause also conse-
quences if they are not exploited efficiently. For instance,
many researchers consider a deterministic demand for ca-
pacity planning, but the demand is always subject to uncer-
tainty. This uncertainty is an outcome of the workload pre-
diction and the workload fluctuation. This paper presents
a robust optimization for proactive capacity planning. We
do not presume that the demand of VMs is deterministic.
Thus, we implement a range prediction approach instead
of a single point prediction. Then, we implement a robust
optimization model exploiting the range-based prediction to
determine the number of active servers for each capacity
planning period. The results of the simulation show that
our approach can mitigate undesirable changes in the power-
state of the servers. Additionally, the results indicate an
increase in the servers’ availability for hosting new VMs
and reliability against a system failure during power-state
changes. As future work, we intend to apply our approach
to dynamic workload such as a web application. We plan to
investigate applying our approach to other resources, where
we consider only the CPU demand of VMs. Finally, we com-
pare our approach against the approaches using stochastic
optimization.

Categories and Subject Descriptors

k.6 [Management of computing and information sys-
tems]: General; k.6.2 [Installation Management]: Per-
formance and Usage Measurement
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1. INTRODUCTION
Energy efficient resource management has become a sig-

nificant concern in virtualized data centers to reduce op-
erational costs. As an idle server consumes approximately
70% of the power consumed by the server running at full
capacity [1], turning off idle servers to reduce energy con-
sumption has been widely proposed by many researchers
[1][2][3]. However, these approaches considered the num-
ber of VMs and their capacity demands are deterministic.
Hence, they built deterministic models that did not take
into account the uncertainty of the demand. Furthermore,
a typical server has multiple power states including on, off,
sleep, and hibernated. Some related work has ignored the
energy consumption during the change of the server’s power-
state, which we consider as a wasted energy. During a power-
state change, a server consumes energy without performing
any useful work. For instance, a normal PC takes around
25 seconds to switch from one state to off state and vice
versa [4]. Furthermore, we found that a server with 1TB
memory requires 5 minutes for a clean boot, which includes
the hardware check stage. On the other hand, Mao et al. [5]
have observed that the start-up time of a VM is proportional
to its image size. The start-up time of a VM is very cru-
cial for online applications such as web applications. Thus,
implementing a proactive optimization solution can assist
to avoid SLA’s violations. By predicting the number of the
required VMs in the next planning period, we can prepare
these VMs images and the physical server in advance. Many
researchers consider a deterministic demand for capacity
planning, but the demand is always subject to uncertain.
This uncertainty is an outcome of the workload prediction
and the workload fluctuation. Ignoring the uncertainty in
real world applications can make the usual optimal solution
infeasible [7]. Unlike deterministic models, Dance et al.
[8] have used the stochastic optimization for considering
uncertainty. However, the stochastic optimization requires
to know the probability distributions of the demand. In
our approach, we used the robust optimization that ad-
dresses data uncertainty. The robust optimization model
assumes that uncertain parameters belong to a bounded
range. Importantly, the robust optimization can outperform
the stochastic optimization when selecting an appropriate
robustness level, and it is less computationally intensive
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Figure 1: The stages of the range-based prediction approach

when the distribution of uncertain parameters is compli-
cated [9]. To build the robust optimization model for proac-
tive capacity planning, we implement an adaptive range-
based workload prediction instead single point prediction for
predicting the number of the requested VMs. The results of
the simulation show that our approach can mitigate undesir-
able changes in the power-state of the servers. Additionally,
the results indicate an increase in the servers’ availability
for hosting new VMs and reliability against a system failure
during power-state changes.

2. RANGE-BASED PREDICTION
Typically, point value prediction approaches might not

cover the workload fluctuation. The approaches solve the
problem as a deterministic optimization, which assume the
precise knowledge of the workload demand. Furthermore,
optimization based on the mean-value or the max-value of
the workload can produce low provision or high provision,
respectively. This is costly in both cases. In this section, we
present a range-based prediction approach with an adaptive
window-size algorithm to predict the number of demanding
VMs in a data center. Our approach consists of three stages
as shown in Figure 1: (1) selecting the historical window size
based on the statistical test (F/T-test); (2) smoothing the
values of the selected historical window; and (3) predicting
the next number of active VMs and its minimum and max-
imum range. Most of the related work in the context have
been done for grid computing [10][11]. For example, Wu
et al. [10] have proposed an adaptive prediction of grid
performance with a confidence window for the historical
values. They used an auto-regression to find a model for
the historical interval by which predicts the future work-
load. However, we consider the historical data variation to
enhance the prediction accuracy and bound the predicted
range. As shown in Figure 2, the number of VMs shows a
random behavior, but it also depicts a certain pattern. For
instance, it starts low at morning then increases reaching
the peak at around the midday. At evening, it starts to go
down again. Our approach uses an adaptive window-size of
historical values to provide a high accurate prediction range.
In Figure 1, the measured workload values are shown by a
series of line-dots up to time t. On the other hand, the gray
dot represents the predicted workload value.

• Window selection: our interest is to predict the num-
ber of VMs for the next 5 minutes from the historical
window hw. The historical window-size is determined

based on the P-value of both F-test and T-test to filter
out the values that are very unlikely to be in the same
window. We used F-test and T-test to probe the sig-
nificance of the change in variance and mean between
two samples of populations, respectively. Using the
P-value of F-test and T-test, we can decide whether
the two samples have almost the same variance and
the same mean. For example, after performing F-test,
if we find out that the P-value is less than α = 0.05,
we reject the null hypothesis. This means that these
values do not belong to the same historical window.
Thus, the algorithm stops going back to take more
historical values and moves to the next stage, which is
window smoothing.

• Window smoothing: using prediction algorithms with
the historical values causes errors. Thus, we used a
smoothing filter to remove noise and prevent its in-
fluence on the prediction algorithm. There are many
smoothing filters, but we selected Savitzky-Golay filter
due its effectiveness in keeping the peak values and
removing the spikes, which can be considered as noise.
The filter has two significant parameters that guide
the smoothing process: the frame size and polynomial
degree. In our approach, the frame size is not constant,
and it equals to the selected historical window-size. In
contrast, Wu et al. [10] fixed the frame size.

• Range prediction: we used Holt-Winter implemented
in the R-tool, because it dynamically optimizes and
determines the level and the trend of the time series.
Importantly, we determine the predicted range based
on the single predicted point value pv and the standard
deviation of the selected window σhw. The predicated
range pr {rl , rh} where rl and rh equal (pv − σhw)
and (pv + σhw.)

2.1 Planet-lab Workload Traces
The monitoring infrastructure project of Planet-lab [6]

provides traces of historical data for CPU utilization, which
measured every 5 minutes. These traces are for more than
a thousand machines running in more than 500 locations
around the world. Here, we present data for two days that
have different workload fluctuations. We assume that these
machines are hosted as VMs.

To simulate the on-demand concept of the cloud com-
puting environment (i.e., the open system behavior), we
terminate the VMs with less than 5% CPU utilization. In
other words, we considered it as being destroyed and exited
the system. Then, when the trace shows a VM with a CPU
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Figure 2: Planet-lab workload traces
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utilization higher than 5%, we consider a new request for
provisioning a VM.

2.2 Implementation and Evaluation
We implemented the proposed approach using Java with

integration of the R-tool, which consists of many statistical
functions and the required filters. Here, we present the
results of our approach. Figure 3 shows the predicted range
for each value of workload (i.e., number of VMs). The
low predicted rl is shown by a red dashed-line meanwhile
the high predicted rh is represented by a blue dashed-line.
The purple sold-line represents the single point predicted
value. The predicted range is propositional to the workload
fluctuation. For instance, due to the low fluctuation of the
workload around the time index 58, the predicted range is
small. Contrarily, a large range is predicted around the time
index 225.
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Figure 3: The results of the range-based prediction approach

3. ROBUST OPTIMIZATION
As we implemented the prediction approach based on a

range not a single value, we will study the implementation
of robust optimization for capacity planning. Robust op-
timization deals with optimization problems whereas the
robustness is sought against uncertainty or deterministic
variability in the value of a parameter of the problem (i.e.,
the workload). The principle of robust optimization con-
siders point prediction meaningless and it is replaced by
range prediction. Thus, robust optimization addresses data
uncertainty by assuming that uncertain parameters belong
to a bounded range. In our approach, we avoid the as-
sumption that considers the precise knowledge of the work-
load demand in the planning horizon where many proposed
solutions have solved the problem as a deterministic op-
timization [1][2][3]. We have a predicted range, centered
at the nominal prediction d̄, for the demand at each time
period. The robust optimization approach replaces each
deterministic demand d̄ by an uncertain parameter d̃ = d̄
+ d̂*z, where |z| ≤ 1. Furthermore, it guarantees that the
constraints hold for a given uncertainty set. cient of its
constraint matrix. to solve this problem

3.1 Robust Problem Formulation
In this section, we present a robust formulation of the

capacity planning problem. We use the following notation:
eidle is the energy consumption of a server during idle state
(i.e., pidle*tidle ). The parameter eswt is the energy con-
sumption of a server to change from power-state to another,

which consumes pswt and takes tswt seconds. So, eswt the
power-state change energy wastage equals pswt*tswt. The
binary variables n and b represent currently active servers
and previously active servers, respectively. The parameters
ñv, n̄v, and n̂v represent the uncertain number of VMs, the
mean of the predicted number of VMs, and the standard
deviation of the predicted number of VMs, respectively. The
parameters ṽc, v̄c, and v̂c represent the uncertain utilization
of a VM, the mean of the VM’s utilization, and the standard
deviation of the VM’s utilization, respectively. Finally, the
parameter d̃ is the total uncertain demand of the number
of VMs and their utilization. The objective function in
Equation 1 is to minimize the wastage energy that might
result from keeping the server idle and switching the power-
state of a server. Equation 2 guarantees that the constraints
hold for a given uncertainty set of the demand in Equa-
tion 3. Equation 4 and Equation 5 represent uncertain
demand of a number of VMs and uncertain utilization of
VMs, receptively. We formulate this problem based on the
following assumption. When a VM is requested, it occupies
a certain portion of a server capacity. For instance, a small-
instance with 1 vCPU might take 1/4 of a server has 4
logical cores. Then, after running the VM for while the real
resource consumption of this VM can be revealed and will be
taken into consideration for the next planning period. The
constant parameters tswt, tidle, pswt and pidle are 150s, 300s,
120watts, 100watts, respectively. Observably, the switching
power is slightly greater than the idle power due to the
CPU utilization. The power constants were set based on
SPECpower [12] results of HP ProLiant ML110 G3 server
[13]. A scalar variable z models the demand uncertainty. We
do not presume exact knowledge of the actual distribution of
demand, but instead we assume that the distribution is char-
acterized by the mean of the number of VMs n̄v and their
capacity v̄c and standard deviation of the demand of the
number of VMs n̂v and their capacity v̂c. Moreover, we have
an accurate estimations of the most optimistic uncertainty
zmin and the most pessimistic uncertainty zmax. These
parameters form lower and upper bounds of z, respectively.

Minimize:

ns∑

i=1

eidle +
ns∑

i=1

eswt ∗ (n ∗ (1− b) + b(1− n)) (1)

Subject to:

d̃ ≤
ns∑

i=1

s̃ci ∗ n (2)

d̃ =

nv∑

i=1

ṽci (3)

ñv = n̄v + n̂v ∗ znv (4)

ṽc = v̄c+ v̂uzvc (5)

|z| ≤ 1, z = [zmin, zmax], and n, b ∈ {0, 1}
3.2 Implementation and Evaluation

To solve a robust optimization problem, we used Robust
Optimization Made Easy (ROME), which is an algebraic
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modeling tool implemented in the MATLAB environment
[14]. ROME operates as an intermediate layer between the
modeler and optimization solver engines. It helps converting
the original uncertain optimization problem into its robust
counterparts. Its core functionality consists of translating
modeling code into an internal structure in ROME. Then,
it translated into a solver-specific input format for solving
by linear optimization solvers. This can be done manually,
but it is tedious and error-prone [14]. We used IBM ILOG
CPLEX as optimization solver.

Figure 4 depicts simulation results of a deterministic op-
timization and different values of uncertainty scalar z. The
lift axis represents the amount of energy and the right axis
represents the percentage of the energy consumption by the
power-state switching and the idle state. The deterministic
result means that prediction of the VMs demand is 100%
accurate. So, we used the real traces to perform capacity
planning using deterministic optimization. Then, we com-
pared the results with the range-based prediction taking into
account uncertainty of demand. This shows the results with
different range of uncertainty scalar z. Figure 4 depicts the
following observations. In deterministic, there is no idle
energy consumption, because we assumed that the demand
is known, and the total wastage energy results from changing
a server’s power-state. On the other hand, the robust opti-
mization considering the uncertainty of the demand, we had
different results by changing the uncertainty scalar z. First,
the range of uncertainty is very wide, z{-1,1}. The total
of the objective function and the total of idle energy are
the highest, and the total of switching energy is the lowest
compared to the other results. Second, when changing the
uncertainty scalar z from z{-1,1} to z{-0.5,0.5}, we decreased
the uncertainty range. Thus, we could save energy by reduc-
ing an unbeneficial power-state switching and keeping some
server idle. This also can increase the system availability
and reliability. Finally, when z was set {-0.25,0.25}, we
could achieve more energy savings from both power-state
switching and idle servers. However, this can cause some
under provisioning of capacity and violation of allocation
some VMs. The calculated mean and standard deviation of
under provisioning VMs are 3VMs and 5VMs, respectively.
Importantly, the execution time of our proposed approach
is less than 1 second while using a computer with Pentium
2.6GHz processor.
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Figure 4: The result of the proposed robust optimization
approach

4. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a proactive robust optimiza-

tion approach for capacity planning in virtualized data cen-
ters. To achieve this, we implemented a range-based pre-

diction algorithm, which allows formulating the problem
using the robust optimization. The robust optimization
model takes into account the prediction uncertainty. We
compared the results of deterministic and robust of capacity
planning, and we found that the robust optimization more
realistic to be used in data centers where VMs demand
and their utilization are uncertain. Importantly, by using
our approach, we could achieve energy saving and provide
high availability and reliability for the system. As future
work, we will consider heterogeneous servers and VMs size.
Furthermore, we intend to extend our approach for a dy-
namic provision of web applications. Thus, we intend to
compare our approach against the other approaches that
use stochastic and deterministic optimization for dynamic
provision of web applications. Furthermore, we intend to
investigate applying our approach to other resources, where
we just consider only the CPU demand of VMs.
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