Towards a Methodology Driven by Relationships
of Quality Attributes for QoS-based Analysis-

Steffen Becker
University of Paderborn
Paderborn, Germany
steffen.becker@upb.de

Raffaela Mirandola
Politecnico di Milano
Milano, Italy
mirandola@elet.polimi.it

ABSTRACT

Engineering high quality software is a tough task. In or-
der to know whether a certain quality attribute has been
achieved or degraded, it has to be quantified by analysis or
measured. However, determining what to quantify and how
these quantities are related to each other is the difficult part.
Early analysis of the quality attributes of a software system
on the basis of the system’s planned architecture allows in-
formed decisions on design trade-offs. Such decisions can be
later validated by measurements on the running system.

In this paper, we revisit software quality attributes. In
particular, we introduce a generic taxonomy of quality at-
tributes, the relationship between the attributes is argued,
and finally we devise future work leading to an attribute-
based methodology for evaluating software architectures. The
goal is reasoning about multiple quality attributes of soft-
ware systems to achieve the ability to quantitatively evaluate
and trade-off them.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

Keywords

QoS-based analysis, quality attributes, relationships.

1. INTRODUCTION

The quality attributes of a software system and their re-
lationships must be carefully understood early in the devel-
opment process, thus the architect can design an accurate

*This work has been partially supported by VISION ERC
project (ERC-240555).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

311

Lucia Happe (Kapova)
Karlsruhe Insitute of
Technology
Karlsruhe, Germany

kapova@ipd.uka.de

Catia Trubiani
University of LAquila
LAquila, ltaly
catia.trubiani@univag.it

architecture that satisfies them. However, dealing with qual-
ity attributes is not a straightforward task. They are usually
complex with several relationships and interactions among
them, therefore, it is even difficult to make a systematic list
of the concerns to be managed. Additionally, some quality
attributes have major implications on the core functionality
of the system applications and priorities can be useful to
roughly fulfill the more relevant end user expectations.

The definition of quality attributes is the first step for
defining and enforcing system quality, and the more difficult
step is to associate the quality attributes with each other,
thus to model their relationships.

In this work, we introduce a generic taxonomy of quality
attributes and define relationships between the specified at-
tributes, thus providing easy accessible, early guidance for
software architects. The ultimate goal of our work is to en-
able reasoning about multiple software quality attributes.
This would allow to quantitatively evaluate and trade-off
quality attributes on the basis of pre-defined relationships.

The paper is organized as follows. Section 2 presents the
contribution of this paper, i.e. a graph of relationships to
deal with the quality attributes of software architectures and
their relationships. Section 3 discusses the benefits of using
the graph of relationships as a support to reason and analyze
different and conflicting design decisions. In Section 4 we
briefly survey the state-of-the-art on the field, and Section 5
concludes the paper and outlines future research directions.

2. GRAPH OF RELATIONSHIPS

Figure 1 illustrates our current proposal of the graph of
relationships for quality attributes: nodes (see Section 2.1)
represent the quality attributes that we consider, such as
performance, reliability, etc., whereas arcs (see Section 2.2)
represent their underlying relationships, such as trade-off,
include, etc.

2.1 Definition of nodes

In this section we provide a brief overview of the quality
attributes our graph considers. For sake of space we do
not provide a complete description of each quality attribute
since it is out of interest of this paper and can be easily
retrieved from the international standard for the evaluation
of software quality, ISO/IEC 25010 [1].

Tolerance

Power
Consumption

RunTime
Adaptability
/

Evolvability

include

s <
Protect
Information

System Harm

means to
—————————— >

complementary

functional dependency

Figure 1: Graph of relationships between quality attributes.

Our graph does not claim to be exhaustive, however, we
think it represents a good approximation to conduct a QoS-
based analysis. The most common quality attributes are:
performance, reliability, fault tolerance, safety, availability,
and power consumption. We additionally select other quality
attributes that aim at measuring the capacity: (i) to adapt
to system changes (maintainability, modifiability, evolvabil-
ity, adaptability, and run time adaptability); (ii) to comply
with the market constraints (time to market, development
costs, buy/supply costs); (ili) to cope with an increasing
and/or decreasing number of requests (scalability, elastic-
ity, efficiency); (iv) to protect the system against malicious
users (security, protect information, avoid system harm).

2.2 Definition of arcs

In this section we provide a brief overview of the relation-
ships between the quality attributes our graph considers:

include: a quality attribute QA, includes a quality at-
tribute QA if the latter attribute is part of the former one.
For example, the Development Cost includes Buy/Supply
Cost since the latter attribute (i.e. buy software by third
party organizations, supply software by implementing sys-
tem functionalities) is part of the Development Cost at-
tribute whose meaning is broader since it contains additional
costs (i.e. integration costs, testing costs, etc.).

antagonistic: a quality attribute QA is antagonistic
with a quality attribute QA, whether QA, is negatively
influenced by QA,. For example, the Time To Market is
antagonistic with the Maintainability since the property of
maintaining a software system is negatively affected by the
time it needs to be delivered.

trade-off: it is a bidirectional relationship and it means
that two quality attributes (e.g. QA and QA,) depend on

312

each other, in particular the raising of one quality attribute
positively or negatively affects the other one. For example,
the Security and the Performance are in a trade-off rela-
tionship since raising the level of security inevitably affects
the performance of the software system.

impact on: a quality attribute Q A, impacts on a quality
attribute QA if the latter attribute is affected by the former
one. For example, Adaptability impacts Performance since
the capacity of the system to adapt on the basis of changes
implies that the performance of the system is affected by the
actual modifications.

means to: a quality attribute QA is a mean to a quality
attribute QA, if the latter attribute is achieved through
the former one. For example, Fault Tolerance is a mean
to Reliability since fault tolerance mechanisms are aimed at
strengthening the system reliability. Several fault tolerance
mechanisms can be devised to this scope such as redundancy
(i.e. providing multiple instances of the same system to
switch in case of failure) or diversity (i.e. providing multiple
implementations of the same specification to reduce errors).

complementary: a quality attribute QA, is complemen-
tary to a quality attribute QA, if the latter attribute is in-
directly supported by the former one, even if the quality
attributes apparently do not seem to be related each other.
For example, Reliability is complementary to Avoid System
Harm since reliability mechanisms support the avoidance of
malicious users by decreasing their probability of intrusion.

functional dependency: a quality attribute QA; has a
functional dependency with an attribute QA, if the latter
attribute is used from a functional point of view to cope with
the former one. For example, Performance has a functional
dependency to Power Consumption since the use of more
computing power also requires more electrical power.

3. HOW TO USE THE GRAPH

In this section we discuss the benefits of using the graph
of relationships for QoS-based evaluation of software archi-
tectures. We demonstrate that the graph can be used as
a reasoning (see Section 3.1) and analysis (see Section 3.2)
support to guide design decisions of software architects.

3.1 Reasoning on selected quality attribute re-
lationships

In this section we explain the adopted criteria to define the
relationships between quality attributes, using our previous
experience gained in the field.

Performance vs Security: trade-off. The critical aspect
that we found between performance and security is the need
to quantify the performance degradation incurred to achieve
the security requirements. From our previous work [8, 9, 17]
we experimented that the solution of a performance model
that embeds security aspects allows to quantify the trade-off
between security and performance in software architectures.
In particular, the values of indices coming from the solution
of the performance model (i.e. the one that includes secu-
rity aspects) can be compared to the ones obtained for the
same model (i) without security solutions, (ii) with differ-
ent security mechanisms and (iii) with different implemen-
tations of the same security mechanism. Such comparisons
help software architects to decide whether it is feasible to
introduce/modify/remove security strategies on the basis of
(possibly new) performance requirements.

Performance vs Power Consumption: functional de-
pendency. The green computing discipline addresses the
problem of building and managing computing infrastruc-
tures that provide the same quality of service with lower en-
ergy consumption [16]. Rudimentary techniques for power
management, e.g., shutting down idle servers, can impact
the ability of the hosting center to meet the Service Level
Agreements (SLAs) implicitly or explicitly stipulated with
clients. Shutting down servers ensures the maximum power
saving; however, bringing up a machine when needed can
require a significant start-up time (up to several minutes,
depending also on the time needed to start the applications).
Start-up delays can severely impact the ability of the system
to promptly handle workload fluctuations. Besides, repeated
on-off cycles can stress hardware components, increasing the
probability of failures, which add further costs for repair or
replacement of broken devices.

A different approach suggests to reduce the power con-
sumption by making the system power proportional [4], mean-
ing that the power consumption of devices is kept propor-
tional to their utilization. Ideally, a device should consume
zero power when its utilization is zero, and full power when
its utilization is one. Unfortunately, such “perfect” power
proportionality has not been achieved yet.

Fault-Tolerance vs Reliability: means to. Reliability
can be defined as the probability that a given component or
system will perform its required functions without failure,
for a given period of time, in a specified environment. When
a reliability problem is encountered it means that the service
delivered deviates from the correct service, and this is called
service failure. An error is the part of the system state that
leads to the occurrence of a failure, and is caused by a fault.
Therefore, if the system includes mechanisms able to detect

313

and repair errors and faults, the failure probability decreases
[2, 18, 14, 15].

There are two well-known strategies for software fault tol-
erance: error processing and fault treatment [2, 18]. Error
processing aims to remove errors from the software state
and can be implemented by substituting an error-free state
in place of the erroneous state, called error recovery, or by
compensating for the error by providing redundancy, called
error compensation. The second strategy, fault treatment,
aims to prevent activation of faults and so action is taken be-
fore the error occurs. The two steps in this strategy are fault
diagnosis and fault passivation. The nature of faults which
typically occur in software has to be thoroughly understood
in order to apply these strategies effectively. Techniques for
tolerating faults in software have been divided into three
classes - design diversity, data diversity, and environment
diversity (see [2, 18, 15] for details).

Specifically, these techniques can be integrated in a rule-
based approach like proposed in [15]. Once the source of the
failure has been identified, through a sensitivity analysis for
example, a set of rules for the mitigation of the reliability
problem, based on fault-tolerance techniques has been de-
fined.

3.2 Further analysis

In this section we discuss the main fields that may bene-
fit from our graph of relationships as a more sophisticated
instrument to quickly highlight the quality attributes rela-
tionships.

Requirements Analysis. The analysis of the require-
ments is fundamental since they are aimed at determining
the goals, the functions, and the constraints of the software
systems. Additionally, multiple stakeholders may define a
different priority for the requirements, hence the quality at-
tributes can be associated to stakeholders’ utilities/weights.
Such analysis can be supported by our graph, in fact it is
possible to determine if system requirements are unfeasi-
ble depending on the stated relationships between the qual-
ity attributes, and the challenge becomes to slightly modify
them in order to find the better feasible solution.

Attribute-based methodology for evaluating software
architectures. The QoS-based evaluation of software ar-
chitectures can be performed by looking at their required
quality attributes and associating appropriate architectural
styles [13], since they represent engineering artifacts defining
classes of designs along with their known properties. Archi-
tectural styles can be explicitly associated to our graph of
relationships that is meant to give suggestions about the
most appropriate styles.

Service Level Agreement (SLA) negotiation. A service-
level agreement is a part of a service contract where the level
of service is negotiated between two parties, i.e. the cus-
tomer and the service provider. We are interested in SLAs
related to the QoS properties of the software systems. For
example, these SLAs have SLOs such as the response time,
throughput, or utilization for performance, or mean time be-
tween failures, mean time to repair for reliability. Our graph
of relationships may drive the SLA negotiation by suggest-
ing to the customers the feasible agreements and the ones
that may not be fulfilled due to the defined relationships
while analyzing the different quality attributes.

4. RELATED WORK

In recent decades, several efforts have been made in the
literature for dealing with quantifying software qualities at
an appropriate abstraction level. To this end, often software
architecture has emerged as a good starting point [7, 19] and
several results have been obtained, concerning the definition
of methods and tools able to evaluate quality at the software
architecture level (see, for example, [3, 10, 19]).

In general, there are single attribute approaches that aim
at evaluating one quality attribute at time. On the contrary,
similarly to the analytic hierarchy process (AHP), there are
multiple attributes approaches that consider more than qual-
ity attribute and mostly aim at comparing the attributes
while minimizing and/or maximizing them while looking at
optimization techniques (e.g. the Pareto front) that com-
pare two quality attributes at time.

More common today are still methods which address sin-
gle quality attribute (e.g., performance or availability). How-
ever, a major challenge in system development is finding the
best balance between different (possibly) conflicting quality
requirements that a system has to meet (e.g., maximize per-
formance, maximize availability and minimize cost).

There are multi-attribute approaches where the definition
of a software architecture model can embody not only the
software qualities of the resulting system, but also the trade-
offs decisions taken by designers [5, 6, 20]. Efforts to explore
such trade-offs have produced the so-called scenario-based
analysis methods, such as SAAM and ATAM [11, 12] and
others reviewed in [10]. However, these methods provide
qualitative results and are mainly based on the experience
and the skill of designers and on the collaboration with dif-
ferent stakeholders.

With respect to the state of the art, in this paper we pro-
pose a high-level, easy to use, simultaneous analysis of mul-
tiple quality attributes with the aim of pointing out their
relationships, thus to anticipate negative and/or positive
consequences between them. In this way, the software ar-
chitect has a deeper knowledge of the system under study
and architectural decisions can be driven by our graph of
relationships.

5. CONCLUSION

This paper presents work in progress towards a systematic
approach to do quantitative trade-offs of a whole bunch of
quantifiable quality attributes. As a first step, a graph of re-
lationships highlighting the dependencies among quality at-
tributes is presented. This early graph already helps require-
ments engineers and software architects to check, that not
quality attribute has been forgotten. Additionally, trade-offs
among conflicting attributes can be identified easily.

In future work, the graph needs to be tested and ex-
tended according to experiences. Ideally, quantitative anal-
ysis methods are extended to take these relationships into
account in order to find systematic and rational trade-offs.

6. REFERENCES
[1] ISO/IEC 25010 - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and
software quality models, 2011.
[2] A. Avizienis. Fault-tolerant computing-progress,
problems and prospects. In IFIP Congress, pages
405-420, 1977.

314

3]

[4]

[5]

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

S. Balsamo, A. D. Marco, P. Inverardi, and

M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Trans.
Software Eng., 30(5):295-310, 2004.

L. A. Barroso and U. Holzle. The case for
energy-proportional computing. IEEE Computer,
40(12):33-37, 2007.

L. J. Bass, F. Bachmann, and M. Klein. Making
variability decisions during architecture design. In
Software Product-Family Engineering (PFE), pages
454-465, 2003.

P. C. Clements. On the importance of product line
scope. In Software Product-Family Engineering(PFE),
pages 70-78, 2001.

P. C. Clements. Process validation, session report. In
Software Product-Family Engineering(PFE), pages
388-389, 2001.

V. Cortellessa and C. Trubiani. Towards a library of
composable models to estimate the performance of
security solutions. In WOSP, pages 145-156, 2008.
V. Cortellessa, C. Trubiani, L. Mostarda, and

N. Dulay. An Architectural Framework for Analyzing
Tradeoffs between Software Security and Performance.
In ISARCS, pages 1-18, 2010.

L. Dobrica and E. Niemeld. A survey on software
architecture analysis methods. IEEE Trans. Software
Eng., 28(7):638-653, 2002.

R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd.
Saam: A method for analyzing the properties of
software architectures. In International Conference on
Software Engineering (ICSE), pages 81-90, 1994.

R. Kazman, M. H. Klein, M. Barbacci, T. A.
Longstaff, H. F. Lipson, and S. J. Carriere. The
architecture tradeoff analysis method. In ICECCS,
pages 6878, 1998.

M. H. Klein, R. Kazman, L. J. Bass, S. J. Carrieére,
M. Barbacci, and H. F. Lipson. Attribute-based
architecture styles. In WICSA, pages 225-244, 1999.
J.-C. Laprie. Dependability modelling and evaluation
of software and hardware systems. In
Fehlertolerierende Rechensysteme, pages 202-215.
Springer, 1984.

Q-ImPrESS Consortium. The Q-ImPrESS project.
Project website: http://www.q-impress.eu, 2010.

P. Ranganathan. Recipe for efficiency: principles of
power-aware computing. Commun. ACM, 53:60-67,
April 2010.

R. J. Rodriguez, C. Trubiani, and J. Merseguer.
Fault-Tolerant Techniques and Security Mechanisms
for Model-based Performance Prediction of Critical
Systems. In ISARCS, 2012.

K. S. Trivedi. Reliability evaluation for fault-tolerant
systems. In Computer Performance and Reliability,
pages 403-416, 1983.

L. G. Williams and C. U. Smith. Pasa®™: a method
for the performance assessment of software
architectures. In WOSP, pages 179-188, 2002.

J. Yang, G. Huang, W. Zhu, X. Cui, and H. Mei.
Quality attribute tradeoff through adaptive
architectures at runtime. Journal of Systems and
Software, 82(2):319-332, 2009.

