
Towards a Standard Event Processing Benchmark
Marcelo R. N. Mendes

CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II

Coimbra, Portugal

mnunes@dei.uc.pt

Pedro Bizarro
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II

Coimbra, Portugal

bizarro@dei.uc.pt

Paulo Marques
CISUC, University of Coimbra
Dep. Eng. Informática – Pólo II

Coimbra, Portugal

pmarques@dei.uc.pt

ABSTRACT

There has been an increasing interest both in academia and

industry for systematic methods for evaluating the performance

and scalability of event processing systems. A number of

performance results have been disclosed over the last years, but

there is still a lack of standardized benchmarks that allow an

objective comparison of the different systems. In this paper, we

present our work in progress: the BiCEP benchmark suite, a set

of workloads, datasets and tools for evaluating different

performance aspects of event processing platforms. In particular,

we introduce Pairs, the first of the BiCEP benchmarks, aimed at

assessing the ability of CEP engines in processing progressively

larger volumes of events and simultaneous queries while

providing quick answers.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques

General Terms

Design, Experimentation, Measurement, Performance.

Keywords

Benchmark, CEP, Event Processing, Performance, Scalability.

1. INTRODUCTION
Even-driven applications are becoming increasingly prevalent in

the most diverse domains of industry, such as capital markets,

telecom, healthcare, sensor networks, and many others [5]. Most

of these applications, however, are mission-critical or

performance-sensitive, generating huge amounts of data and

requiring very short response times. In order to guarantee that

these applications have their requirements met, systematic

methods for evaluating the performance of their enabling

technologies are required. Aware of this need, SPEC has released

the first industry standard benchmark for evaluating message-

oriented middlewares (MOM) – SPECjms2007 [7].

MOM platforms play a fundamental role in event-driven

applications, by ensuring that events are reliably disseminated to

the appropriate destinations. However, exchanging messages that

carry the information about events occurrence is only one of the

features required by event-driven applications. After message

delivery, they still need to filter the incoming events, aggregate

their data, correlate seemingly unrelated events, detect situations

of interest and react to them. These operations are typically

performed with the aid of another class of systems, the so-called

Complex Event Processing (CEP) engines, for which there is

currently no standard benchmarks. In fact, a great part of the

known performance numbers come from tests and studies

conceived or sponsored by vendors (e.g., [8], [9]), many of which

disclosed without the necessary details for replicating the results.

A few others (e.g., [3], [6]), though neutral and detailed, used

simple workloads and datasets that do not fully represent the

typical usage of CEP engines. In order to address this lack of

systematic evaluation methods, novel benchmarks are required.

These benchmarks need to be clearly specified and easily

understood. More importantly, they must exercise the entire

spectrum of features offered by event processing platforms in a

realistic manner.

In this paper we propose a first step towards filling this gap. We

introduce our work-in-progress, the BiCEP benchmark suite, and

the first of its domain-specific benchmarks: Pairs. The Pairs

benchmark is set on the capital markets environment and

exercises a wide range of features commonly found in most event

processing applications, including:

 Filtering, aggregation, and correlation of events;

 Detection of event patterns and trends;

 State maintenance;

 Large number of simultaneous queries (increasing with

the system scale);

 Changing load conditions.

Pairs was designed to assess the ability of the CEP systems in

processing increasingly larger number of continuous queries and

event arrival rates while providing quick answers – three quality

attributes equally important for an event processing engine. The

benchmark was also designed to be fully customizable, so that

users can carry out performance studies that resemble more

closely their own environments.

2. DESIGN PRINCIPLES
Even though most event processing applications share some

common characteristics (e.g., the need for automated and timely

answers), the several CEP domains differ significantly in their

functional and performance requirements. For example, users in

the capital markets are generally very concerned about

processing latency, as short response times represent competitive

advantage. Thus, sub-millisecond latencies are typically expected

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICPE’13, April 21–24, 2013, Prague, Czech Republic.

Copyright © 2013 ACM 978-1-4503-1636-1/13/04...$15.00.

307

in the algorithmic trading domain and the shorter the system

takes to react, the better. However, other applications, like fraud

detection and traffic monitoring, are generally not so latency-

sensitive, and tolerate response times in the order of few seconds

or even minutes. Performance concerns in these cases might

revolve around volume of data or queries state size.

These significant differences in the performance requirements of

the application domains makes virtually impossible for a single

benchmark, with a single metric, to be representative of the

entire spectrum of applications and provide all the information

required by its heterogeneous target audience. For this reason,

we opted to devise BiCEP as a set of smaller, domain-specific

benchmarks, each with its own workload, dataset and metrics.

Our goal is that each benchmark will allow evaluating one or

more aspects of event processing systems (e.g. latency,

scalability with respect to number of queries and rules, storage

efficiency, etc.). Besides measuring CEP engines in multiple

ways, a benchmark suite has a number of other advantages:

 Extensibility: as more information about CEP use-cases

become available, new tests can be added to the suite,

making it more comprehensive.

 Understandability: users can more easily relate the

individual domain-specific benchmarks to their real

applications.

 Configurability: the focus of the evaluation can be

controlled by selecting whether all tests will be executed or

only a subset of them will be considered.

 Fairness/Portability: CEP engines differ considerably in

their focus, capabilities and query languages. Having

multiple tests allows a system that does not perform well on

a given benchmark (or is not able to implement it at all), to

showcase its capabilities on a different scenario.

The BiCEP benchmark suite is the ongoing result of years of

research and analysis of real event processing use-cases and

platforms. Throughout the rest of this paper we outline its first

benchmark, Pairs, and discuss our plans for extending the suite.

3. THE Pairs BENCHMARK
In this section we provide a brief overview of the Pairs

benchmark. Note that due to space limitations, only the main

aspects of the benchmark are discussed. For a complete

specification please refer to [2].

3.1 Application Scenario
The scenario for Pairs is an investment firm where a number of

analysts interact with an enterprise trading system responsible

for automating and optimizing the execution of orders in stock

markets. Users of the system pose trading strategies which are

continuously matched against live stock market data. The

exercised trading strategies belong to a category broadly known

in the financial domain as statistical arbitrage and consist in

monitoring the prices of two historically correlated securities,

looking for temporary digressions that indicate an opportunity to

capitalize on market inefficiencies.

The general structure of the benchmark scenario, including the

main entities and the corresponding cardinalities, is depicted in

Figure 1. Per every stock market M, a number of symbols (100)

are monitored by the system, from which half are known to be

mutually correlated. Each of the users of the system manages

exactly five strategies. The number of users per market ranges

from five up to fifty, depending on the scale factor. In the

simplest case (5 users), there will be 25 strategies, each defined

over a unique pair of correlated symbols. On the limit, each pair

of correlated securities is monitored by ten strategies of different

users, each with its own parameters.

Figure 1: Entities and relationships in the Pairs benchmark

This structure allows evaluating not only if the tested system

performs well on a multi-query scenario, but also its ability in

sharing resources among similar queries.

3.2 Input Data
Input data for the Pairs benchmark consists in a stream of

simulated stock market data with the following schema:

(symbol: string, price: int, size: int, tickTS: long, TS: long)

Each incoming tuple represents a trade operation executed in the

stock market, such that symbol identifies the security being

traded, price indicates the value in cents of the transaction, size

represents the amount of shares negotiated, tickTS is the time, in

milliseconds, at which the trade has been executed (i.e.,

simulation clock time) and TS is the actual time the record was

sent to the CEP engine (i.e., wall clock time, added by the

benchmark driver).

In the standard configuration, 2 hours of simulated market data

are produced by a data generator application and submitted

afterwards to the system under test (SUT). Tick arrivals follow a

Poisson process [1], with its λ parameter – which represents the

average arrival rate – varying over time. The reason for having a

varying input rate is to simulate more realistically what happens

in most real event processing applications, where new data

arrives at different rates depending on the period of the day.

3.3 Workload
The benchmark workload consists in processing simultaneously a

number of Pairs strategies. All strategies perform the same set of

operations, described below, although using different parameters:

1. Compute indicators: the prices of a pair of securities are

aggregated over a given time interval and then correlated to

produce a ratio. The values of this ratio are then aggregated

again, producing a moving average and upper and lower

bands (these are usually referred as “Bollinger Bands”).

2. Signal opportunities: the indicators produced in the previous

step are used to determine possible opportunities to

capitalize. This happens when the line formed by the values

of the ratio crosses one of the bands.

3. Position: once a possible opportunity has been spotted, the

system checks if it must change its current market position.

308

4. Place orders: if a change in market positioning is indeed

required, the system must emit orders. This step involves

identifying the appropriate values for the parameters of each

order (i.e., size and price).

5. Manage risk: once a market position has been assumed, the

system must detect if the prices keep drifting apart,

countering the expected reversal trend, to prevent losses.

All the operations above are performed by each running strategy.

Ideally the systems under test will be able to identify similarities

among them and share resources during strategies execution.

3.4 Output
The output of the Pairs benchmark consists in two event streams:

Indicator and MarketOrder. The former represents the output of

the first step in the strategy execution process and is used in the

benchmark scenario for visualization and auditing purposes (the

stream serves to produce a chart like Figure 2 that allows users

to better understand the decisions taken by each strategy).

Figure 2: Chart showing the values of the Indicator stream

The second stream represents the orders that were issued as a

result of the execution of the strategies. The schemas of the two

output streams are shown below:

Indicator (MarketOrder (

 strategy

 ratio

 avgRatio

 upperBand

 lowerBand

 inputTickTS

 inputTS

)

: string,

: double,

: double,

: double,

: double,

: long,

: long

 strategy

 type

 symbol

 price

 size

 inputTickTS

 inputTS

)

: string,

: string,

: string,

: int,

: int,

: long,

: long

Tuples of the Indicator stream consist in a field strategy,

indicating which strategy generated the result, and the fields

ratio, avgRatio, upperBand and lowerBand, containing the

values of the indicators. The MarketOrder stream consists in the

fields strategy, again identifying the strategy that triggered the

output, type, identifying the order as ‘BUY’ or ‘SELL’, and the

fields symbol, price and size, which have the same meaning as in

the input stream StockTick. Besides the payload, tuples from

both streams include two timestamps: inputTickTS and inputTS.

Both are derived from the input event that triggered the emission

of the output tuple and represent respectively the tick occurrence

time (simulation clock) and its arrival time (wall clock). The

former is used for checking the correctness of the results while

the latter is used for response time computation purposes.

3.5 Scaling
The scale factor (SF) in Pairs affects the number of users, and

consequently the number of strategies executed in parallel as

follows:

 Number of users: 5 SF

 Total number of strategies: 25 SF

Additionally, per every increment of ten in the scale factor, the

input rate is incremented by 5,000 and the number of symbols is

increased by 100 (this is to avoid too many similar strategies

over the same symbols and to allow to observe how the system

scales with changes in input rate and cardinality). The effect is as

if a whole new market were now being monitored by a new team

of analysts. For instance, for a scale factor of 15, there will be 75

users, each managing 5 strategies, on a total of 375 strategies

running in parallel on the trading system, from which 250 are

over the first set of 100 symbols and 125 are over the second set

of 100 symbols.

3.6 Measures
As mentioned earlier, the purpose of the Pairs benchmark is to

evaluate the ability of CEP systems in processing increasing

loads while providing quick answers. Naturally, different users

have different perceptions on the value of each dimension

depending on their requirements (e.g. for some, the best system

is simply the one that replies faster, while for others it is the one

that handles more load). Nonetheless, in order to facilitate

comparison among the several platforms and benchmark runs, we

have defined a pscore metric to represent overall system

performance1:

latency

load
p

thscore
99



When defining the metric above, we tried to benefit systems that

are able not only to process high volumes of events, but also

react quickly and scale well with respect to the number of

concurrent queries. Note, though, that the pscore exists essentially

for comparison purposes, and that a Pairs report should always

include a number of other measures (e.g., throughput, average

and maximum latency, latency histogram, etc.) to help users to

better understand the performance of the system under test and

judge whether it fits their needs or not.

3.7 Is Pairs a Good Workload Scenario?
There are a number of reasons why we believe the Pairs

benchmark represents a good test case for CEP platforms. First,

the workload exercises several common features that appear

repeatedly in most event processing applications: it filters out

ticks from securities which are not of interest, aggregates events

data over temporal and count-based windows, correlates price

data for interrelated securities, detects patterns from price

movements, keeps track and updates strategies’ state upon the

occurrence of certain events, and performs lookups to determine

orders price and size. In addition, different from most

benchmarks, which have a fixed set of queries, the number of

queries in Pairs increases with the system size. This is in

1 The term “load” in the formula is a function of the number of

strategies and the input rate. Further information on how the

pscore is computed can be found in the Pairs specification [2].

309

conformance with what happens in many real event processing

applications and allows evaluating important aspects like query

scalability and resource sharing.

Other key benefits of Pairs are understandability and

representativeness. The benchmark mimics a niche of application

where event processing platforms have perhaps been most

successful – capital markets. In fact, most products use simple

financial use-cases to exemplify the usage of their features and

languages in their documentation, so in principle it should be

easy for anyone reasonably familiar with CEP to understand

Pairs. In addition, Pairs is loosely based on a real use-case, and

as such has a good chance to be representative of its application

domain.

Finally, Pairs allows a great deal of customization. Users can

control load intensity by setting high-level workload parameters

like input rate and number of simultaneous strategies, or by

altering scenario characteristics such as number of securities and

configuration of the strategies. While the results obtained from

these “customized” runs cannot be compared to standard runs,

the ability to customize the workload enables users to exercise

the systems in a manner closer to their own real environment.

3.8 Implementation and Preliminary Results
The Pairs benchmark should be implemented and executed as

illustrated in Figure 3 below:

Figure 3 The execution flow of the Pairs benchmark

Initially, the user specifies a couple of workload parameters or,

alternatively, uses the standard benchmark configuration to

create a test setup (1). Then, a data generator application

generates data and auxiliary files (2), which are used afterwards

by a query generator to produce the strategies that compose the

benchmark workload (3). The output of the query generator is

then parsed by a vendor-specific translator, which converts the

workload, initially represented in a neutral format (e.g., xml

file), into the query language used by the SUT (4). After loading

the query/rule set into the SUT (5), the user starts a performance

run (6). During the run, the benchmark driver (FINCoS) loads

the generated data file and submits the events on it to the SUT

(7), which in turn returns the corresponding results to the

framework (8). After test completion, a validator verifies the

correctness of the answers produced by the SUT (9).

All the aforementioned tools are written in Java and require very

little effort to be executed. The data generator, query generator

and validator applications are specific to the Pairs benchmark

and can be downloaded from [2]. The FINCoS framework, on the

other hand, is benchmark-independent and can be found at [4].

We have recently implemented Pairs in a widely used open-

source CEP engine and run some preliminary performance tests.

In our experiments, the SUT managed to reach a maximum scale

factor of 3, with processing latencies ranging from 5 up to 2,810

milliseconds (average: 33 ms; 99th-perc.: 106 ms), obtaining a

pscore of 0.085. The tests also revealed some interesting facts

about the system performance, like a regular increase of response

time when faced with larger load levels and an odd variation on

CPU utilization across the measurement interval. Further

experiments and analysis are still required to fully understand

these results, though. At the present moment, we are

implementing the benchmark on another CEP engine to establish

a basis for comparison.

4. SUMMARY
So far very little information about the performance of CEP

engines has been made available, in spite of those systems being

used in mission-critical or performance-sensitive scenarios. In

this paper we delineate the path for filling this gap by

introducing the BiCEP suite, and the first of its domain-specific

benchmarks – Pairs. Both BiCEP and Pairs are work in

progress, which we intend to further develop over the next

months. In particular, we plan to extend the suite with new

benchmarks as well as enhance Pairs and its tools. We promptly

invite the community to contribute to this discussion.

5. ACKNOWLEDGMENTS
This research has been supported in part by the Portuguese

Science and Technology Foundation (FCT), under grant Nº

45121/2008.

6. REFERENCES
[1] Aldridge, Irene, High-frequency trading: a practical guide to

algorithmic strategies and trading. Wiley trading series.

ISBN 978-0-470-56376-2.

[2] BiCEP project web site: http://bicep.dei.uc.pt

[3] Dekkers, P. Master Thesis Computer Science. Complex

Event Processing. Radboud University Nijmegen, Thesis

number 574, October 2007.

[4] FINCoS Framework: https://code.google.com/p/fincos/

[5] Hinze, A., Sachs, K., Buchmann, A.P. Event-based

applications and enabling technologies. In Proceedings of

DEBS 2009.

[6] Mendes, M.R.N., Bizarro, P., Marques, P. 2009. A

Performance Study of Event Processing Systems. In

Proceedings of the 1st TPC Technology Conference (Lyon,

France, August 2009), 221-236.

[7] SPECjsm2007 benchmark: http://www.spec.org/jms2007/

[8] STAC Report: Aleri Order Book Consolidation on Intel

Tigertown and Solaris 10. Available at:

http://www.stacresearch.com/node/3844

[9] White, S., Alves, A., Rorke, D. 2008. WebLogic event

server: a lightweight, modular application server for event

processing. In Proceedings of DEBS 2008, 193-200.

310

