
Use Case-Driven Performance Engineering without
“Concurrent Users”

 Morten Heine Sørensen
Formalit

Byenden 32, 4660 Store Heddinge
 Denmark

+45 3031 2923
mhs@formalit.dk

ABSTRACT
The concept of concurrent users often causes confusion when
used to define performance requirements in industrial software
projects. The term is frequently used to state performance
requirements without clarification of what the users will be doing,
or how often. This paper offers a thorough analysis of the concept
and related notions.

Despite the confusion surrounding it, the concept of concurrent
users – in a precise form – is advocated in the community for
stating performance requirements. However, we argue in this
paper that, even when stated in precise terms, this approach has
drawbacks. Indeed, a system may perform better than expected,
even if the number of concurrent users it can handle is worse than
expected. A better suited notion is that of through-put.

But even when basing performance requirements on clear, well-
suited concepts, there appears to be no uniform format in the
literature for such requirements. In particular, the requirements
are sometimes stated in general, rather than for the specific areas
of functionality of the system. As a consequence, the point may
be missed that the through-put may be unevenly distributed over
the functionality of the system. In this paper we therefore
advocate the format of performance-annotated use cases, adding
requirements on through-put and response-time to the traditional
use case.

It is well-known how functional test cases are developed from use
cases. In contrast, less has been said about the generation of
performance test cases. Therefore, we show how the enriched use
cases not only provide precise and meaningful requirements, but
also yield detailed specification of the performance test set-up
which can be directly input as configuration of load test clients.
As a bonus, initial configuration of the system’s capacity for
handling concurrent users and requests is also provided.

Finally we outline an overall approach to performance test based
on the above ideas. The approach has been followed in several
industrial projects.

Categories and Subject Descriptors
D.2.8 [Software Engineering] Metrics – Performance measures.

Keywords
Use cases, agile development, performance requirements,
concurrent users, through-put, response time, think time, load test.

1. CONCURRENT USERS: CONFUSION
In a recent project in which the author participated, the four most
central performance requirements were stated roughly as follows:

R1. The system must support 1500 concurrent user sessions.

R2. The response time for any user action must be at most 1 sec.

R3. The response time for a service call must be at most 0.1 sec.

R4. The system must handle 1000 events per day.

The requirements pertain to a system for which users can log in,
perform user actions, and log out again. The system also receives
service calls from external systems. Finally, events arrive at the
system through either user actions or service calls, see Figure 1.

Figure 1. An interactive system also called by external
systems.

Requirement R1, about concurrent users, is unsatisfactory
because it does not state what the users do or how often they do it.

Handling 1500 users who log in and do nothing more is very
different from accomodating the same number of users repeatedly
requesting a heavy operation every second. A system may easily
be capable of the former, while unable to live up to the latter.
Whether a system satisfies the requirement is therefore heavily
dependent upon interpretation.

Requirement R2, about response time, may be misleading because
it fails to state that the response times must hold while the system
is running at the expected load.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright © 2013 ACM 978-1-4503-1636-1/13/04...$15.00.

3

Responding promptly to a single user is an entirely different task
than maintaining reasonable response-times for a large number of
users simultaneously burdening the system.

Requirement R3, also about response time, is vague for the same
reason as the second requirement: it fails to refer to the expected
load.

In fact, both service call response times and response times
experienced by users should respect the stated upper bounds while
the system is burdened with the combined expected load from
users and external systems, because both types of requests may
share the same resources.

Finally, requirement R4, about through-put, is vague, because it
does not state what functions are executed in the system at what
frequency.

The event handling may have different flows, involving a
different number of steps, depending on the type of event.
Handling 1000 single-step flows may be a lot easier than 1000
flows each with 10 steps, and if the latter is closer to what
actually happens when the system is in production, measuring the
requirement in the former manner says little about what will
happen during production.

Thus, the point is: Requirements for response times are relative to
some load; and if the load is defined in terms of concurrent users,
it should explain what the users do and how often they do it.

The above review of the requirements R1-R4 concerns one
specific project, of course, but the point is valid more generally. It
frequently occurs in industrial projects that the client has
difficulty expressing performance requirements in a precise
manner, if they are stated at all.

This may be due to the fact that the performance requirements are
on the border between the business domain and the technical
domain. For instance, as will be argued in Section 2, the concept
of concurrent users may be a purely technical term, or part
business, part technical, depending on its precise understanding.

People writing requirements are often business people with
limited training in IT, at least when there is a clear separation
between the vendor and the client, and especially if the project is
fully described by the client prior to one or more vendors making
bids for the contract. These people often lack the necessary
training or experience for stating precise performance
requirements.

Another reason may be that there is little tradition for writing
precise performance requirements in many organizations. As a
consequence, the habit is not picked up by the participants of the
organization’s different projects.

As a further illustration, we refer to the standard contract (“K02”)
for IT projects delivering systems to public organizations in
Denmark [18], see Figure 2.

Figure 2. Performance requirements in K02.

Note that the requirement only states the maximum response time
(last column) and the percentage of requests/transactions that
must be below the maximum response time (third column).

The guide to the standard contract mentions the following
example:

“Within any half-hour period, the response-time must be kept
within the following limits:

 99.5% of the response times must be less than 20 seconds.

 98% of the response times must be less than 8 seconds.

 95% of the response times must be less than 5 seconds.

 The average response times must be less than 3 seconds.”

While very explicit on response times and fractiles, nothing is
said about load. It must probably be understood that such details
fall under “assumptions” in the second column.

A new version (“K03”) has recently been developed,
accommodating agile thinking [19]. However, the handling of
performance requirements is not significantly changed.

It could be argued that load is only relevant for a particular kind
of application – one used by multiple users simultaneously. For an
application running entirely on a stand-alone PC making no
request to other systems, the concept is not relevant and should
therefore not be adopted in a standard for contracts covering all
kinds of applications. However, the multi-user scenario is a very
common (and the only one considered in this paper), and for this
reason the argument is not convincing.

In order to revise the requirements R1-R4 according to the point
made earlier, we must define precisely the concepts of concurrent
users, response time, and load – the latter will be rephrased as
through-put. We begin with the service calls, because they
constitute the simplest case.

Consider a software system responding to individual, unrelated
requests; we denote this kind of system session-less. For instance,
it could be an application server exposing web services.

Define the following notions:

4

 Average response time (ART): average time in minutes
from the system receives a request, until the response is
sent. This is a measure of the system’s speed.1

 Through-put (TP): The number of requests finished in a
minute. This is a measure of the system’s capacity.

 Concurrent requests (CR): The number of requests
being served by the system at any given moment.

The three notions are related to each other via the following rule,
known as Little’s Law:

TP = CR/ART.

Note in particular that if we know two of the values, we can
compute the third.

Example 1. A system providing a public web service with
currency exchange rates is observed over a minute to have a
through-put of 60 requests and an average response time of 6
seconds (0.1 minute). It follows that, on average, there were 6
concurrent requests along the way, see Figure 3.

Figure 3. Little's law.

The small vertical bars at the bottom “|” indicate the arrival of
requests. The solid yellow blocks indicate the time during which
the system serves a request. Each level in the figure indicates a
request waiting to complete or, equivalently, a server thread
handling a request. At each level, whenever one request finishes,
a new one is served.

Note that CR, like ART, is an average number. If, during the
minute, the response times go up and down, so will the number of
concurrent requests. In fact, it is unlikely that the number of
concurrent requests will be precisely 6 all the time.

As mentioned, Little’s law lets us compute one value from the
two others. Another relationship between the three notions, may
illustrate the concepts further. It concerns the situation where we
test a system with a specified number of test clients that
repeatedly fire requests—of course, this number is what we have
called CU. If we begin with a small number, the system will
probably have no difficulty serving the requests with some ART
and TP. As we increase CU, initially ART will not be affected,
but TP will grow, since we are getting more work done. At some
point, the server’s capacity for handling requests in parallel will
be exhausted, and from this point on TP will, ideally remain the
same, whereas ART will grow linearly, because the additional

1 A similar definition is to measure the time from a client makes a

request until the client receives the response. This includes
network time. During a performance test it may be relevant to
ensure that the experienced network time is actually realistic. A
further variation is to include also the client’s time to render the
response.

requests must now wait in line for their turn. The situation is
illustrated in Figure 4.

Figure 4. Effect on ART and TP of increasing CU.

In reality the graph may look different, because the queue
mechanism often does not work in the ideal manner, see Figure 5.

Figure 5. More realistic scenario.

For a heavily loaded server, it is an interesting exercise to
configure the server’s number of concurrent threads high enough
to exploit the server’s resources and low enough to avoid
overloading the server (the additional requests will then wait in
line in the server’s execute queue, instead of burdening the
server’s resources).

Next consider a system against which a user logs on, performs a
number of actions, and logs off again; we call this type of system
session-full. The notion of logging in may not actually consist in
providing identity and credentials; it could amount to an
anonymous user having a session identified by a cookie returned
by the system at the first request, and resubmitted in each
subsequent request by the browser. Similarly, the notion of
logging out may simply amount to the session timing out.

The concepts ART and TP carry over to the new setting, but CR
is split into two separate concepts CU and CAU (the latter being
the closest relative to CR); in addition a new notion concerning
the user think time becomes relevant:

5

 Concurrent logged in users (CU): The number of users
that have logged in, but not yet out. In other words, the
number of users that have a session with the application.

 Concurrent active users (CAU): The number of users
waiting for a response from the system at any given
moment. In other words, the number of threads
currently in use by the system to serve user requests.

 Average think time (ATT): The time taken from a user
receives a response from the system until he or she
sends the next request within the session. There is no
think time after the last response is received; but if there
is no explicit log out, the think time after the last step is
considered to be the same as the time until the session
times out.

Note that think time is meaningless in the setting of a session-less
system. There is no concept of user, only individual requests, and
each request is unrelated to all others. It is irrelevant whether
subsequent requests are made from the same user/system.

What makes sense, though, is through-put – a certain number of
requests are expected per minute. Moreover, we can discuss the
distribution of the requests within the through-put. For instance,
the through-put may be 120 requests per hour, but it could be that
90 requests are received in the first half hour and the rest in the
second half hour.

When discussing a fixed through-put we always assume the
distribution is more or less even (perhaps with some amount of
randomization) within the period. Thus, if testing a system at peak
load 120 requests per hour, where in reality the distribution is
uneven as described above, we should rather test it at a peak load
of 90 requests per half-hour, i.e. 180 requests per hour.

Coming back to the setting of session-full systems, the two new
notions CU and ATT are related to TP and ART by the following
generalization of Little’s law, also called the Response Time Law:

TP = CU / (ART + ATT).

Example 2. A world-wide insurance company has a system for
reporting damages online. A through-put of 8 reports per minute
is observed at peak.

The customer logs in and reports the damage, and is automatically
logged out at the end after the last step. The process has 5 user
steps (log in, click “Report damage”, enter details part I, enter
details part II, confirm). The system has an average response time
of 5 seconds for each request. Suppose that any user “thinks” 5
seconds before each next action; this includes the time to actually
enter the information to the system.

Since the total ART for the whole report is 25 seconds and the
total ATT is 20 seconds, we have a total ART + ATT of 45
seconds, i.e. 0.75 minutes, so CU is 6. The situation is illustrated
in Figure 6.

Figure 6. Response Time Law.

Each yellow block again represents a request, and now the
number (R1-R5) indicates which request inside the flow is meant.
The blue blocks indicate the user think time.

Note that TP on the one hand and ART plus ATT on the other
hand must be understood relative to the same unit of work, which
can be individual steps or the whole session. In the latter case
ART and ATT is the sum of all ARTs and ATTs for the session.

Example 3. Counting requests instead of reports/sessions in the
preceding example, we have 5 requests per report, i.e. a TP of 40
requests per minute. ART is 5 seconds. Since the user is
immediately logged out after the last step, there is no think time
after that step, but 5 seconds after the first four steps. This yields
an ATT of 4 seconds per step. Thus ART + ATT is 9 seconds, i.e.
0.15 minutes. In conclusion, CU is again 6.

The density of active users within logged in users is given by:

CAU = CU · ART / (ART+ATT).

In other words, the factor between CU and CAU is the time spent
waiting for the system’s response over the total time, i.e. user
waiting time plus user thinking time (the time the user is idle
before making the next request).

Example 4. Continuing the preceding example, recall that the
total ART for the whole report was 25 seconds and the total ATT
was 20 seconds. Finally CU was 6, so CAU is 3.3.

Note that ATT=0 if, and only if, CAU=CU. This happens if the
session has just one step after which it immediately ends. This is
what happens in the session-less case; so the latter can be
considered a special case of the session-full case.

At any point, the active users are a subset of the logged in users
which, in turn, are a subset of the registered users, if the latter
concept makes sense for the system under consideration. It is not
considered important whether users in subsequent sessions are
actually the same or different registered users.

A few remarks about sessions may be in order. Above we
assumed that users log in, do their work, and log out again. This
type of session might be termed dense, since the user’s activities
happen in short time within the session, each step is separated in
time from its predecessor by some small amount of think time.

However, not all systems with sessions work in this way. Another
typical scenario is that users log in during the morning, do their
work on and off during the day, and log out again in the evening.
This type of session might be called sparse. In this scenario the
number of concurrent users will typically be a fixed, known
fraction of the registered users. There are even ultra-sparse
sessions where the user can log-on, abandon the application, and
hit it again weeks later with the session (basket) intact; for
instance, Amazon has this nature. Probably, the session is
passivated after a time-out and reactivated when the user returns.

There are two different ways to fit sparse sessions into the
framework of dense sessions: we can either count sparse sessions
as a variation of the dense sessions with very long thinking times,
or we can separate the sparse sessions into sequences of dense
sessions. We prefer the latter, though the choice should be made
with some care.

The risk in splitting sessions is that the performance test may miss
memory leaks, because the system terminates sessions quicker
during the test than in reality, thereby yielding falsely low CU.
Another risk is that response times may be higher than in reality,

6

because the caching behavior during the test may be unrealistic,
because information cached in the session is lost during the test.

In fact, even in the case of session-less systems, it is important to
reflect actual caching behavior, if present. Both cached
information of relevance for all requests (e.g. reference data and
other list of values) as well as information relevant only for
individual users, but still stored in a general cache. (In the case of
session-full systems, the latter kind of information can be stored
in the session.)

We close this section with a reflection on the role of use cases in
session-full systems. Recall that every user logs on, performs a
number of steps, and logs out again. It is natural to envisage these
steps as belonging to one or more use cases. The think time then
amounts to the time the user waits within a use case, from one
step to the next, after receiving a reply from the system, as well as
the time from one use case ends, until the next is initiated. This is
most natural when we work with dense sessions.

2. CONCURRENT USERS: CRITIQUE
We now have the apparatus to make the requirements of the
preceding section more exact. But before doing so, let us turn to
the literature for inspiration.

One precise form in the literature [17] is the following: “for use
case ABC the system will respond to a valid user entry within 5
seconds for a median load of 250 [concurrent] active users and
2000 [concurrent] logged in users 95% of the time.”

In the author’s opinion, this formulation is still not optimal. First
of all, a use case usually consists of several steps, and the
response time must hold for each step in which an answer is
expected from the system.

But, more seriously, it is in fact hard to justify an estimate on the
number of concurrent active users. Of course, some kind of
estimate is involved in any formulation of expected load, but the
point is that the number of logged in and active users actually
depend on internal attributes of the system itself.

Example 5. Consider two different systems implementing use
case ABC mentioned above, and assume the use case has, say, 3
steps:

 System A has, in each step, a response time of 1 second as
long as the number of concurrent active users is less than
200, but crashes when the number exceeds 200. It can handle
2000 concurrent logged in users.

 System B has, in each step, a response time of 5 seconds as
long as the number of concurrent active users is less than
300, but crashes when the number of active users exceeds
300. It can handle 2000 concurrent logged in users.

Which system satisfies the requirement? Which system is the
most desirable one?

Well, imagine the scenario that use case ABC is executed 1.000
times per minute by different users (it is not important if they are
actually different from execution to execution of the use case).

If the users adopt system B, each execution involves 3 steps, each
with 5 secs. spent by the system, and, say, 35 secs. spent by the
user thinking before the next step. Thus each execution of the use
case takes 2 minutes. With 1000 executions per minute, there will
indeed be 2000 concurrent logged in users. The ratio between user

waiting time and total time, i.e. user waiting time plus user think
time is 5 to 5+35, i.e. 1 to 8, so among the 2000 logged in users,
250 will be active at any moment. Thus, our scenario corresponds
exactly to the requirements and System B meets the criteria.

Now consider System A. It cannot handle the required 250 active
users, but consider what happens in our scenario. Each execution
of the scenario takes 3 times 1 + 35 secs, ie. 108 secs., i.e. 1.8
minutes. Thus there will only be 1800 logged in users, and the
ratio between waiting time and total time is now 1/36, so there
will only be around 50 active users at any point.

If we insist on verifying that System A can handle 250 concurrent
active users, we have to push a through-put of 5.000 ABC
executions per minute through the system, just because it handles
requests more efficiently than System B (fewer if the average
response time decreases with the increase in tested through-put).

The point is: The faster the system, the fewer concurrent logged in
and active users will be required to obtain a given through-put.

Since we do not know the response time in advance, we do not
know what to require of the system regarding concurrent logged
in and active users.

In some situations, the number of logged in users may be fixed.
For instance, all employees in a department may log in during the
morning and log out in the afternoon. But for a fixed number of
executions of use case ABC, the number of concurrent active
users still depends on the response times of the system. Thus,
again we cannot know the number of concurrent active users.

In some cases, the users of a site may abandon it, if it is slow, and
this may provide some self-adjusting behavior, where CAU does
not increase, despite higher ART than expected, because CU
decreases. But of course, this is not a satisfactory way to satisfy
the requirements (partially).

We conclude that it is difficult to predict CAU because it depends
on ART, which we cannot know before the system is built. Will
requests take half a second or a whole second? We cannot know.

In contrast, the through-put for each use case will often be known.
For instance, a use case may concern the creation of some kind of
business entity in the system, contracts, customers, orders, etc.,
and it might be known by the business how many of these arrive
over a period. It is more difficult to predict the through-put of use
cases that do not leave a trace that makes sense in business terms.
For instance, if a user can browse entities before selecting one, it
may be difficult to know the amount of browsing. In this case,
some kind of estimate must be made.

Having fixed TP and ATT to some expected values, and fixed an
upper bound for ART, we can compute an upper bound for CAU,
and use this value for the relevant purposes. But one might
wonder whether we have replaced one problem by a more
difficult one: Is it not as difficult to predict ATT as ART? The
answer to the last question may be “yes,” but note that CAU is
independent of ATT. Indeed, it follows from the response time
law and the law regarding user density that

CAU = ART · TP.

Intuitively, ATT does not impact CAU, because the user won’t be
counted as active during the think time anyway. (Note,
incidentally, that the latter rule says that Little’s law also holds
for the session-full case, when we read CR as CAU.)

7

However, there are other reasons that it may be important to
estimate ATT as precisely as possible. If we run a test without
think time, despite having estimated ATT to some value, CU will
be lower during the test than in reality, so we may miss memory
problems stemming from many or large sessions. Also, varying
think times in reality could cause chaotic phenomena causing
difficulties for the system that are not revealed during the test. At
least this is claimed in the literature.

A similar point pertains to the definition of which use cases a user
executes in a scenario. Consider a system for paying bills online.
It has use cases Log in, Pay Bill, Log out. In every execution, the
user may repeat “Pay Bill” a number of times. The question now
arises whether, for a given through-put, it makes any difference
how it is distributed over users; that is, whether it makes any
difference whether we have, say, 30 users each paying two bills
(in a single session) or 60 users each paying one bill.

Example 6. Assume TP is indeed 60 bills paid per hour, i.e. 1 per
minute. Users log on, pay one (or two) bills, and log out again.
For simplicity we assume each of the three use cases has a single
step only. Suppose ART is 5 seconds for of the three use cases
and that ATT after Log on and Pay bill is 35 seconds.

In the one-bill per user variant we have ATT+ART = 85 seconds,
i.e. 1.4 minutes, so CU = 1 · 1.4 = 1.4. CAU is 0.25.

In the two-bill per user variant, the through-put of sessions is 30
per minute, i.e. 0.5 per minute and ATT+ART=145 seconds, i.e.
2.4 minutes, and so CU = 0.5 · 2.4 = 1.2. CAU is 0.17.

The one-bill per user variant has slightly higher CU and CAU,
because the overhead of use case Log On and Log Out is higher.
In practice, such overhead may be negligible.

However, with each user paying two bills, there could be some
benefit of caching, not experienced with separate users. If the
application implements a relevant type of caching, this will be
missed during the performance test when we run with one bill/per
user, which may thus yield falsely high ART.

Above we have assumed that the system under consideration is
some kind of multi-user application (where the users may be other
systems). The notions of concurrent requests, logged in users, and
active users usually will not be interesting for a desk-top
application used by a single user.

Now consider a thick client, either the old-fashioned type (i.e. an
application written in, say, C++, Visual Basic, or Java, that make
server calls) or a modern Ajax-application running in a browser,
with, say, HTTP calls mixed with significant portions of
Javascript running entirely in the browser without service calls. In
this case, only the functionality that actually makes server calls
fits into the framework. In other words, the pure client
functionality is not relevant for a load test of the server system.

3. ANNOTATED USE CASES
Recall that in Section 1 we complained that requirements R1 and
R2 were vague because, although they specify restrictions on
response time and the number of concurrent users, they do not
explain what those users are expected to be doing or how often.
We subsequently clarified the “how often” part, by introducing
precise notions of concurrent user and related concepts. Also, we
went on by arguing that through-put was a better suited notion for
quantifying “how often.”

It remains to address the “what” part. Indeed, even when basing
performance requirements on clear, well-suited concepts, such as
through-put, there appears to be no widely adopted format in the
literature for relating these notions to functionality of the system.
Perhaps this is the reason that requirements are sometimes stated
in general for “the system”, rather than for specific areas of
functionality of the system. As a consequence, the point may be
missed that the through-put may be unevenly distributed over the
functionality of the system. Requirements R1 and R2 also
illustrate this.

Use cases, user stories, and other similar techniques for
specifying functional requirements are in wide-spread use today.
They are ideally suited to support iterative development of a
system, because the iteration plan can be arranged according to
use cases. Each of the traditional disciplines – requirements,
architecture, development, testing – can be carried out in each
iteration for some subset of the use cases, and the iteration yields
a complete version of the system, with functionality implemented
end-to-end.

We therefore suggest the format of performance-annotated use
cases, adding requirements on through-put and response-times to
the traditional description of use cases. For instance, consider the
use case description in Figure 7.

The use case allows a bank customer to pay bills from one of his
accounts using an online banking system. The last three rows in
the template describe required through-put, required maximum
response time, and assumed think time. We discuss each in turn.

Figure 7. Performance-annotated use case.

The required through-put describes the through-put for this
particular use case that the system must be able to support. In this
example, the entry also mentions how many executions are
contained in the same user session. The reason for this is that, due
to caching behavior, it may make a difference to the system
whether a single customer is paying several bills or each bill is
paid by a separate customer in a separate session, as previously
mentioned. The performance test should mimic the actual usage
patterns of the system as closely as possible, taking time, money,
risk and other relevant factors into account.

The required maximum response time specifies an upper bound
for each system step that the system must observe. In a real

8

project, the system will probably only be required to meet the
requirement in a specified percentage of the cases, say 95%. It
may then be a requirement that in the remaining 5% of the cases,
the response time must be at most, say, twice the specified
maximum, i.e. 2 seconds after step 1 and 3, and 20 seconds after
step 5. For instance, something like this is the case with the
standard contract K02 as mentioned earlier.

Also, the actual maxima (1 and 10 seconds) may not be stated
explicitly for each use case step; rather, the steps could be
categorized into small, medium, and large, and a general
maximum response time could then be formulated for each of the
three types of step, say 1, 10, and 30 seconds, respectively.

The last entry describes the user think time. As previously
explained, the think time may be significant because it drags
sessions longer than what follows just from the response-times,
thereby increasing the number of concurrent logged in users, and
this could have an impact e.g. on memory consumption. In
general it is desirable to reflect as closely as possible how the
system is actually used in real life, though compromises may be
made when balancing resources against risk. As with response
times, the think times may be categorized into small, medium, and
large (say 1, 10, and 60 seconds, respectively).

Say that we write every medium step with a single underline, a
large step receives two underlines, and a small step receives no
underline. Then a more quite notation for the above use case
could be as shown in Figure 8.

Figure 8. More “quiet” notation.

The question arises what should be done about the alternate flows
(or scenarios) of the use case. In practice, some prioritization
must be made of use cases and their scenarios. It may easily be
the case that not even all use cases are included in the
performance test, let alone individual scenarios of a single use
case. The decision must necessarily be decided on a case-by-case
basis. For instance, if a use case concerns the possibility of doing
searches in the system, and the alternate scenarios of the use case
correspond to different ways of searching, then more (or all) of
them could easily be relevant, so response times for all each of
them should be specified. Fortunately, this is easy with the quiet
notation.

Note that the use case refers to a maximum response time, rather
than an average response time. Nevertheless, the response time
law still provides valuable information. Indeed, if the response
time for every system step is at most a specified amount, then the
average response time will be less than this amount, and therefore

the through-put will be at least the amount specified by the
response time law, for a given number of logged in users.

Similarly to the performance requirements for use cases, we may
also have performance requirements regarding maximum
response time and minimum through-put for web services called
externally. We do not have a specific format for this in mind.

4. PERFORMANCE TEST CASES
As indicated earlier, there is a widely adopted practice of
generating functional test cases from use cases. Roughly, the test
cases can be seen as instantiations of use case scenarios where
concrete values are substituted for named concepts.

For instance, whereas a use cases speaks of a customer who logs
on and pays a bill of some amount, the test case will involve a
specific customer known to the system who will pay a specific
bill, known to the system, of a specified, concrete amount.

These test cases could in principle be extended with information
about expected response-time and assumed think time, as well as
expected through-put. However, in reality such test cases will not
be run repeatedly, manually by humans. Instead they are typically
run once and recorded with some proxy and then revised so as to
use input data from files or a database. After this the test cases
can be run automatically by a load test client. Figure 9 below has
(in the left pane) a test scenario that amounts to the main success
scenario of a the Report Damage use case of the insurance system
mentioned earlier.

The test cases are then configured with respect to the actual
performance parameters. For instance, in the popular tool JMeter,
one configures a so-called thread group for each test case, and
part of the configuration is to fix a number of threads (users), see
Figure 9.

Figure 9. Concurrent logged in users.

This number corresponds to CU and can be computed from the
required through-put and maximum response time, plus the
assumed average think time. For instance, in the example with the
insurance company, we need 6 threads, as mentioned in the last
example, if the system precisely meets the requirement for ART.

If more threads turn out to be needed, it must be because the
system cannot meet the requirement for ART. If the system’s
response time is significantly lower than the required ART, we
may actually need fewer threads than 6.

9

In fact, one can configure JMeter to achieve the required TP by
using the necessary number of threads (up to 6), whatever that
number turns out to be depending on the system’s response time
behavior, see Figure 10.

Figure 10. Achieving the required through-put.

In addition to CU we can configure think time, see Figure 11.

Figure 11. Think time.

Finally we can mark excessive response-times as failures, see
Figure 12.

Figure 12. Marking high response time as failure.

Finally, we can ask the tool to produce a report for the test run
that displays the response times and through-put, so that we can
see whether the requirements are met. See Figure 13.

Figure 13. The test run results.

Thus we see that a typical load test tool, exemplified by JMeter,
provides facilities for configuring test cases and performance
requirements expressed in terms of through-put, response time
and think time.

5. OVERALL APPROACH
We finally summarize our approach to performance-testing which
comprises a number of activities; these happen partly before we
go into the iterations of a project, and partly inside the iterations
themselves.

1. Identify the functional requirements.

2. Identify the system and environment.

3. Identify the performance requirements.

4. Prioritize the performance requirements.

5. Choose performance test type.

6. Plan the performance test.

7. Build the performance test.

8. Run the performance test.

9. Analyze the output from performance test.

10. Profile the system.

11. Optimize the system.

In the first activity we identify the functional requirements, i.e.
the use cases, or something similar. One may wonder why it is
relevant to identify the functional requirements, when we are in
fact interested in performance, i.e. non-functional requirements.
The answer is that the latter pertain to the former; that is, each use
case has its own through-put (and possibly response time)
requirements.

In the second activity we get an overview of the architecture of
the system and the production environment as well as the
performance test environment. It is important to understand the
architecture, because this has a bearing on how we formulate and
test the performance requirements. For instance, we need to know

10

if the system can be accessed both interactively and through web
service calls.

But the architecture is also important for deciding what we
measure during the test. For instance, a database server calls for a
different kind of attention as compared to an application server.
Finally, the environments are important because it should be
verified that the performance test environment resembles the
production environment as much possible.

The configuration of threads through-out the production
environment can be based (at least in the first version) on the
performance requirements.

Example 7. The insurance company mentioned earlier is building
a new system for reporting damages online. The system must
support a through-put of 60 reports per hour, and these are
submitted in the Report Damage use case. The total maximum
permitted response time for the whole use case is 25 seconds and
the total think time is 20 seconds, so we have a total, so CU will
be at most 45, and CAU will be at most 25. It follows that, in the
worst case, the system must support 45 user sessions and 25
simultaneous requests.

If each request on the web server may open at most two
connections to the back-end server, then a total of 50 threads will
be needed at that level. If each thread on the back-end server, in
turn, requires at most two connections to the database server, a
total of at most 100 will be needed at that level. Here we have
only considered the traffic from the online users. To all this, the
threads handling web service requests must be added.

Moving on, we identify, in the third activity, the performance
requirements, if they exist, or else contribute to their formulation.

In the fourth activity we decide which performance requirements
to include in the performance test, as all can probably not be
tested. Or, more concretely, we decide which use cases (and
which scenarios of these) must have their performance
requirements tested.

In the fifth activity we identify which type of performance test to
run, e.g. load test, stress test, soak test, etc. (We omit detailed
discussion of the different possibilities, as it is not the main
concern in this paper.)

In the sixth activity we plan the performance test. The overall idea
is that the performance testing of use cases follows the ordinary
testing of use cases, i.e. it occurs in the iterations where the
coding for those use cases is accomplished.

In the seventh step we build the test, as indicated in the preceding
section. Of course, much scripting is usually needed.

In the eighth activity we run the test and collect statistics along
the way. The performance test tool provides details about
through-put and response time, as also shown in the preceding
section.

In the ninth activity we analyze the output of the test and
conclude whether the requirements are actually met.

If not, the tenth activity may include further profiling of the
system using various tools to understand e.g. where excessive
CPU time or memory consumption occurs in the system.

Once the reasons for inefficiencies are located, the system is
improved in the eleventh activity.

Of course, the last four steps are often iterated several times.

6. CONCLUSION
We have provided an analysis of the fundamental concepts
relevant for performance testing of multi-user applications:
concurrent users, response-time, through-put and think time.

Also, we have criticized the user of “concurrent users” for stating
performance test requirements as this notion is a technical
attribute of the resulting system, which cannot be known in
advance. Instead we have advocated the user of through-put.

We have also demonstrated how performance test requirements
can be stated in a compact fashion adding just a few details to the
existing description of use cases.

Moreover, we have shown where the identified performance test
parameters fit into the construction of an automated performance
test using a popular tool.

Finally we have fitted all the pieces into an overall performance
testing methodology.

The paper draws on a number of references.

The exposition of fundamental laws connecting the different
concepts related to performance requirements is inspired by [9].

As mentioned earlier, the critique of “concurrent users” was
inspired by an example in [17].

The positioning of the paper inside a broader tradition of
performance engineering, rather than merely performance testing,
is inspired by [14]. Many other text books on performance testing
emphasize not only the actual testing activities, but also the
precise formulation of performance requirements as well as an
overall approach for managing performance, see, e.g. [4], [7], [11]
[12] [16].

Nevertheless, the literature distinguishes between performance
testing and performance tuning, see [8], [13] [15] for some
popular references in the latter category. The distinction is the
same as that between testing for functional errors on the one hand,
and fixing code bugs on the other hand. For functional testing, the
distinction is often quite sharp in projects between those who look
for errors and those who fix them. In the case of performance
testing, the same persons are often involved in both activities

Use cases were invented by Ivar Jacobsen and popularized by
Cockburn [1] and many others. They are in wide-spread use
today.

A less formal approach is the user of user stories, see e.g. [2].
These contain fewer details and correspond more (but not exactly)
to scenarios of a use case than to the use case itself. Performance
requirements may also be attributed to user stories, though the
individual steps of the scenarios of use cases may be useful for
stating response and think times.

Developing test cases from use cases is a standard practice, see,
for instance, [3][5]. It is natural to use the same approach to drive
the testing of performance requirements and the idea occurs more
or less explicitly in [10] and [17], and probably many other
places. The guide for “K03” [19] also mentions the idea
informally. Instrumenting use cases with response time
requirements is hinted at in [10].

Our examples used the popular, open source tool JMeter [6].
There are numerous commercial tools available as well, as a quick
Google search will reveal, but JMeter has also been used for
many large-scale industrial projects.

11

7. REFERENCES
[1] Cockburn, A. 2001. Writing Effective use Cases. The Agile

Software Development Series. Addison-Wesley.

[2] Cohn, M. 2004. User Stories Applied for Agile Software
Development. The Addison-Wesley Signature Series.
Addison-Wesley.

[3] Collard, R.1999. Test Design: Developing Test Cases from
Use Cases. Software Testing & Quality Engineering
Magazine.

[4] Haines, S. 2006. Java EE 5 Performance Management and
Optimization. Apress.

[5] Heumann, J. 2002. Generating Test Cases from Use Cases.
Journal of Software Testing Professionals.

[6] JMeter documentation. http://jmeter.apache.org/

[7] Joines, S., Willenborg. R., and Hygh, K. 2002. Performance
Analysis for Java Web Sites. Addison Wesley.

[8] Killelea, P. 1998. Web Performance Tuning. O’Reilly.

[9] Lazowska, E.D., Zahorjan, J., Scott Graham, G. and Sevcik,
K.C. 1984. Quantitative System Performance. Computer
System Analysis Using Queueing Network Models. Prentice-
Hall.

[10] Leffingwell, D. and Widrig, D. 2003. Managing Software
Requirements – A Use Case Approach. Second Edition.
Object Technology Series. Addison-Wesley.

[11] Microsoft Corporation. 2007. Performance Testing Guidance
for Web Applications. Microsoft Press.

[12] Molyneaux, I. 2009. The Art of Application Performance
Testing. O’Reilly.

[13] Shirazi, J. 2003. Java Performance Tuning. O’Reilly.

[14] Smith, C. U. 1990. Performance Engineering of Software
Systems. Addison-Wesley.

[15] Tow, D. 2003. SQL Tuning.O’Reilly.

[16] Zadrozny, P. 2003. J2EE Performance Testing. Apress

[17] Wikipedia entry on performance engineering,
http://en.wikipedia.org/wiki/Performance_engineering.

[18] K02 – Standard contract for long-term IT project.
http://www.digst.dk/Styring/Standardkontrakter/K02-
Standardkontrakt-for-laengerevarende-it-projekter.

[19] K03 - Standard contract for agile IT project.
http://www.digst.dk/Styring/Standardkontrakter/K03-
Standardkontrakt-for-agile-projekter

12

