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ABSTRACT
Many business customers hesitate to move all their appli-
cations to the cloud due to performance concerns. White-
box diagnosis relies on human expert experience or perfor-
mance troubleshooting “cookbooks” to find potential per-
formance bottlenecks. Despite wide adoption, the scalabil-
ity and adaptivity of such approaches remain severely con-
strained, especially in a highly-dynamic, consolidated cloud
environment. Leveraging the rich telemetry collected from
applications and systems in the cloud, and the power of
statistical learning, vPerfGuard complements the existing
approaches with a model-driven framework by: (1) auto-
matically identifying system metrics that are most predic-
tive of application performance, and (2) adaptively detect-
ing changes in the performance and potential shifts in the
predictive metrics that may accompany such a change. Al-
though correlation does not imply causation, the predictive
system metrics point to potential causes that can guide a
cloud service provider to zero in on the root cause.

We have implemented vPerfGuard as a combination of
three modules: a sensor module, a model building mod-
ule, and a model updating module. We evaluate its effec-
tiveness using different benchmarks and different workload
types, specifically focusing on various resource (CPU, mem-
ory, disk I/O) contention scenarios that are caused by work-
load surges or“noisy neighbors”. The results show that vPer-
fGuard automatically points to the correct performance bot-
tleneck in each scenario, including the type of the contended
resource and the host where the contention occurred.

Categories and Subject Descriptors
D.4.8 [OPERATING SYSTEMS]: Performance—Model-
ing and prediction; Measurements; Monitors

Keywords
Automated framework, Cloud computing, Model-Driven, Per-
formance analysis, Performance diagnosis, Statistical meth-
ods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, March 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

1. INTRODUCTION
Diagnosing and resolving application performance prob-

lems in consolidated cloud environments is hard. For exam-
ple, consider the following scenario. Alice, a cloud service
provider, hosts Bob’s vSlashdot news aggregation site on her
virtualized infrastructure as shown in Fig. 1. Since Bob’s site
composes of Web, App and DB servers, Alice deploys each
server in a virtual machine (VM) because such a distributed
deployment enables better consolidation and more flexible
resource sharing.
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Figure 1: An example deployment for vSlashdot

After the vSlashdot service goes online, Bob notices that
the performance of the web site degrades over time – its
throughput drops and the response times increase. Bob im-
mediately issues a support call with Alice. Traditionally,
an IT service provider either relies on human experts with
deep technical knowledge to identify performance bottle-
necks, with the help of performance monitoring tools and
system logs, or follows standard procedures in performance
troubleshooting “cookbooks” [26] for problem localization
and root cause analysis.

However, such white-box performance analysis methods [24]
can no longer meet the demand for fast and accurate diag-
nosis in a highly-dynamic, large-scale, complex cloud envi-
ronment, for the following reasons: (1) these methods have
highly variable resolution times (from minutes to weeks);
(2) they are not easily scalable to analyzing the behavior
of many hosts and VMs in consolidated environments and
many heterogeneous and distributed applications; (3) per-
formance “cookbooks” only provide guidelines for problems
that were seen before, whereas a dynamic cloud environment
is likely to see emergent behavior or new interactions. For
example, the performance of one application may suffer due
to demand spikes in other applications (i.e., noisy neighbors)
sharing the same physical infrastructure.

To overcome these limitations, we believe a data-driven
approach [17] to performance diagnosis should be adopted to
leverage the rich telemetry collected from applications and
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systems in the cloud. However, any performance analysis
tool may be overwhelmed by the sheer amount of perfor-
mance data and statistics collected at different levels of the
stack. A recent report by TRAC Research [7], cited in [27],
showed that 42% of the surveyed IT organizations reported
challenges regarding usability of performance data. These
include amount of time spent correlating performance data
(63%), amount of performance data that is irrelevant (61%),
issues they are not able to see (false negatives) (42%), and
getting invalid alerts (false positives) (32%).

In order to address the above challenges, we propose vPer-
fGuard1, a model-driven framework for achieving automated,
scalable, and adaptive performance diagnosis in consolidated
cloud environments. vPerfGuard accomplishes this by learn-
ing a performance model for an application using the system
metrics that are most predictive of the application perfor-
mance, and by adapting the model online by automatically
detecting changes in the performance and the potential shifts
in the predictive metrics that may accompany such a change.
More specifically, the vPerfGuard architecture, as shown in
Figure 2, consists of three modules - a sensor module, a
model building module, and a model updating module.
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Figure 2: vPerfGuard framework

Whenever a performance degradation is observed and a
performance troubleshooting request is received, vPerfGuard
presents the top predictive system metrics in the current per-
formance model to the cloud service provider such as Alice.
These metrics can provide hints to Alice regarding potential
causes for the observed performance problem, including the
critical component within a complex, distributed application
as well as the suspected resource bottleneck in the associated
host or VM. Alice can then use this information to determine
the real root cause and take remediation steps such as VM
re-sizing or migration. Moreover, the ability of these models
to predict application performance using system metrics can
enable the development of performance control systems that
further automate the process of remediation. The last goal
is the focus of our ongoing work and will not be discussed
further in this paper.

This paper makes two main contributions, using both the-
oretical reasoning and experimental validation:

1. We apply appropriate statistical learning techniques to
construct performance models that capture the rela-
tionship between application performance and system
resources. This is implemented in the model building
module of vPerfGuard. The statistical learning tech-
niques (1) filter thousands of system metrics and select

1vPerfGuard stands for: virtual Performance Guard.

those that are most strongly correlated with observed
application performance, eliminating a large number of
irrelevant metrics, and (2) further reduce redundancy
in the selected metrics and build a performance model
using a small set of metrics that give the best predic-
tion accuracy. The automatic model generation pro-
cess successfully overcomes the scalability challenge.

2. We apply appropriate statistical hypothesis tests to de-
tect the need to update the performance model when
it no longer accurately captures the relationship be-
tween performance and system resources. This is im-
plemented in the model updating module of vPerf-
Guard. The statistical hypothesis tests (1) detect the
change-point due to variations in workloads (such as
demand spikes) or system conditions (such as resource
contention), and (2) trigger the model building mod-
ule to update the set of predictive metrics and rebuild
the model at runtime. The automatic model updating
process effectively overcomes the adaptivity challenge.

The remainder of the paper is organized as follows. We de-
scribe the design of vPerfGuard in Section 2. In Section 3,
we introduce our testbed setup. We then present the ex-
perimental results in Sections 4 and 5, and describe results
visualization in Section 6. In Section 7, we review related
work. Finally, we offer concluding remarks in Section 8.

2. SYSTEM DESIGN
In this section, we introduce the design of the three mod-

ules - the sensor module, the model building module, and
the model updating module in vPerfGuard.

2.1 Sensor module
The objective of this module is to continuously collect

system metrics and application performance metrics. More
specifically, it collects two categories of system metrics - VM
metrics from the operating systems within individual VMs
and host metrics from the physical hosts running the hy-
pervisors. In our experimental evaluations, the sensor can
collect thousands of system metrics, which we refer to as raw
metrics. It also collects the application performance metrics
of interest, e.g., throughput, response times, etc. Workload
metrics such as offered load and transaction mix have been
required by others for performance predictions [33]. Our
framework does not preclude these metrics but we do not
require their inclusion because: (1) we prefer vPerfGuard to
be application-agnostic to free cloud service providers from
needing detailed knowledge about the inner operations of
their customers’ applications, and (2) results from our ex-
perimental studies show that they are filtered out and do
not appear in any of our final performance models.

2.2 Model building module
The objective of this module is to automatically utilize the

thousands of raw metrics from the sensor module to derive
a performance model that captures the relationship between
application performance and system resources.

However, a performance model that is built using all the
raw metrics can be computationally expensive to construct
and can lead to model over-fitting. First, since the size of
the search space with thousands of raw metrics is huge, ma-
chine learning algorithms operate slowly. Second, many raw
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metrics are irrelevant or redundant, e.g., a VM’s CPU uti-
lization observed from its host is closely related to the CPU
utilization observed from within the VM itself. Such depen-
dencies among metrics increase the amount of redundant
information in the model and can degrade model quality.

This necessitates the selection of a small number of highly
predictive metrics. After removing many of the irrelevant
and redundant metrics, the model accuracy can be improved
in some cases while the model can be more easily interpreted
in other cases. We leverage two categories of algorithms for
feature selection [23] to our metric selection: filters [25] eval-
uate features according to heuristics based on general char-
acteristics of the data while wrappers [25] use the learning
algorithm itself to evaluate the usefulness of features.

We achieve the objectives of metric selection and model
building using a two-phase algorithm which is a combination
of filters and wrappers: first (in phase 1) selecting a small
number of candidate metrics that are most strongly corre-
lated with the application performance from among the raw
system metrics, and then (in phase 2) identifying even fewer
predictor metrics that can give the best prediction accuracy
for a specific model from among the candidate metrics.

A. Phase 1: Correlation-based selection.
In phase 1 (see Algorithm 1), we aggressively reduce the

number of raw metrics considered by filtering out the raw
metrics that are not highly correlated with the observed ap-
plication performance. We denote the application perfor-
mance metric (e.g., mean response time) as perf , and the
time series of the perf metric ending at time interval t as a

vector
−−−−→
perf(t) = [perf(t), perf(t− 1), ...]. We denote a raw

system metric (e.g., CPU consumption of a VM) as m, and
the set of all the raw metrics as M . We then denote the
time series of each metric ending at time interval t as a vec-

tor
−−→
m(t) = [m(t),m(t− 1), ...]. For each metric m ∈ M , we

use rm to denote the absolute value of the correlation coeffi-
cient between perf and m, and pm to denote the associated
p-value for testing the hypothesis of no correlation. Each
p-value is the probability of getting a correlation coefficient
as large as the observed value by random chance, when the
true correlation is zero. If the p-value is small, say less than
0.05, then the observed correlation is significant.

Algorithm 1: Phase 1

1 procedure Metrics selection by correlation coefficient
2 Input: performance metric perf and a set of raw metrics
M ;

3 Output: a set of candidate metrics Mcan ⊂M ;
4 Tunable Parameter: number of candidate metrics Ncan;

5 ∀m ∈M , rm = |corrcoef(
−−→
perf,−→m)|,

pm =p-value(
−−→
perf,−→m);

6 Select top Ncan metrics with highest rm and lowest pm;
7 Sort Ncan metrics in descending rm and ascending pm;
8 Return the set of Ncan metrics, denoted as Mcan.

To limit the number of candidate metrics for our model,
we select Ncan top metrics as the candidate metrics for the
phase 2 algorithm from all the Nraw raw metrics based on
the absolute correlation coefficient value and the p-value.
We also sort Ncan metrics for visualization purpose. The
time complexity is O(Nraw) + O(Ncan logNcan) when the
BFPRT algorithm [5] is used for selection and the quicksort
algorithm is used for sorting, respectively. Ncan is a config-

urable parameter for managing the tradeoff between better
model accuracy and lower overhead in the second phase.

B. Phase 2: Model-based selection.
In phase 2 (see Algorithm 2), we explore various combi-

nations of the candidate metrics generated in phase 1, and
choose a combination that gives the best prediction accuracy
measured by the average R2 (coefficient of determination)
value [19] of the performance model using a 10-fold cross
validation [29]. We evaluate and compare the predictive ca-
pability of the following four specific types of performance
models [20] — linear regression model, k-nearest neighbor
(k-NN), regression tree, and boosting approach.

Although the number of metric combinations has been re-
duced from 2Nraw to 2Ncan after phase 1, the exploration
process is still clearly prohibitive for all but a small num-
ber of metrics. We use a heuristic, hill climbing [30] search
strategy, i.e., given a set of selected metrics, we choose the
additional metric from the remaining set that can give the
best improvement in the R2 value. The algorithm ends when
the improvement is smaller than a given threshold. For Ncan

candidate metrics, the computation complexity of the phase
2 model-based selection is O(Npred ∗Ncan), where Npred is
the final number of predictor metrics selected.

Algorithm 2: Phase 2

1 procedure Metrics selection by a specific model
2 Input: a performance metric perf and Mcan from phase 1;
3 Output: a set of predictor metrics Mpred ⊂Mcan and the

associated model F (Mpred) with learned parameter values;

4 Tunable Parameter: type of model F (e.g., “linear”), R2
inc

for the minimum incremental R2 improvement;

5 selected = ∅, left = Mcan, R2
old = 0, R2

best = 0;
6 while true do
7 for m ∈ left do
8 metrics = selected ∪ {m};
9 Use

−−→
perf and all −→m in metrics, obtain R2

new
following a 10-fold cross validation;

10 if R2
new > R2

best then
11 R2

best = R2
new;

12 end
13 end

14 if R2
best −R2

old > R2
inc then

15 move m from left to selected;

16 R2
old = R2

best;
17 else
18 break;
19 end
20 end
21 Build the final model F using the metric set selected;

Return Mpred = selected and the model F (Mpred).

Hall [23] proposes a method to select a subset of metrics
based on a heuristic “merit” of the subset. The motivation is
that phase 1 (i.e., filters [25]) may pick many metrics which
individually have high correlation with the output metric,
but that when combined together in a model do not provide
much additional useful information. We have implemented
his method and compared it with our two-phase algorithm.
We find that (1) his method has comparable overhead with
ours; (2) our phase 2 algorithm can also overcome the limi-
tation of phase 1; (3) the final metrics and models are very
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similar if the final number of predictor metrics (Npred) is a
small number.

2.3 Model updating module
The objective of this module is to automatically detect

the change-point when the performance model derived from
the model building module no longer accurately captures
the relationship between application performance and sys-
tem resources.

In a highly-dynamic, consolidated cloud environment, the
relationship between application performance and system re-
sources could be altered due to time-varying workload pat-
terns, aggravated resource contention, different VM-to-host
mappings, or other changes. We define such a relationship
change as a change-point. This is different from detecting
changes in performance alone. For example, if a 20% in-
crease in the workload leads to degraded performance, our
module should not flag this as a change-point if the relation-
ship between performance and system resources still holds.

We assume that the distribution of the model’s prediction
errors (residuals) is stationary across adjacent time intervals
when there is no change. Motivated by this, we use an online
change-point detection technique [14] to determine whether
a change occurs by performing hypothesis testing on the
model’s prediction errors across adjacent time intervals.

More specifically, given an existing performance model
constructed in time window W (t′), its prediction errors in
W (t′) and those in an adjacent time window W (t) as shown
in Fig. 3, we adopt an unpaired 2-sample t-test [19] to de-
termine whether the prediction errors observed in W (t′) and
W (t) come from the same distribution, (could have the same
statistical mean), i.e., the null hypothesis is that “there is no
significant difference in the statistical mean between W (t′)
and W (t).” If the result of the hypothesis test suggests
that to be the case, then our performance model is likely
as (in)accurate as when we accepted it for use in produc-
tion and, absent other information, we have no reason to
discontinue using the model. A significant difference in the
statistical mean is a sufficient but not necessary condition for
a significant difference in the distribution and our t-testing
does not assume that the variances of the prediction errors
in W (t′) and W (t) are equal.

Time intervalst’ t

Model

t-Test

Fail. 
Rebuild 

the model

Pass. 
Move to the 
next interval

t+1

A sliding window W(t’) that contains 10 samples

Figure 3: Model updating module

3. EXPERIMENTAL SETUP

3.1 Hypervisor and sensor module
The vPerfGuard framework is generic and can work with

different virtualized platforms and monitoring tools.
For the system metrics, we run VMware ESX 4.1 [9] as

the hypervisor on each host. The sensor module of vPerf-
Guard can collect the host metrics (∼1800 metrics per host)
from the“esxtop”[2] interface on ESX systems. Whereas our

evaluation is done using VMware’s hypervisor and tools, our
framework generalizes to other virtualized platforms where
similar tools exist to gather system-level metrics, e.g., “xen-
top” for Xen-based systems [13] and“Hyper-V Monitor Gad-
get” for Hyper-V-based systems [10]. For the VM metrics,
we run“dstat” [1] and“iostat” [3] tools within the guest VMs
so that the sensor module of vPerfGuard can collect the VM
metrics (48 metrics per VM) from them.

For the application performance metrics, we collect the
throughput and response times per sampling interval di-
rectly from the workload generator. In future work, we
plan to leverage monitoring tools that can measure appli-
cation metrics from the hosting platform. One such tool is
the VMware vFabric Hyperic [8], which offers out-of-the-box
performance monitoring for a suite of Web applications.

3.2 Benchmarks and workloads
Although we run various benchmarks 2 on our virtualized

testbed, due to space limitations, we focus on the results
from the RUBBoS [4] and the TPC-H [6] benchmarks.

In our experiments, we deploy the RUBBoS application
with the browsing-only transaction mix in a 4-tier setup, in-
cluding one Apache server, two Tomcat severs, one CJDBC
cluster server and two MySQL servers as shown in Fig-
ure 4(a). The sampling interval is 1 minute. We deploy
the TPC-H benchmark with a scaling factor 3 using Post-
gresSQL. The total database size is 4571MB including all
the data files and index files. The original benchmark con-
tains 22 queries, i.e., Q1 to Q22. We choose Q6, Q7, Q12
and Q14 for our experiments because these are IO-intensive
queries and they can be completed within a sampling in-
terval of 6 minutes. For both benchmarks, we modify the
original workload generator to dynamically vary the number
of concurrent users in the system.

3.3 Testbed setup and configurations
We run the RUBBoS benchmark on eight hosts, as shown

in Fig. 4(a). Four hosts, ESX1 through ESX4, are used
to run the six VMs hosting the individual application tiers,
labeled as Web, App1, App2, CJDBC, DB1, and DB2, re-
spectively. We also run some co-hosted VMs on ESX1 and
ESX4 to induce resource contention on the respective host.
The four client VMs run on the other four hosts.

We run the TPC-H benchmark on three hosts shown in
Fig. 4(b). Two virtual machines, TPCHF (foreground) and
TPCHB (background), are deployed on one host, ESX5, run-
ning two instances of the TPC-H DB server. The two client
VMs run on the other two ESX hosts.

The host and VM configurations are shown in Tables 1
and 2, respectively. All the VMs run Linux kernel 2.6.32.
vPerfGuard runs on a separate host.

Table 1: Configuration of hosts

Testbed RUBBoS TPC-H, vPerfGuard
Model Dell Power Edge 1950 Dell OptiPlex 780
CPU 2 Intel Xeon E5420 1 Intel Core2 Q9650

2.5 GHz Quad-Core 3.0 GHz Quad-Core
Memory 32 GB 16 GB
Storage Clariion CX-40 SAN 7200 RPM local disk

2RUBiS, RUBBoS with the browsing-only and the read-
write transaction mixes, TPC-W and TPC-H.
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Figure 4: Setup of two experimental testbeds

Table 2: Configuration of VMs

Testbed RUBBoS TPC-H
Application VM vCPU 2 4
Application VM vRAM 1 GB 2 GB
Client VM vCPU 2 4
Client VM vRAM 8 GB 4 GB

Table 3: Metrics naming convention

Application THR,MRT,RTstd, RT50p, RT75p,
perf. metrics RT90p, RT95p, RT99p

Host metrics H {ESX} {VM} {Metric} {Details}
VM metrics V {VM} {Metric} {Details}

3.4 Naming convention
We describe the naming convention for all the metrics we

collect in Table 3. For example, THR,MRT and RT95p

are application performance metrics, denoting throughput,
mean response time and 95th percentile response time, re-
spectively. The other metrics that begin with H and V
are host and VM metrics, respectively. For instance, metric
H ESX1 Web CPU System represents the CPU “System”
counter for the “Web” VM running on the “ESX1” host, and
metric V CJDBC Int represents the “Interrupt” counter
for the “CJDBC” VM.

4. EVALUATION OF MODEL BUILDING
MODULE

In order to evaluate the model building module and com-
pare the predictive capabilities of different performance mod-
els, we use the RUBBoS benchmark in the setup shown in
Fig. 4(a), without the co-hosted VMs. We first run a cali-
bration experiment where we vary the number of users from
400 to 4000 with a step size of 400, and observe that the ap-
plication reaches a performance bottleneck at around 3000
concurrent users. This can be seen in Fig. 5(a) in the satura-
tion of the application throughput and the near 100% CPU
utilization of the “Web” VM. We then run a “random” work-
load for 400 minutes, where the number of users changes
randomly between 400 to 4000. A sampling interval of 1
minute is used in the sensor module, resulting in 400 mea-
surement samples that are used for the evaluation in this

section. Each sample is a high-dimensional vector, consist-
ing of the following 7522 metrics: 8 application performance
metrics as shown in Table 3, 7226 host metrics from the four
ESX hosts, and 288 VM metrics from the six VMs.

4.1 Evaluation of phase 1
For evaluation purposes, instead of limiting the number of

candidate metrics from phase 1 as described in Algorithm 1,
we report the number of candidate metrics selected by the
phase 1 algorithm as a function of two threshold values —
a lower bound, rLB , on the absolute value of the correlation
coefficient, and an upper bound, pUB , on the p-value of the
observed correlation.

We use throughput as the perf metric and the 7226 ESX
host metrics as the raw metrics. The number of selected host
metrics is shown in Fig. 5(b). For example, for rLB = 0.8
and pUB = 0.1, a total of 132 metrics are selected out of
the 7226 raw metrics. That means these 132 metrics (or
2% of the raw metrics) are correlated with the observed
throughput with rm ≥ 0.8 and pm ≤ 0.1. We can also infer
that 98% of the raw metrics are not highly correlated with
the application throughput. The number of selected metrics
is reduced as the minimum correlation level increases or as
the maximum p-value decreases. The latter indicates an
increased level of confidence in the observed correlation.

We observe similar trends when MRT or RT95p is chosen
as the perf metric. We also observe similar trends when we
use throughput or MRT as the perf metric and the 288 VM
metrics as the raw metrics.

4.2 Evaluation of phase 2
To evaluate the phase 2 algorithm, we set the number of

candidate metrics from phase 1 to be 100 and the minimum
incremental R2 improvement in phase 2 to be 0.01. For illus-
tration, we provide an example of building a linear regression
model for MRT in Figure 5(c), which shows the R2 value for
the model when one, two and three predictor metrics are se-
lected sequentially. The phase 2 algorithm first chooses the
network UDP active status of the Web VM on the ESX1
host (V Web UDP Act), resulting in an R2 value of 0.668
for the single-metric linear MRT model. The algorithm then
adds the second metric, the percentage of CPU Used of the
Web VM on the ESX1 host (H ESX1 Web vCPU Used),
increasing the R2 value of the model to 0.731. After adding
the third metric, the total CPU Used on the ESX1 host
(H ESX1 CPU TotalUtil), the algorithm stops searching
because the model quality improvement falls below the min-
imum incremental R2 improvement threshold (0.01) when a
4th metric is added.

To evaluate the impact of the phase 2 metric selection al-
gorithm, Fig. 5(d) reports the R2 values for different model
types in two scenarios: (1) using the 100 candidate met-
rics from phase 1 directly as the predictor metrics (without
phase 2 selection), and (2) using the smaller number of pre-
dictor metrics selected from phase 2. For the first three
model types (linear regression, k-NN, regression tree), the
additional metric selection in phase 2 helps improve the ac-
curacy of the final model.

4.3 Sensitivity analysis
The effectiveness of the two-phase algorithm depends on

the values of the tunable parameters, including (1) the num-
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Figure 5: Evaluation results for 2-phase metric selection and model building algorithm

ber of selected candidate metrics from phase 1 (Ncan), (2)
the type of model F chosen in phase 2, and (3) the minimum
incremental R2 improvement in phase 2 (R2

inc). We evalu-
ate the impact of these parameters in two aspects — model
accuracy and computation overhead. We assume that MRT
is chosen as the perf metric.

Firstly, we fix the minimum incremental R2 improvement
in phase 2 at 0.01, and vary the other two tunable parame-
ters. More specifically, for each of the four types of models,
we limit the number of candidate metrics from phase 1 at
[5, 10, 25, 50, 100, 200, 400, 800], and run the phase 2 algo-
rithm to build a model for the MRT. In both experiments, a
10-fold cross validation [29] is used to compute the R2 value
for each model type.

Figure 5(e) shows the R2 value of the final model as a
function of the number of candidate metrics from phase 1
(in log scale). Different lines represent different model types.
We make the following observations: (1) As more metrics
are selected in phase 1, the model accuracy from phase 2
is generally improved for all four model types; (2) All the
models achieve reasonably good accuracy (R2 > 0.8) with
25 or more candidate metrics from phase 1, although the
linear model’s R2 value is slightly lower than those from the
nonlinear models.

Figure 5(f) shows the computation time of both phase 1
and phase 2 as a function of the number of candidate met-
rics from phase 1 (in log scale). Different lines for phase 2
represent different model types. We make the following ob-
servations: (1) The phase 1 overhead increases slowly with
the number of candidate metrics; (2) For all four model
types, the overhead in the phase 2 algorithm grows as we
increase the number of candidate metrics from phase 1; (3)
The boosting model has the most overhead, and the linear
regression model has the least.

For demonstration purposes, we also run the phase 2 algo-
rithm directly on all the raw metrics, without initial metric
selection in phase 1. The result shows that, for all the model
types, the metric selection in phase 1 helps achieve better
accuracy in the final model as well as reducing the overhead
in model building in phase 2.

Secondly, we run similar experiments to evaluate the ef-
fect of the minimum incremental R2 improvement in phase
2 (R2

inc). We omit detailed results due to space constraints.
As the threshold value becomes smaller, we have better
model accuracy and more computational overhead in phase
2. We find that the threshold value of 0.01 for R2 improve-
ment strikes a good balance between better accuracy and
lower overhead. Larger values require larger model-accuracy
improvements to add metrics to the model, pre-empting the
consideration of additional metrics.

Finally, we choose the linear regression model as our de-
fault model because it has the best human-interpretability
and lowest overhead with only slightly lower accuracy rela-
tive to the nonlinear models. In spite of better accuracy, the
regression tree is not a good candidate because (1) if we use
shallow trees, the marginal ratio between performance and
predictor metric is zero at most points, making it unable
to infer which system metric is the bottleneck, and (2) if we
use deep trees, the over-fitting issue prevents the model from
generalizing faithfully. The k-NN and boosting approaches
are also not preferred because they are harder to interpret
directly due to model complexity.

5. EVALUATION OF MODEL UPDATING
MODULE

To evaluate the model updating module of vPerfGuard,
we run the tool against four typical, dynamic workload sce-
narios a cloud service provider such as Alice may experience,
including an application performance bottleneck caused by
a surge in the workload intensity, and performance degra-
dation in one application due to the CPU, memory, or disk
I/O contention from co-hosted VMs (aka. noisy neighbors).

Our evaluation criteria focus on three aspects of the per-
formance models generated: (1) prediction: whether a
model provides an accurate prediction of the application per-
formance using the selected system metrics; (2) diagnosis:
whether the selected system metrics point to the correct per-
formance bottlenecks, including the critical application com-
ponent, the resource under contention, or the host where the
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Figure 6: Experimental results for the workload surge scenario

0 20 40 60 80 100 120
1000

1100

1200

1300

1400

1500

Time intervals (60 seconds each)

N
um

be
r o
f u
se
rs

 

 

0

2

4

N
um

be
r o
f a
ct
iv
e 
cp
ul
oa
d 
V
M
s

Number of users
Number of active cpuload VMs

(a) Workload under test

0 20 40 60 80 100 120
800

900

1000

1100

1200

1300

Time intervals (60 seconds each)

Th
ro
ug
hp
ut
(r
eq
/s
)

 

 

Real
Predicted

(b) Real and predicted throughput

0 20 40 60 80 100 120
0

100

200

300

400

500

Time intervals (60 seconds each)

M
ea
n 
re
sp
on
se
 ti
m
e(
m
s)

 

 

Real
Predicted

(c) Real and predicted mean response time

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Time intervals (60 seconds each)

M
ea

n 
re
sp
on

se
 ti
m
e(
m
s)

 

 

0

10

20

30

40

50

%

MRT
H_ESX1_Web_vCPU_Ready

(d) MRT and top selected metric

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time intervals (60 seconds each)

 

 

p-value

R
2

threshold

(e) Model accuracy for throughput

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time intervals (60 seconds each)

 

 

p-value

R
2

threshold

(f) Model accuracy for mean response time

Figure 7: Experimental results for the CPU contention scenario

contention occurred; (3) adaptivity: whether the model is
adaptive to the changes in relationship between application
performance and system resources. Note that we do not ex-
pect the human analyst to interpret the models directly. We
will show a graphical user interface in the next section to il-
lustrate how the top suspicious metrics and the associated
coefficients can be presented to the user for inspection.

The following subsections describe the experimental set-
tings of the four scenarios, present the detailed results in
Figures 6-9, and summarize the evaluation in Tables 4 and 5.
In particular, each figure is organized as follows. Fig. (a)
shows the workload(s) used, Fig. (b) and Fig. (c) compare
the real and the model-predicted throughput and mean re-
sponse time (MRT), respectively, Fig. (d) shows the MRT
and the top selected metrics in the MRT model, and finally,
the model accuracy measures including the p-value and the
R2 value for the throughput and the MRT models are shown
in Fig. (e) and Fig. (f), respectively.

5.1 Workload surge

A. Experimental settings.
In this scenario, we use the testbed in Fig. 4(a) with the

RUBBoS application only (i.e., no co-hosted VMs). The

browsing-only workload mix is run for an hour (60 time in-
tervals), with a surge in the workload intensity that goes
from 1000 to 2300 users (with small, random variation) and
lasts from the 21st to the 40th intervals (Fig. 6(a)).

B. Evaluation.
According to the experimental setting and our previous

knowledge from Fig. 5(a), the mean response time increases
during the workload surge period due to the CPU resource
bottleneck in the Web tier of the RUBBoS application. As
shown in Fig. 6(e) and Fig. 6(f), the online module detects a
change-point multiple times, resulting in 6 throughput mod-
els and 3 MRT models for the duration of the experiment,
such that we maintain a high confidence in the learned mod-
els (p-value ≥ 0.05). The throughput models starting from
the 1st, 24th, 32nd, 38th, 44th and 51st intervals are:

THR = 0.19× V CJDBC Int− 519.60,

THR = 0.05×H ESX1 Web vSwitch PcksTrans/s

+ 36.25

THR = 28.53×H ESX2 App2 vSwitch MBitsRec/s

+ 22.53× V DB2 CPU Sys + 358.79
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THR = 16.16×H ESX2 CPU Idle Overlap + 1277

THR = 0.08× V Web ContextSwitch− 202.37

THR = 28.53×H ESX2 App2 vSwitch MBitsRec/s

+ 113.75

The MRT models for the mean response time starting from
the 1st, 25th and 54th intervals are:

MRT = 2.17×H ESX1 CPU TotalUtil − 20.91

MRT = −8.10×H ESX1 Web CPU Idle + 545.10

MRT = 0.49× V CJDBC UDP Act− 162.75

We make the following observations. (1) The models are
predictive of the application performance most of the time
according to Figs. 6(b), 6(c) and Table 4. The signs of
the coefficients in each THR or MRT model make sense,
e.g., when throughput increases, interrupts, CPU utiliza-
tion, context switches and network packets transmitted or
received also increase. (2) The selected system metrics in
all the THR models do not point to the correct cause of the
performance degradation. Three of the six models choose
network attributes as the top metrics, and two other models
choose system interrupts or context switches as the top met-
rics. The selected system metric H ESX1 Web CPU Idle
in the second MRT model as shown in Fig. 6(d) directly
points to not only the bottleneck host (ESX1), but also the
bottleneck VM (Web) and the critical resource (CPU).

Following the above observations, we conclude that, (1)
both THR and MRT models have good performance-prediction
capability, and THR models have better prediction accuracy
due to its linear relationship with many system metrics, and
(2) THR models are not suitable for diagnosis, and MRT
models have good diagnosis capability during the periods of
performance bottlenecks. This observation is also validated
in the next three scenarios and in [22]. When the application
experiences a performance bottleneck, the THR remains al-
most constant, making it harder for our correlation-based
selection to identify critical system metrics. At the same
time, a small change in a critical system metric may lead to
a large change in the MRT, making it easier for our algo-
rithm to identify the correlation. For conciseness, we do not
show the throughput models in the following scenarios, and
we show only the MRT models during the periods of perfor-
mance degradation to illustrate their diagnosis capability.

The MRT models are also adaptive to the surge in the
workload, with only 3 intervals of delay in response. As
Fig. 6(f) shows, after the workload surge at the 21th inter-
val, the application MRT increases dramatically. It takes
3 intervals for the p-value of the first MRT model to drop
below the threshold value of 0.05. The vertical line in the
figure (24th interval) indicates where the first change-point
is detected, after which the Web VM’s CPU idle time is cho-
sen as the key metric for learning a new MRT model starting
from the next interval.

5.2 CPU contention

A. Experimental settings.
In this experiment, we run the RUBBoS benchmark with

a workload intensity randomly varying between 1100 and
1300 users, as shown in Fig. 7(a). To create a CPU con-
tention scenario, we use the four co-hosted VMs, cpuload1
to cpuload4, as noisy neighbors, to share the CPUs on the

ESX1 host with the RUBBoS Web VM (see Fig. 4(a)). Each
cpuload VM is configured with 2vCPUs, 1GB vRAM, and
runs a “CPU eater” workload that consumes the vCPUs at
a specified utilization level for a specified time period. We
let the CPU utilization of each VM vary periodically be-
tween 10% and 40% with a period of 2 minutes. All the
four co-hosted VMs are idle for the initial 20 time intervals.
We then start the workload in cpuload1 and cpuload2 at the
21st interval, and start cpuload3 and cpuload4 at the 41st
interval. The workloads in these VMs are idle again at the
81st and the 101st intervals (Fig. 7(a)).

B. Evaluation.
According to the experimental setting, the application’s

mean response time starts to increase after the 21st inter-
val due to the CPU resource bottleneck on the ESX1 host,
caused by the active workloads in the four cpuload VMs.
The MRT models starting from the 28th, 47th, 76th and
91st intervals are:

MRT = 1.97×H ESX4 DB1 Mem Active

+ 1.13×H ESX1 CPU Util− 89.7

MRT = 752.76×H ESX1 CPULoad 1MinuteAvg

− 562.87

MRT = 12.48×H ESX1 Web vCPU Ready − 25.01

MRT = 6.38×H ESX1 Web vCPU Ready + 48.72

We make the following observations. (1) These MRT mod-
els have good prediction capability as shown in Figs. 7(b),
7(c) and Table 4. (2) These models have good diagnosis ca-
pability because they all point to the correct performance
bottleneck. For example, one of the top system metrics,
H ESX1 Web vCPU Ready, as shown in Fig. 7(d), speci-
fies not only the bottleneck host (ESX1), but also the bot-
tleneck VM (Web) and the critical resource (CPU). (3) The
models are adaptive to the increased CPU load from the
noisy neighbors as shown in Fig. 7(f). After two of the cpu-
load VMs become active in the 21th interval, it takes the
model updating module 6 intervals to detect the change and
build a new model.

5.3 Memory contention

A. Experimental settings.
In this experiment, we run the RUBBoS benchmark with a

workload intensity randomly varying between 900 and 1100
users, as shown in Fig. 8(a). Because the size of the MySQL
database is 498.88MB, the total size of database files on the
two database VMs, i.e., DB1 and DB2, are approximately
1GB. We use a co-hosted VM, memload (configured with
4vCPUs, 1GB vRAM), as the noisy neighbor, to run on the
ESX4 host along with DB1 and DB2 (see Fig. 4(a)). To
create memory contention, we configure the ESX4 host with
4GB of physical memory. Since about 3GB of memory is
reserved by the hypervisor, only 1GB of memory is available
for the three VMs (DB1, DB2, and memload) to share.
As a result, the total memory commitment during these 40
intervals is much more than the shared 1GB memory.

For the initial 40 intervals, the memload VM remained
idle, so the total memory commitment on ESX4 is close to
1GB. Between the 41st and the 80th intervals, a four-thread
“memory eater” application is started inside the memload
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VM. Each thread in the application allocates 120-180MB
memory and randomly touches the allocated pages to keep
them actively used. As a result, the total memory com-
mitment during these 40 intervals is much more than the
shared 1GB memory. When the RUBBoS DB servers can-
not access enough physical memory, more requests require
disk accesses, reducing throughput (Fig. 8(b)) and increas-
ing response times (Fig. 8(c)).

B. Evaluation.
The MRT models starting from the 47th and 52th inter-

vals are:

MRT = −0.75×H ESX4 Network PksReceived/sec

+ 3072.86

MRT = −25.38×H ESX4 DB1 Mem GrantedMB

+ 4876.55

We make the following observations. (1) The models have
reasonably good prediction capability as shown in Figs. 8(b),
8(c) and Table 4. (2) The second model for mean response
time has good diagnosis capability, since the top system met-
ric, H ESX4 DB1 Mem GrantedMB as shown in Fig. 8(d),
indicates not only the bottleneck host (ESX4), but also to
the critical resource (Memory). (3) The models are adaptive
to the increased memory load in the system with 10 intervals
of delay as shown in Fig. 8(f).

5.4 Disk I/O contention

A. Experimental settings.
In this experiment, we run two instances of the TPC-H

benchmark in parallel. A foreground database VM (TPCHF )
and a background database VM (TPCHB) are co-located
on the ESX5 host, as shown in Fig. 4(b). Since the total
database size is 4571MB, which cannot fit into the VM’s
2GB vRAM, some of the queries much involve disk I/O.
Fig. 9(a) shows the workloads used in both VMs with a 6
minute sampling interval. The workload for TPCHF has the
number of users randomly varying between 3 and 4 through-
out the experiment. The background VM, TPCHB , is idle
for the initial 20 intervals. Between the 21st and the 40th in-
tervals, the TPC-H workload is activated inside the TPCHB

VM, a noisy neighbor, with the number of users randomly
varying between 1 and 2.

B. Evaluation.
The MRT model between the 25th and 49th intervals for

the TPCHF application is:

MRT = 180.62×H ESX5 PhysicalDisk Writes/s

+ 29.24

We make the following observations. (1) The models can
capture the main trend in the application MRT as shown
in Figs. 9(b), 9(c) and Table 4. (2) The top system met-
ric H ESX5 PhysicalDisk Writes/s selected, as shown in
Fig. 9(d), points not only to the bottleneck host (ESX5),
but also the critical resource (disk I/O). Note that database
servers often write temporary files (e.g., sorting files) to the
disk when the physical memory is scarce. (3) The models
are adaptive to the occurrance of the disk I/O bottleneck
with only 3 intervals of delay as shown in Fig. 9(f).

5.5 Evaluation summary
For the four dynamic workload scenarios that we test, we

summarize the evaluation results for the model prediction
and the model diagnosis accuracies of vPerfGuard.

A. Prediction.
Besides showing the model prediction accuracy in R2 over

a sliding window of samples in the previous figures, we also
report in Tab. 4 the statistics (mean, standard deviation,
50th percentile, 90th percentile) of the relative error for
the individual THR and MRT samples, i.e., (|(predicted −
real)/real|). In the last column, we also show the overall
relative error as (sum of |predicted − real|)/(sum of real).
We can see that vPerfGuard achieves reasonably good pre-
diction accuracy. We also notice that the relative error for
THR is much smaller than that for MRT in all four scenar-
ios except the disk I/O contention scenario. This validates
our earlier observation in Sec. 5.1 that linear models capture
the relationship between application throughput and system
metrics well in most cases.

Table 4: Relative error for THR and MRT
Scenarios(perf) Mean(std) 50p 90p overall
Workload(THR) 0.10(0.20) 0.01 0.53 0.10
Workload(MRT) 0.41(0.64) 0.12 0.96 0.35

CPU(THR) 0.01(0.01) 0.01 0.03 0.01
CPU(MRT) 0.29(0.26) 0.23 0.64 0.27

Memory (THR) 0.12(0.16) 0.06 0.33 0.10
Memory (MRT) 0.51(0.45) 0.25 0.95 0.37
Disk I/O(THR) 0.95(3.32) 0.11 1.58 0.24
Disk I/O(MRT) 0.29(0.39) 0.16 0.70 0.39

B. Diagnosis and adaptivity.
Table 5 shows the diagnosis accuracy of the MRT models

using precision and recall measures from pattern recognition
literature, computed only for the performance bottleneck pe-
riod. In our context, we define precision to be the fraction
of all the selected metrics that are relevant (i.e., point to the
correct bottleneck); and if a metric appears in n intervals,
it’s counted n times. We define recall to be the fraction of
all the intervals in which the selected metrics are relevant;
and for intervals with multiple selected metrics, that inter-
val is counted using only the fraction of the relevant metrics.
We report precision and recall for the detection of bottle-
neck resource and bottleneck host, separately. We use the
CPU contention scenario as an example where the length
of the bottleneck period is 80 intervals In intervals 21-27,
the model contains an irrelevant metric; in intervals 28-46,
the models contains two metrics with one being relevant;
in the remaining intervals the model contains one relevant
metric. Hence, precision=(19+54)/(7+19×2+54) = 74%,
and recall=(19/2 + 54)/80 = 79%. In the last column, we
also report the delay in change-point detection in number
of intervals. We can see that models built by vPerfGuard
achieve good diagnosis accuracy in terms of precision and
recall, with short delays in model updates.

Table 5: Diagnosis summary

Scenarios
Precision Recall

Delay
resource host resource host

Workload 100% 100% 100% 100% 3
CPU 74% 74% 79% 79% 6

Memory 73% 85% 73% 85% 10
Disk I/O 80% 100% 80% 100% 3
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Figure 8: s for the memory contention scenario
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Figure 9: Experimental results for the disk I/O contention scenario

5.6 Discussion

A. Adaptation overhead.
In Table 6, we show the mean and standard deviation of

the overhead in running vPerfGuard online for four dynamic
scenarios, using 10 consecutive samples for both model build-
ing and change-point detection. The average overhead is
67ms (standard deviation = 37ms) for the sensor module
to pull the application performance metrics and the system
metrics from the hosts and the VMs. The metric selection
and model building module takes an average of 221ms, the
longest among all. The average model testing time is 54ms,
and the average hypothesis testing time is 5ms.

Table 6: Online model adaptation overhead(mean(std))

Metrics Building Testing Hypothesis
collection(ms) time(ms) time(ms) testing(ms)

67(37) 221(148) 54(23) 5(18)

B. Sensitivity analysis.
We perform a sensitivity analysis using different change-

point detection criteria (p-value < 0.05 or R2 < 0.8) or a
different number of samples to explore the tradeoff between

Table 7: Sensitivity analysis
Method average # of models # of metrics

(# of samples) R2 (correct) (correct)
p-value (10) 0.62 4 (4) 5(4)
p-value (20) 0.62 3 (2) 4 (2)
p-value (30) 0.76 3 (0) 3 (0)

R2 (10) 0.74 49 (32) 56 (32)
R2 (20) 0.73 40 (18) 45 (18)
R2 (30) 0.80 38 (12) 38 (12)

prediction accuracy and diagnosis accuracy. In Table 7,
we summarize the average positive R2 value, the number
of models generated, the number of models indicating the
correct bottleneck, the total number of selected metrics in
all the models, and the number of metrics identifying the
correct bottleneck for the CPU contention scenario, during
the contention period. As we increase the number of sam-
ples, the average R2 increases (as one would expect), but
the percentage of correct models or metrics decreases. For
change-point detection, if a criterion of R2 < 0.8 is used
instead of using hypothesis testing with p-value < 0.05, we
may generate too many models (due to over-fitting) for the
human analyst to reason about. This result indicates that
using hypothesis testing is a more robust method for change-
point detection than using the R2 value directly.
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6. VISUALIZATION OF RESULTS
We introduce a primitive graphic user interface (GUI) for

visualization of the results from vPerfGuard. The GUI com-
sists of four panels: a configuration tab, a real-time tracking
tab, a real-time analysis tab, and a real-time diagnosis tab.
The configuration tab is used to configure the necessary pa-
rameters for vPerfGuard to operate. The real-time track-
ing tab composes of two windows: one shows the real and
the predicted performance metric values for comparison; the
other shows the corresponding p-value and R2 value. Next
we describe the other two tabs using the workload surge
scenario as an example.

The real-time analysis tab (shown in Figure 10) presents
the selected metrics and models in real time. The top-left
window shows the selected metrics from phase 1 with ab-
solute correlation coefficient in descending order. If a high-
lighted metric is double-clicked, the time series of the met-
ric and the application performance metric will be shown
in the top-right window. In the same tab, the bottom-left
window shows the series of models built in phase 2 with
the top system metrics, Because an abstract model may be
hard to interpret by a cloud service provider, when a high-
lighted metric is double-clicked, the GUI translates the ab-
stract metric name into human readable description at the
top of the window. At the same time, the time series of the
metric and the application performance metric are displayed
in the bottom-right window.

CPU idle time of VM Web on host ESX1 

14:01 14:08 14:15 14:22 14:29 14:37 14:44 14:51 14:580

100

200

300

400

500

600

700

M
ea

n 
re

sp
on

se
 ti

m
e(

m
s)

Time

 

 

0

20

40

60

80

100

%

MRT
H_ESX1_Web_Cpu_Idle

14:01 14:08 14:15 14:22 14:29 14:37 14:44 14:51 14:580

100

200

300

400

500

600

700

M
ea

n 
re

sp
on

se
 ti

m
e(

m
s)

Time

 

 

18

20

22

24

26

28

%

MRT
H_ESX1_Cpu_TotalUtil

2012-04-12, 14:00:00 
Metrics from phase 1 with absolute correlation 
coefficient:
0,H_ESX1_CPU_TotalUtil,0.9004
1,H_ESX1_GroupCpu_idle,0.8825
2,H_ESX1_CPU_ProcessorTime,0.8801
3,H_ESX1_NetworkPort_vSwitch0_Pkt/sec,0.8627
4,H_ESX1_NetworkPort_vSwitch0_Web_Pkt/sec, 
0.8626

Double click to show more details

2012-04-12, 14:00:00 
Performance model from phase 2:
MRT = 2.17*H_ESX1_CPU_TotalUtil-20.91;
2012-04-12, 14:24:00
Performance model from phase 2:
MRT = -8.10*H_ESX1_Web_CPU_Idle 
+545.10

Double click to show more details

Figure 10: GUI for real-time analysis
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Figure 11: GUI for real-time diagnosis

The real-time diagnosis tab (shown in Figure 11) points to

possible performance bottleneck locations. We utilize vCen-
ter map [9], a visual representation of the vCenter Server
topology that captures the relationships between the virtual
and physical resources managed by the vCenter Server. The
selected system metrics are overlayed on top of the associ-
ated components in the system. We use red fonts to locate
the metrics from phase 1 and red star icon to locate the met-
rics from phase 2, respectively. As a result, this tab offers
a cloud service provider better visibility into the potential
bottlenecks in a complex and distributed environment.

One useful feature we’d like to implement is allowing a
user to manually add a metric to the model, by right click-
ing on a specific metric. This offers a cloud service provider
an interface to provide inputs to the diagnosis process by ap-
plying domain knowledge. While model-driven performance
diagnosis is useful in highlighting potential bottlenecks, in-
corporating domain knowledge from an experienced human
analyst may lead to even better results in the timely determi-
nation of the real root causes of the performance problems.

7. RELATED WORK
In this section we survey prior work in performance diag-

nosis in two categories: knowledge-lean analysis of passive
measurements and model-driven analysis.

Several projects build on low-overhead end-to-end trac-
ing (e.g., [11, 12, 16, 31, 21]), which captures the flow (i.e.,
path and timing) of individual requests within and across the
components of a distributed system. For example, Aguil-
era et al. [11] develop two different algorithms, i.e., RPC
messages based and signal-processing based ones for infer-
ring the dominant causal paths through a distributed sys-
tem. Magpie [12] extracts the resource usage and control
path of individual requests in a distributed system and tags
incoming requests with a unique identifier and associating
resource usage throughout the system with that identifier.
Chen et al. [16] describe Pinpoint, a system for locating the
components in a distributed system most likely to be the
cause of a fault. vPerfGuard is similar to these systems in
that it relates application performance to VMs and hyper-
visors that host application components. The key difference
is that we consider metrics collected within VMs and hyper-
visors rather than communication patterns among compo-
nents. Therefore, our approach is complementary to theirs.

Other recent research seeks to adopt a performance model
that connects application performance with system metrics.
A performance model may be constructed using a white-box
approach based on human expert experience and domain
knowledge [28, 18, 15, 32] or a data-driven approach [17]
where a model is built automatically using statistical learn-
ing techniques. Compared with a a white-box performance
model, a data-driven model assumes little or no domain
knowledge; it is therefore generic and has potential to apply
to a wide range of systems and to adapt to changes in the
system and the workload. Shen et al. [32] present a perfor-
mance debugging approach based on a whole-system perfor-
mance model according to the design protocol/algorithms of
the target system. Bod́ık et al. [15] present a methodology
for automating the identification of performance crises using
a fingerprint to represent the state of a datacenter. Tan et
al. [34] present PREPARE which can predict recurrent per-
formance anomalies by combining attribute value prediction
with supervised anomaly classification methods. However,
the approach in [32] requires deep understanding of I/O sys-
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tems while the approach in [15] and [34] currently only work
with recurrent anomalies. Compared with these prior ap-
proaches, vPerfGuard is more flexible to capture emergent
behavior or new relationships inside a dynamic cloud envi-
ronment that have not been seen before due to its data-
driven nature. Our work complements theirs by helping
identify performance bottlenecks using models. Probably
the work closest to ours is [17] where Cohen et al. also
use a data-driven approach to build a tree-augmented naive
(TAN) Bayesian network model to learn the probabilistic re-
lationship between the SLO state and system metrics. How-
ever, their models are built offline after an SLO violation
has occurred to identify performance bottlenecks. Instead,
we use an online approach for continuous adaption of our
performance models.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose vPerfGuard, an automated model-

driven framework for application performance diagnosis in
consolidated cloud environments. The key difference of vPer-
fGuard from existing approaches is the application of a model-
driven approach. First, compared with existing white-box
performance diagnosis [28, 32, 15, 24] that relies heavily
on human expert experience and domain knowledge, vPerf-
Guard automatically construct models to bridge the applica-
tion performance and system resources. Second, compared
with the offline diagnosis approach in [17], vPerfGuard adap-
tively updates the models to accommodate changes in highly
dynamic consolidated cloud environments. The model-driven
approach not only helps a cloud service provider track the
application performance using models, but also presents her
with suspicious system metrics that can lead to the root
cause of the performance problem.

Recall Bob’s performance issue (Section 1). Running vPer-
fGuard with his application constructs a model mapping
system metrics to application performance. Alice can track
Bob’s application performance with models and differenti-
ate between performance problems that may be resolved by
the cloud user and those that may have to be resolved by
the cloud provider (e.g., contention due to noisy neighbors).
The models also allow for richer automated diagnostics to be
built on top of them and provide a solid foundation for con-
structing (and understanding) automatic performance con-
trol systems, two active areas of research for our future work.
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