
Towards Building Performance Models for Data-intensive
Workloads in Public Clouds

Rizwan Mian, Patrick Martin,
Farhana Zulkernine
School of Computing
Queen’s University

Kingston, Ontario, Canada, K7L3N6

{mian, martin, farhana}@cs.queensu.ca

Jose Luis Vazquez-Poletti
Departamento de Arquitectura de Computadores y

Automatica
Universidad Complutense de Madrid

28040. Madrid, Spain

jlvazquez@fdi.ucm

ABSTRACT

The cloud computing paradigm provides the “illusion” of infinite

resources and, therefore, becomes a promising candidate for large-

scale data-intensive computing. In this paper, we explore

experiment-driven performance models for data-intensive

workloads executing in an infrastructure-as-a-service (IaaS)

public cloud. The performance models help in predicting the

workload behaviour, and serve as a key component of a larger

framework for resource provisioning in the cloud. We determine a

suitable prediction technique after comparing popular regression

methods. We also enumerate the variables that impact variance in

the workload performance in a public cloud. Finally, we build a

performance model for a multi-tenant data service in the Amazon

cloud. We find that a linear classifier is sufficient in most cases.

On a few occasions, a linear classifier is unsuitable and non-linear

modeling is required, which is time consuming. Consequently, we

recommend that a linear classifier be used in training the

performance model in the first instance. If the resulting model is

unsatisfactory, then non-linear modeling can be carried out in the

next step.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques; H.2.4

[Database Management]: Systems – query processing,

transaction processing, concurrency.

Keywords

Performance Model, Performance Variables, Prediction

Techniques, Multi-Tenancy.

1. INTRODUCTION
The pay-as-you-go flexibility and the absence of an up-front

commitment in clouds are attractive to new businesses or

companies seeking to lower their operational costs or wishing to

experiment with new applications. Force.com, for example,

currently supports over 55,000 organizations by hosting their

applications and data on shared resources as tenants [35]. Tenants

operate in virtual isolation from one another. The organizations

are allowed controlled access to their objects. Further, they can

use and customize their tenants, while the data and customizations

remain secure and insulated from other tenants. Each tenant can

service multiple workloads, and a workload can access multiple

tenants with appropriate permissions. In our case, the tenants exist

in a public cloud, which offers its infrastructure and computing

resources to the general public over the internet.

Predicting the workload behaviour sets the expectations for

execution time and cost. In particular, this enables more reliable

guarantees towards service level agreements (SLA) prior to any

workload execution. Knowing the workload behaviour a priori is

also very useful for many administrative tasks such as capacity

planning, admission control and effective scheduling of

workloads.

We see a performance model as a key component when predicting

the cost of workload execution in the clouds. We propose a

framework [18] that uses search algorithms, and associated

performance and cost models to minimize the cost of executing

workloads in a cloud. A search algorithm in our framework hunts

for a suitable resource configuration given a workload and an

objective such as minimal dollar-cost. It employs a cost model to

estimate the expense of a resource configuration, which in turn

uses a performance model to predict the workload behaviour on

the resource configuration.

In our previous work, we used a Queuing Network Model (QNM)

as a performance model [19]. We found that the response times

for queries on a Virtual Machine (VM) as predicted by simple

single server centre models, varied by as much as 70% from the

measured response times. A simple model does not capture the

impact on the workload performance of the interactions among

different query types. Developing a more detailed QNM for a VM

is not feasible because of the difficulties in acquiring detailed

performance parameters in a public cloud environment. Further,

high performance variability in clouds poses a great challenge for

database applications in guaranteeing SLAs [25].

In this paper, we explore an experiment-driven approach for

creating performance models for data-centric workloads on

Infrastructure-as-a-Service (IaaS) public clouds such as the

Amazon EC2 [7], which appeared around 2006. These clouds

pose unique challenges due to multi-tenancy, heterogeneity of the

virtual machine types, non-linear changes in resources and the

interplay among mixed workloads. Serving multiple tenants

increases: (a) competition among different tenants over the shared

resources (like memory), and (b) interference amongst the

concurrently executing requests. We believe that our

experimental-based approach is particularly suited to the

variability of cloud environments. Our performance models

predict throughputs for transactions, and response times for

queries. We enumerate the variables that impact variance, but

limit the scope of our performance models by accounting for a

subset of these variables. Furthermore, we identify different data

patterns in the measurements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright © 2013 ACM 978-1-4503-1636-1/13/04...$15.00.

259

We also compare different prediction techniques for their

suitability as a base classifier, and choose the most promising one.

We find that linear classifiers are suitable for most request types

and are fast to build and validate. They require less involvement

on a developer’s part and can often be employed straight out-of-

the-box with default parameters in a commonly used machine

learning toolkit such as Weka [13]. However, the results are

unsatisfactory where there are non-linear trends in the

performance data. In such cases, we explore non-linear modeling

methods, which require choosing a suitable kernel and searching

for appropriate parameter values. The search time can be in the

order of hours, which becomes prohibitive for large number of

request types. As a result, we recommend that a linear classifier

be used in training the performance model in the first instance. If

the resulting model is unsatisfactory, then the non-linear modeling

can be carried out as the next step. In both cases, the models

obtained can be serialized into java bytestream, and used by other

applications [1].

The paper is structured as follows. We survey related work in

Section 2. The performance variables are discussed in Section 3.

We customize the typical experiment-driven model building

approach, determine the suitable number of samples to build a

representative performance model, and compare different

prediction techniques in Section 4. Section 5 contains evaluation

of the performance model. We choose diverse request types from

three tenant databases, and justify our choice; identify different

data patterns observed during the construction of the performance

models; and present the validation results with a linear classifier.

Section 6 discusses non-linear modeling. We discuss the

evaluation results in Section 7. Finally, we present the summary

and conclusions in Section 8.

2. RELATED WORK
Analytical performance models have enjoyed great popularity in

the database management systems (DBMSs) area. Weikum et al.

[34] provide a survey of the advances in autonomic tuning in

database technology. They conclude that self-tuning should be

based on a feedback control loop and should use mathematical

models with proper deployment into the system components.

Abouzour et al. [2] use analytical modeling to set the multi-

programming level (mpl) of a DBMS for improved throughput.

Analytical models have also been used for answering “what-if”

questions to study the effects of system changes, such as system

upgrades and service migrations [27]. Analytical models,

however, are hard to evolve with the underlying system and make

simplifying assumptions that make them oblivious to the

interactions of the dynamically changing workloads and their

effects [26]. These effects are amplified by the variance in the

cloud [19]. Therefore, there is increasing interest in experiment-

driven machine learning and statistical modeling.

Ganapathi et al. [11] predict multiple performance metrics for

individual query types with less than 20% error for 85% of the test

cases. Their work however, focuses on single query types and

ignore interactions and query mixes. Gupta et al. [12] study the

problem of predicting the execution time of a query on a data

warehouse with a dynamically changing workload. They use a

machine learning approach that takes the query plan, combines it

with the observed load vector of the system and uses the new

vector to predict the execution time of the query.

Courtious et al. [10] propose a prediction technique, called

regression splines, that builds a non-linear regression function

piecewise using a set of linear functions. In addition, they

automate building of a regression function up to a desired

accuracy by performing progressive sampling and

experimentation. They evaluate their work by predicting CPU

demands of an event based server. We find their idea of

automation useful but consider standard predictive models

available in Weka in our case.

Some recent papers view the transaction mix as the combination

of different transactions that execute during a time interval

window without considering which of these transactions execute

simultaneously. This is fundamentally different to our notion of a

concurrent request mix, where request instances execute

simultaneously at any given time. Transaction mix models have

been used for capacity planning [40], workload management [39],

preempting congestion [38] and detecting anomalies in

performance [17].

Much of the above work does not consider interactions between

the concurrently executing requests, which can have a significant

impact on database system performance [3]. Ahmad et al. [4]

develop an interaction-aware query scheduler that targets report-

generation workloads in Business Intelligence (BI) settings. Under

certain assumptions, the schedule found by this scheduler is

within a constant factor of optimal, and consistently outperforms

conventional schedulers that do not account for query interactions.

Ahmad et al. [5] use a combination of an offline statistical model

trained on sample query mixes and an online interaction-aware

simulator to estimate workload completion times. No prior

assumptions are made about the internal workings of the database

system or the cause of query interactions, making the models

robust and portable.

Tozer et al. [28] use a linear regression response time model for

throttling long running queries. A performance model built using

linear regression is unable to model non-linear trends in the

response times of a query. Sheikh et al. [26] propose performance

modeling based on Gaussian Processes, which can model non-

linear trends, update online and reuse prior knowledge.

The performance models used in the above literature are typically

built for workloads accessing a single data tenant. Further, the

performance models usually provide predictions for response time

only, and are validated on a local server or a local VM. In

contrast, our performance model predicts both throughput and

response times for transactional and analytical workloads, and

operates over a multi-tenant data-service. We propose usage of

different classifiers that vary in their modeling scope and

development effort. We believe that this is the first attempt to

build such models in a public cloud.

3. VARIABLES IN BUILDING A

PERFORMANCE MODEL
Cloud components such as CPU, memory and I/O suffer from

high performance unpredictability, especially when compared to a

physical machine in a local network [25]. This is a major problem

in building a performance model for workload execution, which is

used for providing SLAs [19].

Therefore, we discuss some variables that play an important role

in performance variance and their possible values in building a

performance model. As a rule of thumb, the wider the scope of the

performance model, the greater the variance it has to capture, and

the lower is its prediction accuracy. The possible combinations of

these variables in our experimental environment are large so, for

purposes of the presentation, we choose to use combinations that

260

provide us with modestly generic and accurate performance

models. Hence, we acknowledge the variables’ presence but

explore a subset due to practical reasons.

We view a workload as a set of request types, where each request

type has zero or more instances. All request instances are

executed concurrently. Therefore, a workload is synonymous with

a request mix that executes at a data service at any particular time,

and we use them interchangeably. A performance model is trained

and validated against a number of samples, where each sample is

a different workload or request mix.

We consider the following variables when building a performance

model for workloads executing at a data service in a cloud:

1. Workload and tenant diversity: The workload for a tenant

may be entirely Online Transaction Processing (OLTP),

entirely Online Analytical Processing (OLAP) or a mix of

the two. The OLAP queries and OLTP transactions place

significantly different requirements on a data service. The

OLAP queries may take hours to execute, while OLTP

transactions usually complete in a sub-second timeframe. In

reality, a data service is rarely an analytical data source.

Further, multi-tenancy increases the variance in the

behaviour of a data service, since the tenants compete for

shared resources such as memory. In this paper, we build

performance models for any type of workload executing

against a multi-tenant data service.

2. Execution Platform: The system attributes, such as number

of cores, memory and I/O performance, of the cloud VMs do

not vary linearly [6]. Even the servers hosting the same VM

type do not necessarily have the same processor type. For

example, the xlarge VM type in the Amazon cloud is

powered by either a Xeon or an Optron processor. This

amplifies the variance many folds, which can be about 35%

compared to the 0.1% on a local physical machine for the

CPU [25].

Given the non-linearity of the VM types and the

heterogeneity of the processors, the workload behaviour is

likely to be non-linear across VM types and their host

servers. In order to limit the variance, we decide to build

models for specific VM and processor types in this paper.

3. Day of the week: Schad et al. [25] note that the CPU

performance of a VM type also varies by the day of a week.

This increases the variance in the training data for the

performance model. Daily variance can be explicitly

modelled using some additional attributes, say day of the

week, or using techniques like time series. Either approach

comes at the cost of additional complexity. Further, taking

daily measurements is possible but labor-intensive. We want

our performance model to be time independent. However, we

leave the modelling of daily variance for future work. For

now, we overlook the daily variance in building and

validating our performance models.

4. Model specificity: Building a performance model specific to

a subset of workloads reduces the variance in the training

data. Consequently, a workload specific performance model

is more accurate compared to a model built for any type of

workload. However, the building effort is exponential in the

number of workloads in the worst-case scenario. This

becomes excessively brute force and highly synonymous to a

lookup table. Instead, we use stratified sampling over the

workload space to give us a modest coverage. This is

discussed further in Section 4.1.

5. Prediction technique: The performance model can employ a

number of regression methods or base classifiers such as

linear regression or multi-layer perceptron. These classifiers

vary in their ability to capture variance at the cost of training

and runtime complexity. The training complexity places a

requirement on the number of samples required for a

representative model. Meanwhile, the runtime complexity

can undermine the performance model if it is embarrassingly

large. We compare different classifiers in Section 4.5.

4. BUILDING THE PERFORMANCE

MODEL
Our approach is a typical experiment-driven performance

modeling method customized to clouds. It consists of three stages:

(a) sampling the space of possible request types and their

instances for a request mix, (b) collecting data by executing

possible request mixes or samples, and (c) pre-processing data and

building performance models. In addition, we empirically

determine a suitable number of samples for building a

representative performance model, and we compare different

prediction techniques to determine their suitability in our

performance model. We believe that the latter two exercises need

not be repeated every time a similar performance model is built.

4.1 Sampling the space of request mixes
The possible combinations of request mixes are exponential, so an

effective sampling approach is essential. Similar to Tozer et al.

[28], we randomly sample the N-dimensional space, where N is

the number of request types, using a Latin Hypercube Sampling

(LHS) protocol [15]. This protocol significantly reduces the

number of experiments needed while providing a normal coverage

of the possible request mixes. This is because the distribution of

all the request instances, R, considering all the samples

approximates a normal distribution around the mean value of R.

This results in a somewhat narrow distribution of load, which is

not desirable for building performance models for widely varying

loads. That is why Sheikh et al. [26] perform uniform sampling

across two dimensions: 1) total number of queries, and 2) the

number of different types of concurrent queries. Nonetheless, we

still settle for the LHS protocol to control the diversity in the

samples.

4.2 Experiment-driven data collection
Once the samples are obtained, we execute them in a public cloud

for each VM type. Both the client and the data-service exist in a

public cloud to avoid communication delay over a WAN. We

wrap up the tenant databases with the MySQL dbms and the

ubuntu linux, and store that as an image.1 This greatly simplifies

the engineering process, and the workloads can start execution as

soon as the compute and storage resources are available, i.e. when

the image is instantiated on a VM. On instantiation, the buffer

pool occupies 80% of the total memory of a VM instance, and is

partitioned in proportion to the number of tenants. Each sample is

executed for some time (say around 10m). The request mix

remains constant throughout the execution of the sample. The

1 Our image (ami-7bc16e12) is publicly available at:

http://thecloudmarket.com/owner/966178113014. Once the image

is instantiated, the clients can connect (ssh in) to the instance and

access the MySQL dbms as root user with wlmgmt password.

261

http://thecloudmarket.com/owner/966178113014

client collects run time statistics such as throughput and response

times for each request type in a sample. This is the most time-

consuming part of the model building process and takes tens of

hours to complete. Fortunately, this process need not be repeated

for each request type unlike suitable parameter value search for

non-linear modeling.

4.3 Constructing the request mix model
After all the samples are executed, we collect the sample

execution results from the data repository of the client. We pre-

process the raw data before training a performance model. The

pre-processing involves (a) adjusting the scale of the units e.g.

converting response time from milliseconds to seconds, (b)

analyzing the data to identify any data patterns such as non-linear

trends, and (c) cleaning the data e.g. removing outliers.

Understanding and treating data patterns improves the quality of

the performance model (discussed later in detail in Section 5.3).

Then we can train a performance model on the pre-processed data.

We can use any regression method such as linear regression or

multi-layer perceptron (mlp). We compare different regression

techniques on the basis of correlation as discussed in Section 4.5.

Finally, we validate the performance model against new data

(presented in Section 5.4).

4.4 Determining a suitable number of samples
Traditional wisdom says that more samples produce a more

representative prediction model. Executing samples is an

expensive exercise, and therefore, we need some way of

determining an appropriate sample size that gives reasonable

accuracy and confidence in the performance model. We see two

approaches of determining the appropriate number of samples: (a)

a theoretical approach such as estimating the number of samples

based on the confidence level and interval, or (b) an empirical

approach such as using experimentation to determine the

appropriate number of samples).

Figure 1: Observing changes in correlation coefficients for

multi-variate linear regression (LR) on a hp-xl VM instance

against number of training samples (up to 100).

In this paper, we explore the empirical approach further. We

choose the High-CPU Extra Large (hp-xl) VM type in the

Amazon cloud for analyzing the change in the quality of the

performance model as the number of samples and their observed

metrics (collectively called training samples) are increased. For

example, we compare the correlation coefficient for three request

types (Q6, stock-level and security-detail), each from a different

database tenant (TPC-H [32], TPC-C [29] and TPC-E [31]

respectively). Q6 is an analytical query, while the other two

request types are transactions. The intention is to use diverse

request types in our analysis.

We execute about 100 samples obtained using the LHS protocol

(experimental setup similar to Section 5.1). We divide the training

samples into 10 intervals. Each interval also contains the training

samples of its predecessor. We choose multi-variate linear

regression (LR) as the base classifier for the performance model.

We build and validate the LR models on each interval using 10

folds cross-validation. We plot the correlation values of the LR

models against the number of training samples as shown in Fig. 1.

We see the greatest gains in accuracy when the numbers of

training samples are in the first half of the plot. After that, there

are diminishing returns, and the correlation coefficients seem to

stabilize.

We observe a similar pattern for a number of other request types.

We analyze the effect of the sample size (up to 620) on the

correlation values of the same request types as shown in Fig 2.

We see the greatest gains in correlation value for about the first

150 samples and limiting gains afterwards. This is similar to the

observation of Sheikh et al. [26], who see greatest gains in

accuracy for the first 100 samples and diminishing returns

subsequently. Based on this analysis, the sample size of a few

hundred should provide us with a representative prediction model.

Figure 2: Observing changes in correlation coefficient for

multi-variate linear regression (LR) on a hp-xl VM instance

against the number of training samples (up to 620).

4.5 Comparison of prediction techniques
Cautious of high variance in the clouds, we consider a number of

base classifiers for usage in our performance model. We compare

four classification techniques: multi-variate linear-regression

(LR), Gaussian Processes (GP), Multi-Layer Perceptrons (mlp)

and Support Vector Machine (SVM). We consider two

implementations of SVM (nuR [9] and SMO [22]). Tozer et al.

[28] find LR to be sufficient as a base classifier for their

performance model. LR is a simple regression model, and serves

as a baseline in our case. Sheikh et al. find GP to be particularly

accurate and adaptive to unseen request types, so we include that

in our analysis. SVM has seen major development and fame in the

last few years due to its robustness and transparency. Compared to

other classifiers, mlp is a “black-box” type model and serves as an

alternate comparison point.

GP and SVM can employ various kernel functions. The kernel

functions used in SVM rearrange the original training samples

into a high dimensional space using a set of mathematical

functions. The motivation is to better identify the boundaries

between the training samples. The trade-off is higher prediction

accuracy at the cost of increased computational complexity and

the risk of over-fitting.

262

We consider two kernel functions: (a) linear, and (b) Radial Basis

Function (RBF) for both GP and SVM. Linear kernel is similar to

an identify function, while Radial Basis Function is a popular

kernel. We use both linear and RBF kernels for GP and SMO with

their default parameter values in Weka. We consider the default

parameter values for each classifier to be a good starting point.

More importantly, Witten et al. [36] suggest that the Weka

Explorer generally chooses sensible default values for parameters.

We consider 150 training samples for comparison. We compare

the correlation values of the classifiers obtained after 10-folds

cross-validation, in the bar chart (as shown in Fig. 3). We group

variations of the same technique. Each group is distinguished by a

different shade of grey.

Figure 3: Comparing correlation values for trade-update.

About 150 samples have been executed on a large VM

instance. Variants of the same technique are grouped and

distinguished by a different shade of grey.

The high coefficient value of mlp is attractive but possibly

misleading. A major drawback of a mlp consisting of any hidden

layers is that the hidden neurons are essentially opaque. Secondly,

a mlp is prone to over-training. The next candidate is LR, which

tends to exaggerate the errors in the general case since it

minimizes the predictions’ squared errors instead of absolute

errors, which is the case with SMO with a linear kernel i.e. SMO

(linear). Like LR, the basic idea of SMO (linear) is to find a

function that approximates the training points well by minimizing

the predictions’ absolute errors [36]. The crucial difference is that

all deviations up to a user-specified parameter are ignored. We

feel that SMO (linear) is an upgrade of LR. It uses SVM

constructs while minimizing over-fitting right from the outset.

Linear classifiers are preferable over non-linear classifiers,

because the latter usually require specification of additional

parameter values and are prone to over-fitting. Incorrect

parameter values lead to poor correlation values, and we see that

in the case of nuR(RBF).

GP and its variants have been used for performance modelling [5;

26], and the accuracy of a GP can be further improved by using an

appropriate kernel and parameter values. A GP is defined by a

mean function and a co-variance function [24]. The co-variance

function itself can have some parameters called hyper-parameters.

Sheikh et al. [26] develop a configuration model to generate

hyper-parameter values, which enables fast learning of unknown

configurations. This is relevant for various types of unseen VMs

and/or workloads, where prediction models have not been trained

previously. Unfortunately, the GP implementation in Weka does

not allow tuning of hyper-parameter values.

As we show in Section 5.4, SMO (linear) suffices as the base

classifier in modeling performance for many request and VM

types. However, it is unsuitable for modeling non-linear trends in

data, and we use non-linear modeling in such cases. Standard

SVM training has O(n3) time and O(n2) space complexities, where

n is the training set size [33]. Platt’s original Sequential Minimal

Optimization (SMO) is linear in the amount of memory required

for the training set size, and the training time of SMO empirically

scales between O(n) and O(n2.2) on various test cases [22].

5. EVALUATION

5.1 Experimental setup and validation

method
The LHS protocol draws a specified number of samples from a

multi-dimensional space given the lower and the upper bounds of

each dimension (i.e. a request type). The minimum number of

instances of a request type in a sample mix is 0. Meanwhile, we

set the upper bound to be the optimal mpl value on a VM type

(e.g. 14 for small VM type for the request type considered). We

determine the optimal mpl value for each VM type

experimentally.

We use the LHS protocol to generate two sets of samples with

different random seeds. We consider a larger set (150 samples) for

training and a smaller set (100 samples) for validation to be

appropriate. We execute both sets in the Amazon cloud using

separate VMs and clients. We execute each sample at the data

service twice. The first round of sample execution is for warm-up,

and the second round is for taking throughput and response time

measurements. We employ SMO (linear) for learning. Then, we

validate the performance model against the test set.

We use popular metrics from the literature for comparison,

namely correlation coefficient [28] and mean prediction %errors

[26]1. Correlation quantifies the similarity between the actual and

modeled trends – they may be far apart, and yet we can have

excellent correlation. Meanwhile, prediction errors quantify the

gap between the predicted and the measured values. Correlation

coefficient and prediction accuracy are complementary, and we

use both.

Table 1: Specifications of the VM types considered in the

Amazon cloud

VM

Type

Cores

(#)

Memory

(gb)

Cost/hr($) Optimal

mpl

Small 1 1.7 0.065 14

Large 2 7.5 0.260 75

Xlarge 4 15 0.520 115

High correlation coefficients (around 0.80 or above) and low

prediction errors (around 20% or below) indicate the success of

our performance model. We set these boundaries based on the

existing literature [11; 26; 28]. The ideal value of a correlation

coefficient is one, while the ideal value of mean-%error is zero.

We consider three heterogeneous VM types for evaluation: (a)

small, (b) large, and (c) xlarge. They vary in price, processing

power and capacity to hold data in memory. Further, xlarge VM

type has either Xeon or Optron processor, and we build our

1 Percentage-error (%error) = |measured value – predicted

value|/measured value

263

models for Xeon processor only. The data service is configured to

occupy most of the available memory on a VM type. The

specifications of the VM types we used are stated in Table 1.

5.2 Tenant databases and selection of request

types
We use databases in well-known benchmarks as tenant databases

in evaluating our work. We consider databases of two

transactional benchmarks (TPC-C [29] and TPC-E [31]), and the

database of an analytical benchmark (TPC-H [32]). Our

workloads consist of a mix of queries and transactions from the

stated benchmarks (as shown in Table 2).

Table 2. Selected queries and transactions from the standard

benchmarks

Benchmark Request types

TPC-H (OLAP) Q1, Q6, Q12, Q21

TPC-C (OLTP) new-order, payment

TPC-E (OLTP) trade-order, trade-update

A request type in a workload may have multiple request instances

that execute concurrently. Our workloads are bound by time. Until

then, a request instance is continuously re-submitted if it finishes

early. This ensures that the request mix remains constant at a data

service throughout the time bound or an experimental run.

We need data-intensive request types, which spend significant

part of their execution time accessing (reading and/or writing)

data. We also want diverse request types that place different

requirements on the data service. Hence, we use both queries and

(read/write) transactions in our workloads. Many request types

cannot execute independently. For example, a payment

transaction in the TPC-C benchmark assumes the presence of an

unpaid order. In the absence of the unpaid order, the payment

transaction fails and no change is made to the database. The

payment failure is the exception rather than the norm, which also

makes intuitive sense since the customer is not charged twice for

the same order.

We execute the samples over tens of hours, which results in

millions of transactions being executed. We want to avoid

millions of failed transactions, or worse, a mix of successful and

failed transactions. The latter skew the execution results, such as

throughput. Avoiding such transaction failures places a constraint

on the selection of our workload. That is, the request type is either

independent, or at most dependent on the other transactions in the

workload.

We select a subset of queries and transactions from the

transactional and analytical benchmarks. We briefly describe each

benchmark, and the role of the requests chosen from them. TPC-C

models the principal activities (transactions) of an order-entry

environment. These transactions include entering and delivering

orders, recording payments, checking the status of orders, and

monitoring the level of stocks at the warehouses. The payment

transactions depend on the results of the new-order transactions,

while the new-order transactions can execute independently. The

pair of a new-order and a payment transaction can execute

independently of the other transactions in the TPC-C benchmark.

Therefore, we choose both of them for our workloads.

TPC-E models the activity of a brokerage firm that must manage

customer accounts, execute customer trade-orders, and manage

interactions of customers with financial markets. The TPC-E

benchmark has many “read-only” transactions, but only four

“read/write” transactions. Amongst the read/write transactions, the

trade-order can execute independently, while the trade-update

depends on the results of the trade-order transaction. The trade-

order transactions represent buying or selling a security, and the

trade-update transactions enable minor corrections or updates to a

set of trades. We select them as candidate request types for our

workloads.

TPC-H is a decision support benchmark. It consists of a suite of

business oriented ad-hoc queries and concurrent data

modifications. We experimentally profile data access of all the

TPC-H queries and calculate the ratios of data access to execution

time for all the queries. We choose the top four queries (Q1, Q6,

Q12, Q21) according to the values of ratios ordered decreasingly.

Q1 reports the amount of business that was billed, shipped, and

returned. Q6 quantifies the increase in revenue because of the

elimination of some discounts. Q12 determines whether cheaper

transportation is adversely affecting the priority of orders. Q21

identifies suppliers whose shipments are late.

5.3 Data patterns: Identification and

treatment
Our initial attempts at building a performance model with SMO

(linear) were met with poor results. We discovered different

patterns in the data upon investigation (as shown in Fig. 4).

Figure 4: Different data classes in the response time

measurements of Q12 on xlarge VM type.

Understanding patterns helps us to improve the quality of the

performance models. For example, it allows us to distinguish

between outliers and non-linear trends. Removing outliers can

sometime improve the mean-%errors significantly. Non-linear

trends may require data transformations and place advanced

modeling requirements on the performance model.

We identify patterns in the execution results or the data, and the

reasons for their existence. In hindsight, they uncover interactions

among request types and their impacts on the performance

metrics. For example, a large number of concurrent trade-update

instances in a request mix reduce the trade-order throughput

significantly due to locks on the shared tables and frequent

accesses to disks. We describe the data pattern classes below, and

their possible treatments before training a SVM.

5.3.1 Data classes
We categorize the data into four general classes: (a) zero, (b)

linear, (c) anomalous, and (d) alternate. We also describe the

heuristics for identifying each class. In this process, we use the

Inter-Quartile Range (IQR) filter to identify any obvious oddities.

 zero class

 linear class

 anomalous class

264

Zero class: The zero class represents the samples that have no

instances of a request type (r) in the request mix, hence zero

metric value for r (as shown in Fig. 4). This is normal behaviour,

and we leave them in the data set. Unfortunately, we see some

non-zero prediction values for the samples in the zero class. A

simple adjustment to the performance model can fix this glitch. In

this fix (called zero-fix), the performance model provides zero

metric values for the samples where the request instance value is

zero in the request mix. This fix considerably improves the

correlation relationship between the predicted and measured

metric values.

Linear class: The members of the linear class represent a near-

linear change in the throughput or response time when sorted by

the measured metric value in ascending order (as shown in Fig. 4).

Naturally, the linear classifier performs best when the data set is

mostly comprised of training samples in the linear class.

Anomalous class: The anomalous class represents training

samples with an unusually high or unusually low value of a metric

(as shown in Fig. 4). They are few in number, say around 2% or

less of the entire data set. For example, the training samples in the

anomalous class for Q1 exist with unusually low response times

due to the smaller number of concurrent Q1 query instances in the

request mix in the case of xlarge VM type (discussed in Section

5.4.3). We leave them in the data set unless they skew the

validation results significantly. The reason for the divergence is

sometimes unknown.

Alternate class: If there are many training samples with

unusually high or low metric values not following the linear trend,

then they belong to the alternate class. This is the normal

behaviour and the alternate class training samples are left in the

data set. The unusual values for the metrics stand out from the

values in the linear class due to non-linear trends. For example,

about 23% of the training data for the trade-order transaction on

the large VM instance consists of unusually high but legitimate

metric values. The throughput for trade-order decreases

exponentially (non-linearly) with increasing number of concurrent

trade-update instances in the request mix. Catering to the

combination of alternate and linear classes requires non-linear

modeling.

We collectively call all classes, except linear, the irregular class.

We explored if existing clustering methods can give us the above

(or different) classes. Wu et al. [37] put k-means in the second

place in the top 10 algorithms in data mining. Unfortunately, we

find that k-means and its extension x-means [21], are unable to

differentiate the subtle boundaries between the classes.

Raatikainen et al. [23] also find the workload classes obtained by

k-means to be unsuitable. We want to classify the patterns based

on the reasons for their existence, which is something not obvious

to a clustering method. For example, members of zero and

alternate classes can have zero and unusually small values

respectively but exist due to different reasons. X-means, however,

treats them as a single cluster. Therefore, we leave the exploration

of other clustering methods for another venue, and currently

identify classes manually. Fortunately, the IQR filter helps us

partially in this job. We use an offset (of 1.5) on IQR over the

entire data set to find the training samples that standout from the

rest of the training samples.

5.4 Validation results
As mentioned in Section 4.5, we use SMO with a linear kernel as

our base classifier. We build our performance model with the

training set, and validate against the test set. We see that the linear

classifier meets the validation criteria for most request types but

performs poorly with non-linear trends. We deal with non-linear

trends in Section 6.

We analyze the validation results1 of the VM types in the

following order: large, small and xlarge. This is because only two

tenants fit in the memory of the large VM type, and it represents a

“middle” case. All tenants fit in the memory of the xlarge VM

type, and none fit in the memory of the small VM type. We

discussed our choice for different request types in Section 5.2.

Every request type needs a separate SVM. We build response time

SVMs for the queries Q1, Q6, Q12, and Q21, and throughput

SVMs for the transactions i.e., new-order, payment, trade-order,

and trade-update.

5.4.1 Large VM type (optimal mpl=75)
We evaluate the SVMs of the queries first. We plot the frequency

histogram of observed response times of Q1 after excluding

members of the zero class (as shown in Fig. 5). We see that the

distribution is normal-like. The frequency histograms for the

remaining queries are similar to that in Fig. 5.

Figure 5: Frequency histogram for observed response times of

Q1 on the large VM type instance.

The evaluation metrics are reported in Table 3. The SVMs for the

queries have near-ideal correlation coefficients and single digit

mean-%errors. We attribute the errors to a few anomalies which

exist with unusually low response times due to the smaller number

of concurrent queries in the request mix.

Table 3: Evaluation metrics for the response time SVMs built

for the large VM type

 Q1 Q6 Q12 Q21

Correlation

coefficient

0.99 1 0.96 0.97

mean-%error 3.86 2.71 9.28 5.11

For example, unusually low response times are observed for Q12

as there is a smaller number of concurrent Q12 queries in the

request mix compared to the request mixes belonging to other

classes. This situation apparently leads to less load on the data

service and hence lower response times for Q12.

1 The raw data used to build the performance model is present at:

http://research.cs.queensu.ca/home/mian/index_files/Page485.ht

m

265

http://research.cs.queensu.ca/home/mian/index_files/Page485.htm
http://research.cs.queensu.ca/home/mian/index_files/Page485.htm

We plot the correlation relationship between the predicted and

actual response times for Q1 and Q12 in Fig. 6 and Fig. 7,

respectively.

Figure 6: Predicted vs. measured response times for Q1 on a

large VM type.

The correlation plots for the remaining queries are similar. The

SVMs for all queries have excellent correlation coefficients (close

to 1), and low mean-%errors. Therefore, they all meet the

validation requirement.

Figure 7: Predicted vs. measured response time for Q12 on a

large VM type.

Next, we evaluate the SVMs for transactions. We state the

evaluation metrics for the throughput SVMs in Table 4. The

SVMs for the new-order and payment transactions have excellent

correlation coefficients and acceptable mean-%errors. Therefore,

they pass the validation test. The mean-%errors are generally

higher than their query counter-part. The irregular class for new-

order and payment mostly contains members of zero class and a

few anomalies. The anomalies consist of unusually high

throughputs, which are caused by a high number of concurrent

new-order and payment transactions in a request mix.

Table 4: Evaluation metrics for the throughput SVMs built

for the large VM type

 New-

order

Payment Trade-

order

Trade-

update

Correlation

coefficient

0.97 0.97 0.58 0.80

mean-%error 14.79 14.65 111.69 13.61

The irregular class for trade-update also contains mostly members

of zero class and a few anomalies. The anomalies have lower

numbers of query instances compared to the training samples in

the linear class. This suggests that the data service is under-

loaded, and is able to execute more transactions. The trade-update

has acceptable mean-%error but the correlation coefficient is on

the borderline. We plot the frequency histogram of observed

throughput for trade-update after excluding members of zero class

in Fig. 8. We see that the distribution is positively skewed.

Figure 8: Frequency histogram for observed throughput for

trade-update on the large VM type instance.

Regression assumes that variables have normal distributions, and

not non-normally distributed variables (highly skewed or kurtotic

variables, or variables with substantial outliers) can distort

relationships and significance tests [20]. It is possible to employ

transformations (e.g. square root, log, or inverse), to the improve

normality, but this complicates the interpretation of the results,

and should be used in an informed manner. Due to an acceptable

mean-%error, we do not perform any data transformation and

consider that the trade-update SVM passes the validation test on

the border.

Meanwhile, trade-order has a large irregular class, which is

mostly comprised of members from the alternate class. For

example, we see 34 irregularities in the training set. This is about

23% of the training data, and represents an unusually large

proportion. Inspecting the training data for the respective samples,

we see that the number of concurrent request instances of trade-

update is low in the alternate class. The trade-order and trade-

update share some tables in their operations [31]. In addition, the

trade-update transaction generates a high disk I/O because it looks

for older records that are usually not in the buffer pool due to their

age and frequency of access [30].

We suspect that the low trade-order throughput (in the linear

class) is due to the high lock contention over the shared tables and

frequent access to the disk by trade-update. We perform a simple

experiment to confirm this suspicion, in which we set the trade-

update instances to zero in all the samples. We see very high

throughput values for trade-order, and this confirms our suspicion.

The throughput for trade-order decreases exponentially (non-

linearly) with increasing number of concurrent trade-update

instances in the request mix.

We plot the frequency histogram of observed throughput for

trade-order after excluding members of zero class in Fig. 9. We

see that the distribution is heavily skewed with a long tail. We

find that applying common transformations such as square root,

log and inverse do not improve the normality of the measured

throughput. In this case, the non-linearity in the data must be

266

explicitly modeled using a non-linear kernel for SVM, for

example. We perform non-linear modeling in Section 6. The

trade-order SVM fails the validation test with SMO (linear).

Figure 9: Frequency histogram for observed throughputs for

trade-order on the large VM type instance.

5.4.2 Small VM type (optimal mpl=14)
First, we evaluate the SVMs of the queries (see Table 5). The

SVMs for Q1, Q12 and Q21 have excellent correlation values and

acceptable mean-%errors, consequently, passing the validation

test.

Table 5: Evaluation metrics for the response time SVMs built

for the small VM type

 Q1 Q6 Q12 Q21

Correlation

coefficient

0.90 0.86 0.90 0.90

Mean-%error 15.65 25.43 13.07 17.56

As highlighted in Table 5, Q6 has a relatively poor correlation

value and high mean-%error. We observe three classes in the Q6

data set: (a) zero (28 members), (b) linear (65 members), and (c)

alternate (7 members). On average, the alternate class has a higher

number of concurrent request instances compared to the linear

class. We believe this situation leads to a greater load on the data

service and hence higher response times for Q6. The alternate and

linear classes represent non-linear trends, and the Q6 SVM does

not meet validation requirement due to poor mean-%error.

Next, we evaluate the throughput SVMs for the transactions as

shown in Table 6. The SVMs for new-order and payment have

excellent correlation coefficients and acceptable mean-%errors.

Therefore, they pass the validation test.

Table 6: Evaluation metrics for the throughput performance

model built for the small VM type

 New-

order

Payment Trade-

order

Trade-

update

Correlation

coefficient

0.96 0.97 0.90 0.63

Mean-%error 13.52 9.72 1465.84 34.80

Interestingly, trade-order’s SVM has a high correlation value and

an extremely poor mean-%error. Examining the samples (request

mixes) in the test set, we see that the resulting throughput values

belong to three classes: (a) linear (62 members), (b) zero (29

members), and (c) alternate (10 members). We find that the

number of concurrent trade-update transactions is at most two in

any request mix. Consequently, the trade-order has high

throughput (in tens) for most samples in the test set (i.e. linear

class). As noted earlier, providing a performance model for both

linear and alternate classes with acceptable evaluation metric

values requires modeling of non-linear trends. Therefore, the

SVM for trade-order fails validation.

Similarly, trade-update consists of three classes in the test set : (a)

linear (56 members), (b) zero (29 members), and (c) alternate (15

members). The respective SVM performs poorly and fails

validation.

5.4.3 Xlarge VM type (optimal mpl=115)
First, we evaluate the SVMs of the queries as shown in Table 7.

The SVMs for all the queries have excellent correlation values

and mean-%errors within the set boundary. Therefore, they all

pass the validation test. All SVMs except one (i.e. Q21) have

single digit mean-%errors. The training samples for Q21 fall in

three classes: (a) linear, (b) zero, and (c) anomalous. The

anomalies exist with unusually low response times due to the

smaller number of concurrent Q21 queries in the request mix.

Table 7: Evaluation metrics for the response time SVMs built

for the xlarge VM type

 Q1 Q6 Q12 Q21

Correlation

coefficient

0.99 0.99 0.93 0.93

mean-%error 5.46 3.21 5.86 11.72

Table 8: Evaluation metrics for the throughput SVMs built

for the xlarge VM type

 New-

order

Payment Trade-

order

Trade-

update

Correlation

coefficient

0.97 0.97 0.46 0.87

mean-%error 18.26 16.68 94.77 14.03

Next, we evaluate the throughput SVMs for the transactions as

shown in Table 8. The SVMs for new-order and payment have

excellent correlation coefficients and acceptable, though high,

mean-%errors. They pass the validation requirements. We

attribute the high mean-%errors for the new-order SVM to a few

anomalies in the new-order test set. The anomalies exist due to a

high number of concurrent new-order transactions and a low

number of other concurrent request types. The same is true for the

payment transaction.

We find a poor correlation coefficient for the SVM of trade-order.

Like the data sets of trade-order in the case of large VM type, we

see that many training samples belong to the alternate class. The

throughput for trade-order decreases exponentially (non-linearly)

with an increasing the number of concurrent trade-update

instances in the request mix. The trade-order SVM fails the

validation test with SMO (linear).

The irregular class for trade-update contains members of two

classes: (a) zero, and (b) anomalous. The numbers of trade-order

and trade-update request instances in the request mix are similar

across anomalous and linear classes. However, the anomalous

267

class has a lower number of query instances compared to the

samples in the linear class. This suggests that the data service is

under-loaded, and is able to execute more transactions. This

cannot be said conclusively given the small size of the anomalous

class (only 3 members in the test set), and we leave it as an

observation. We also leave all anomalies in the data sets for trade-

update. We still get good correlation value with acceptable mean-

%error. Therefore, the trade-update SVM passes the validation

test.

6. MODELING NON-LINEAR

BEHAVIOUR
We have seen that SMO (linear) is sufficient for many request

types, particularly where an alternate trend in the performance is

non-existent. We consider a popular (non-linear) RBF Kernel to

cater to the combination of linear and alternate trends. We further

explore request types that failed their validation test with SMO

(linear). We demonstrate the use of the RBK Kernel with the

small VM type, but the process is the same for all the VM types.

We choose the small VM type for demonstration because the

SMO (linear) for the small VM type fails for the highest number

of requests amongst all the VM types considered.

Appropriate kernel and parameter settings can greatly improve the

SVM classification accuracy. Suitable values for the penalty

parameter, C, and the kernel function parameter, γ, are unknown

beforehand. For medium-sized problems, the grid search

approach is an efficient way to find the best C and γ [16]. In grid

search, pairs of (C, γ) are tried and the one with the best cross-

validation accuracy is chosen.

Before the grid search, we revise our data set to give us more

training data out of the existing data set. This is possible using the

0.632 bootstrap sampling method [14]. We aggregate the training

and test data sets to provide us with a combined data set. We

remove members of the zero class from the aggregated data set.

This is because we can augment the performance model to

provide zero values for samples belonging to the zero class, and

therefore we do not need to train the performance model to cater

for zero class. The revised aggregated dataset of n training

samples is randomly sampled n times, with replacement, to give a

learning dataset of n training samples. Because some elements in

the learning dataset are (almost certainly) repeated, there must be

some instances in the aggregated dataset that have not been picked

by the random selection, which become part of the validation set.

The size of the validation set is approximately 1/3rd of n. In this

way, we retain the property of unseen training samples for

validation similar to the test set. As stated in Section 5.1, training

and test samples were generated randomly using different seeds.

Then, we perform a grid search on the learning set using 10-folds

cross-validation. In this search, we explore exponentially growing

sequences of C (2-5, 2-3, …, 215) and γ (2-15, 2-11, …, 25), since Hsu

et al. [16] find this to be a practical method to identify good

parameter values. They further recommend a coarse grid search

first, and then a finer grid search on a “promising” region. Once

the search identifies good kernel parameters, we train a SMO

(RBF) with these parameters using the entire learning set and

validate against the validation set. We use this search, train and

validate method for Q6.

We find further data transformations for trade-order and trade-

update throughput to be appropriate. We discuss the

transformation and the justification below. We sort the training

samples of the trade-order transaction in the increasing order of

throughput value. We plot throughput values against the instance

numbers. Despite removing the zero class, the trade-order trend is

still fairly non-uniform (as shown in Fig 10). While it is possible

to model the trend, there is a large chance of over-fitting to obtain

high accuracy given the number of bends and turns required for

the curve fitting this trend.

Figure 10: Trade-order throughput values sorted ascendingly.

Instead, the level of symmetry increases significantly if we apply

a logarithmic function (as shown in Fig. 11). The bends are near-

linear, and there is only one turn. We can train a SVM on the

transformed trend without being overly concerned about over-

fitting. Therefore, we find the above data transformations for

trade-order and trade-update throughput to be appropriate and

apply them to the aggregated data set prior to bootstrap sampling.

Figure 11: Ascendingly sorted logarithmic trade-order

throughput values.

We state the evaluation metrics for the non-linear SVMs trained

using the revised training and validation schemes in Table 9. We

find that the mean-%errors greatly improve, and the correlation

coefficients are excellent for the two request types when we

explicitly model the non-linear trends.

Table 9: Evaluation metrics for the non-linear SVMs built for

the small VM type

 Q6 Trade-order Trade-update

Correlation coefficient 0.97 0.98 0.79

mean-%error 8.09 3.43 3.92

We can further improve the representation of the real trend in the

model for the above request types. Presently, linear and alternate

class sizes are not in balance. A good strategy for producing a

high accuracy classifier on imbalanced data is to classify any

268

example as belonging to the majority class, which is called the

majority-class classifier [8]. This is what we have done although it

may not be very useful in practice. The problem with the success

rate is that it assigns equal importance to errors made on examples

belonging to the majority class and the minority class. To address

the imbalance in the data, we need to assign different penalty

parameter values for misclassification to each class.

We further observe that the workload behaviour changes

dramatically depending on the amount of trade-update

transactions in the request mix. For example, we see different

phases in the trade-order throughput (as shown in Fig. 10). We

can model each phase separately. This will likely: (a) improve the

representation of the real trend in the model, and (b) avoid over-

fitting. However, this comes at the cost of identifying phases and

boundaries between them. The process of identification may

require validation. Presently, we leave class size and phase aware

modeling as part of the future work.

7. DISCUSSION
We validate the performance models for the VM types that vary in

their system capacity, and in particular their physical memory. As

a result, the optimal mpl values as well as the range on the number

of request instances vary on these VM types. The behaviour of a

request is affected by other concurrently executing requests both

in terms of the request types and their number of instances. For

example, a smaller number of query instances in the request mix

results in less load, and consequently an overall lower response

time and for queries high throughput for transactions. We also

observed that lock contentions and interactions between

concurrently executing requests can have a significant impact on

the performance of a database system. This supports the claim by

Ahmed et al. [3], that interactions between concurrently executing

requests can have a significant impact on the performance of a

database system.

We showed that the linear classifier is suitable for 19 out of 24

request types, and can be modeled using an out-of-the-box tool

such as Weka. However, it fails where there are non-linear trends

in the performance data. In such cases, we explore non-linear

modeling methods that require choosing a suitable kernel and a

search for appropriate parameter values. Efficient search

approaches such as the grid search can take several hours. As a

result, we suggest that the linear classifier be used first to train the

performance model, and in the case of unsatisfactory results, non-

linear modeling be used as the next step.

Osborne et al. [20] state a number of assumptions for multiple

regression that the researchers should test. We see that their

assumptions (e.g. variables are normally distributed) do not

always hold in our case. For example, the throughput distribution

for trade-order in case of large VM type is highly skewed. Simple

transformations, such as inverse, do not improve the normality of

the distribution. Instead, explicit modeling of non-linear trends is

required. We find grid search over RBF kernel promising, and see

significant improvements in the evaluation metrics.

Our workloads contain at most eight request types each with a

different number of instances. This is reasonable since TPC-C and

TPC-E benchmarks have five and ten transactions, respectively,

although TPC-H has 22 queries. We believe a realistic data

service is rarely a read-only or a write-only service. It usually

serves a combination of transactional and analytical workloads.

8. SUMMARY
We employ an experiment-driven approach for building a

performance model applicable in a cloud environment. The

samples are generated using stratified sampling, and

measurements are collected by executing these samples in a

public cloud. We provide a comparison of different underlying

prediction techniques based on accuracy, and justify our choice.

Some data patterns are identified and their possible treatments are

suggested. Then, we train our performance models using the

measured and treated data. The performance models are judged

against multiple evaluation metrics, and validated against fresh

data. Finally, we analyze the performance models built for

different types of Amazon VMs accessible on their public IaaS

EC2 cloud.

Recent literature typically builds performance models for a single

database tenant, provides response time predictions only, and

validates the models on a local server or a local VM. Our

performance model predicts throughput for transactions, and

response times for queries. The performance model is built for

workloads executing at a multi-tenant data-service hosted in a

cloud.

Presently, the performance model provides raw predictions

without expressing any confidence in them. This is an important

issue since the errors are cumulative in our framework, and we

need some method of managing the errors across the framework

components. Therefore, we intend to look at mechanisms which

manage the error levels across the framework.

We also intend to make the performance model adapt online,

which is particularly relevant for provide predictions for unseen

request types and the cloud environment. The magnitude of the

errors may be large in the beginning but would reduce over time

as the models learns the new setting.

9. ACKNOWLEDGMENTS
The authors acknowledge research support from National Science

and Engineering Research Council of Canada (NSERC),

MEDIANET (Comunidad de Madrid S2009/TIC-1468),

HPCcloud (MICINN TIN2009-07146) and 4CaaSt (European

Commission’s IST priority of the 7th Framework Programme

under contract number 258862). The authors also thank Dr.

Skillicorn and Dr. Hussain for their input on non-linear modeling

and class identification and validation.

10. REFERENCES
[1] Use WEKA in your Java code.

http://weka.wikispaces.com/Use+WEKA+in+your+Java+code.

[2] Abouzour, M., Salem, K., and Bumbulis, P., 2010. Automatic

tuning of the multiprogramming level in Sybase SQL Anywhere.

In 2010 IEEE 26th International Conference on Data

Engineering Workshops (ICDEW), Long Beach, California,

USA, 99-104.

[3] Ahmad, M., Aboulnaga, A., and Babu, S., 2009. Query

interactions in database workloads. In Proceedings of the Second

International Workshop on Testing Database Systems ACM,

Providence, Rhode Island, US, 1-6.

[4] Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K., 2008.

Modeling and exploiting query interactions in database systems.

In Proceedings of the 17th ACM conference on Information and

knowledge management ACM, Napa Valley, California, USA,

183-192.

[5] Ahmad, M., Duan, S., Aboulnaga, A., and Babu, S., 2011.

Predicting completion times of batch query workloads using

interaction-aware models and simulation. In Proceedings of the

269

http://weka.wikispaces.com/Use+WEKA+in+your+Java+code

14th International Conference on Extending Database

Technology (EDBT'11) ACM, Uppsala, Sweden, 449-460.

[6] Amazon, EC2 Instance Types.

http://aws.amazon.com/ec2/instance-types/.

[7] Amazon, Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/.

[8] Ben-Hur, A. and Weston, J., 2010. A user's guide to support

vector machines. Methods in Molecular Biology 609, 2, 223-239.

[9] Chang, C.-C. and Lin, C.-J., 2011. LIBSVM: A library for

support vector machines. ACM Transactions on Intelligent

Systems and Technology (TIST) 2, 3, 1-27.

[10] Courtois, M. and Woodside, M., 2000. Using regression splines

for software performance analysis. In Proceedings of the 2nd

international workshop on Software and performance ACM,

Ottawa, Ontario, Canada, 105-114.

[11] Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A.,

Jordan, M., and Patterson, D., 2009. Predicting Multiple Metrics

for Queries: Better Decisions Enabled by Machine Learning. In

IEEE 25th International Conference on Data Engineering, 2009.

(ICDE '09). IEEE, Shanghai, China, 592-603.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812438&t

ag=1.

[12] Gupta, C., Mehta, A., and Dayal, U., 2008. PQR: Predicting

Query Execution Times for Autonomous Workload

Management. In International Conference on Autonomic

Computing, 2008. (ICAC '08). IEEE, Chicago, IL 13-22.

[13] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.,

and Witten, I.H., 2009. The WEKA data mining software: An

update. ACM SIGKDD Explorations Newsletter 11, 1, 10-18.

[14] Han, J., Kamber, M., and Pei, J., 2012. Data mining: concepts

and techniques (Third Edition). Morgan Kaufmann.

[15] Hicks, C.R. and Turner Jr, K., 1999. Fundamental concepts in

the design of experiments. Oxford University Press, New York.

[16] Hsu, C.W., Chang, C.C., and Lin, C.J., 2003. A practical guide

to support vector classification. National Taiwan University.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[17] Kelly, T., 2005. Detecting performance anomalies in global

applications. In Proceedings of the 2nd conference on Real,

Large Distributed Systems - Volume 2 USENIX Association,

San Francisco, CA, 42-47.

[18] Mian, R. and Martin, P., 2012. Executing data-intensive

workloads in a Cloud. In CCGrid Doctoral Symposium 2012 in

conjuction with 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), Ottawa, Canada,

758-763.

[19] Mian, R., Martin, P., and Vazquez-Poletti, J.L., 2012.

Provisioning data analytic workloads in a cloud. Future

Generation Computer Systems (FGCS), in press

http://dx.doi.org/10.1016/j.future.2012.1001.1008.

[20] Osborne, J.W. and Waters, E., 2002. Four assumptions of

multiple regression that researchers should always test. Practical

Assessment, Research & Evaluation 8, 2, 1-9.

[21] Pelleg, D. and Moore, A.W., 2000. X-means: Extending K-

means with Efficient Estimation of the Number of Clusters. In

Proceedings of the Seventeenth International Conference on

Machine Learning Morgan Kaufmann Publishers Inc., 727-734.

[22] Platt, J., 1998. Sequential Minimal Optimization (SMO): A fast

algorithm for training support vector machines. Microsoft

Research.

http://www.bradblock.com/Sequential_Minimal_Optimization_

A_Fast_Algorithm_for_Training_Support_Vector_Machine.pdf.

[23] Raatikainen, K.E.E., 1993. Cluster analysis and workload

classification. SIGMETRICS Perform. Eval. Rev. 20, 4, 24-30.

[24] Rasmussen, C.E. and Williams, C.K.I., 2006. Gaussian

Processes for Machine Learning. The MIT Press.

[25] Schad, J., Dittrich, J., and Quiane-Ruiz, J.-A., 2010. Runtime

measurements in the cloud: observing, analyzing, and reducing

variance. Proc. VLDB Endow. 3, 1-2, 460-471.

[26] Sheikh, M.B., Minhas, U.F., Khan, O.Z., Aboulnaga, A.,

Poupart, P., and Taylor, D.J., 2011. A bayesian approach to

online performance modeling for database appliances using

gaussian models. In 8th ACM international conference on

Autonomic computing (ICAC) ACM, Karlsruhe, Germany, 121-

130.

[27] Thereska, E., Narayanan, D., and Ganger, G.R., 2006. Towards

self-predicting systems: What if you could ask ‘what-if’? The

Knowledge Engineering Review 21, 03, 261-267.

[28] Tozer, S., Brecht, T., and Aboulnaga, A., 2010. Q-Cop:

Avoiding bad query mixes to minimize client timeouts under

heavy loads. In IEEE 26th International Conference on Data

Engineering (ICDE), Long Beach, CA, USA, 397-408.

[29] TPC-C, Order Processing Benchmark. http://www.tpc.org/tpcc/.

[30] TPC-E, Detailed description. http://www.tpc.org/tpce/.

[31] TPC-E, Trading Benchmark. http://www.tpc.org/tpce/.

[32] TPC-H, Decision Support Benchmark. http://www.tpc.org/tpch/.

[33] Tsang, I.W., Kwok, J.T., and Cheung, P.-M., 2005. Core vector

machines: Fast SVM training on very large data sets. Journal of

Machine Learning Research 6, 363-392.

[34] Weikum, G., Moenkeberg, A., Hasse, C., and Zabback, P., 2002.

Self-tuning database technology and information services: from

wishful thinking to viable engineering. In Proceedings of the

28th international conference on Very Large Data Bases VLDB

Endowment, Hong Kong, China, 20-31.

[35] Weissman, C.D. and Bobrowski, S., 2009. The design of the

force.com multitenant internet application development

platform. In Proceedings of the 35th SIGMOD international

conference on Management of data ACM, Providence, Rhode

Island, USA. http://dl.acm.org/citation.cfm?id=1559942.

[36] Witten, I.H., Frank, E., and Hall, M.A., 2011. Data Mining:

Practical machine learning tools and techniques (3rd edition).

Morgan Kaufmann Pub.

[37] Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q.,

Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-

H., Steinbach, M., Hand, D., and Steinberg, D., 2008. Top 10

algorithms in data mining. Knowledge and Information Systems

14, 1, 1-37.

[38] Zhang, M., Martin, P., Powley, W., Bird, P., and McDonald, K.,

2012. Discovering Indicators for Congestion in DBMSs. In

Proceedings of the International Workshop on Self-Managing

Database Systems (SMDB’12) in Conjunction with the

International Conference on Data Engineering (ICDE’12),

Washington, DC, USA, in press.

[39] Zhang, M., Niu, B., Martin, P., Powley, W., Bird, P., and

McDonald, K., 2011. Utility Function-based Workload

Management for DBMSs. In Proceedings of the 7th

International Conference on Autonomic and Autonomous

Systems (ICAS 2011), Mestre, Italy, 116-121.

[40] Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., and

Smirni, E., 2007. R-Capriccio: A Capacity Planning and

Anomaly Detection Tool for Enterprise Services with Live

Workloads Middleware 2007. Lecture Notes in Computer

Science 4834, 244-265.

270

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812438&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812438&tag=1
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://dx.doi.org/10.1016/j.future.2012.1001.1008
http://www.bradblock.com/Sequential_Minimal_Optimization_A_Fast_Algorithm_for_Training_Support_Vector_Machine.pdf
http://www.bradblock.com/Sequential_Minimal_Optimization_A_Fast_Algorithm_for_Training_Support_Vector_Machine.pdf
http://www.tpc.org/tpcc/
http://www.tpc.org/tpce/
http://www.tpc.org/tpce/
http://www.tpc.org/tpch/
http://dl.acm.org/citation.cfm?id=1559942

