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ABSTRACT 

The cloud computing paradigm provides the “illusion” of infinite 

resources and, therefore, becomes a promising candidate for large-

scale data-intensive computing. In this paper, we explore 

experiment-driven performance models for data-intensive 

workloads executing in an infrastructure-as-a-service (IaaS) 

public cloud. The performance models help in predicting the 

workload behaviour, and serve as a key component of a larger 

framework for resource provisioning in the cloud. We determine a 

suitable prediction technique after comparing popular regression 

methods. We also enumerate the variables that impact variance in 

the workload performance in a public cloud. Finally, we build a 

performance model for a multi-tenant data service in the Amazon 

cloud. We find that a linear classifier is sufficient in most cases. 

On a few occasions, a linear classifier is unsuitable and non-linear 

modeling is required, which is time consuming. Consequently, we 

recommend that a linear classifier be used in training the 

performance model in the first instance. If the resulting model is 

unsatisfactory, then non-linear modeling can be carried out in the 

next step. 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Modeling techniques; H.2.4 

[Database Management]: Systems – query processing, 

transaction processing, concurrency. 

Keywords 

Performance Model, Performance Variables, Prediction 

Techniques, Multi-Tenancy. 

1. INTRODUCTION 
The pay-as-you-go flexibility and the absence of an up-front 

commitment in clouds are attractive to new businesses or 

companies seeking to lower their operational costs or wishing to 

experiment with new applications. Force.com, for example, 

currently supports over 55,000 organizations by hosting their 

applications and data on shared resources as tenants [35]. Tenants 

operate in virtual isolation from one another. The organizations 

are allowed controlled access to their objects. Further, they can 

use and customize their tenants, while the data and customizations 

remain secure and insulated from other tenants. Each tenant can 

service multiple workloads, and a workload can access multiple 

tenants with appropriate permissions. In our case, the tenants exist 

in a public cloud, which offers its infrastructure and computing 

resources to the general public over the internet. 

Predicting the workload behaviour sets the expectations for 

execution time and cost. In particular, this enables more reliable 

guarantees towards service level agreements (SLA) prior to any 

workload execution. Knowing the workload behaviour a priori is 

also very useful for many administrative tasks such as capacity 

planning, admission control and effective scheduling of 

workloads. 

We see a performance model as a key component when predicting 

the cost of workload execution in the clouds. We propose a 

framework [18] that uses search algorithms, and associated 

performance and cost models to minimize the cost of executing 

workloads in a cloud. A search algorithm in our framework hunts 

for a suitable resource configuration given a workload and an 

objective such as minimal dollar-cost. It employs a cost model to 

estimate the expense of a resource configuration, which in turn 

uses a performance model to predict the workload behaviour on 

the resource configuration. 

In our previous work, we used a Queuing Network Model (QNM) 

as a performance model [19]. We found that the response times 

for queries on a Virtual Machine (VM) as predicted by simple 

single server centre models, varied by as much as 70% from the 

measured response times. A simple model does not capture the 

impact on the workload performance of the interactions among 

different query types. Developing a more detailed QNM for a VM 

is not feasible because of the difficulties in acquiring detailed 

performance parameters in a public cloud environment. Further, 

high performance variability in clouds poses a great challenge for 

database applications in guaranteeing  SLAs [25]. 

In this paper, we explore an experiment-driven approach for 

creating performance models for data-centric workloads on 

Infrastructure-as-a-Service (IaaS) public clouds such as the 

Amazon EC2 [7], which appeared around 2006. These clouds 

pose unique challenges due to multi-tenancy, heterogeneity of the 

virtual machine types, non-linear changes in resources and the 

interplay among mixed workloads. Serving multiple tenants 

increases: (a) competition among different tenants over the shared 

resources (like memory), and (b) interference amongst the 

concurrently executing requests. We believe that our 

experimental-based approach is particularly suited to the 

variability of cloud environments. Our performance models 

predict throughputs for transactions, and response times for 

queries. We enumerate the variables that impact variance, but 

limit the scope of our performance models by accounting for a 

subset of these variables. Furthermore, we identify different data 

patterns in the measurements.  
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We also compare different prediction techniques for their 

suitability as a base classifier, and choose the most promising one. 

We find that linear classifiers are suitable for most request types 

and are fast to build and validate. They require less involvement 

on a developer’s part and can often be employed straight out-of-

the-box with default parameters in a commonly used machine 

learning toolkit such as Weka [13]. However, the results are 

unsatisfactory where there are non-linear trends in the 

performance data. In such cases, we explore non-linear modeling 

methods, which require choosing a suitable kernel and searching 

for appropriate parameter values. The search time can be in the 

order of hours, which becomes prohibitive for large number of 

request types. As a result, we recommend that a linear classifier 

be used in training the performance model in the first instance. If 

the resulting model is unsatisfactory, then the non-linear modeling 

can be carried out as the next step. In both cases, the models 

obtained can be serialized into java bytestream, and used by other 

applications [1]. 

The paper is structured as follows. We survey related work in 

Section 2. The performance variables are discussed in Section 3. 

We customize the typical experiment-driven model building 

approach, determine the suitable number of samples to build a 

representative performance model, and compare different 

prediction techniques in Section 4. Section 5 contains evaluation 

of the performance model. We choose diverse request types from 

three tenant databases, and justify our choice; identify different 

data patterns observed during the construction of the performance 

models; and present the validation results with a linear classifier. 

Section 6 discusses non-linear modeling. We discuss the 

evaluation results in Section 7. Finally, we present the summary 

and conclusions in Section 8. 

2. RELATED WORK 
Analytical performance models have enjoyed great popularity in 

the database management systems (DBMSs) area. Weikum et al. 

[34] provide a survey of the advances in autonomic tuning in 

database technology. They conclude that self-tuning should be 

based on a feedback control loop and should use mathematical 

models with proper deployment into the system components. 

Abouzour et al. [2] use analytical modeling to set the multi-

programming level (mpl) of a DBMS for improved throughput. 

Analytical models have also been used for answering “what-if” 

questions to study the effects of system changes, such as system 

upgrades and service migrations [27]. Analytical models, 

however, are hard to evolve with the underlying system and make 

simplifying assumptions that make them oblivious to the 

interactions of the dynamically changing workloads and their 

effects [26]. These effects are amplified by the variance in the 

cloud [19]. Therefore, there is increasing interest in experiment-

driven machine learning and statistical modeling. 

Ganapathi et al. [11] predict multiple performance metrics for 

individual query types with less than 20% error for 85% of the test 

cases.  Their work however, focuses on single query types and 

ignore interactions and query mixes. Gupta et al. [12] study the 

problem of predicting the execution time of a query on a data 

warehouse with a dynamically changing workload. They use a 

machine learning approach that takes the query plan, combines it 

with the observed load vector of the system and uses the new 

vector to predict the execution time of the query. 

Courtious et al. [10] propose a prediction technique, called 

regression splines, that builds a non-linear regression function 

piecewise using a set of linear functions. In addition, they 

automate building of a regression function up to a desired 

accuracy by performing progressive sampling and 

experimentation. They evaluate their work by predicting CPU 

demands of an event based server. We find their idea of 

automation useful but consider standard predictive models 

available in Weka in our case. 

Some recent papers view the transaction mix as the combination 

of different transactions that execute during a time interval 

window without considering which of these transactions execute 

simultaneously. This is fundamentally different to our notion of a 

concurrent request mix, where request instances execute 

simultaneously at any given time. Transaction mix models have 

been used for capacity planning [40], workload management [39], 

preempting congestion [38] and detecting anomalies in 

performance [17]. 

Much of the above work does not consider interactions between 

the concurrently executing requests, which can have a significant 

impact on database system performance [3]. Ahmad et al. [4] 

develop an interaction-aware query scheduler that targets report-

generation workloads in Business Intelligence (BI) settings. Under 

certain assumptions, the schedule found by this scheduler is 

within a constant factor of optimal, and consistently outperforms 

conventional schedulers that do not account for query interactions. 

Ahmad et al. [5] use a combination of an offline statistical model 

trained on sample query mixes and an online interaction-aware 

simulator to estimate workload completion times. No prior 

assumptions are made about the internal workings of the database 

system or the cause of query interactions, making the models 

robust and portable. 

Tozer et al. [28] use a linear regression response time model for 

throttling long running queries. A performance model built using 

linear regression is unable to model non-linear trends in the 

response times of a query. Sheikh et al. [26] propose performance 

modeling based on Gaussian Processes, which can model non-

linear trends, update online and reuse prior knowledge.  

The performance models used in the above literature are typically 

built for workloads accessing a single data tenant. Further, the 

performance models usually provide predictions for response time 

only, and are validated on a local server or a local VM. In 

contrast, our performance model predicts both throughput and 

response times for transactional and analytical workloads, and 

operates over a multi-tenant data-service. We propose usage of 

different classifiers that vary in their modeling scope and 

development effort. We believe that this is the first attempt to 

build such models in a public cloud. 

3. VARIABLES IN BUILDING A 

PERFORMANCE MODEL 
Cloud components such as CPU, memory and I/O suffer from 

high performance unpredictability, especially when compared to a 

physical machine in a local network [25]. This is a major problem 

in building a performance model for workload execution, which is 

used for providing SLAs [19].  

Therefore, we discuss some variables that play an important role 

in performance variance and their possible values in building a 

performance model. As a rule of thumb, the wider the scope of the 

performance model, the greater the variance it has to capture, and 

the lower is its prediction accuracy. The possible combinations of 

these variables in our experimental environment are large so, for 

purposes of the presentation, we choose to use combinations that 
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provide us with modestly generic and accurate performance 

models. Hence, we acknowledge the variables’ presence but 

explore a subset due to practical reasons. 

We view a workload as a set of request types, where each request 

type has zero or more instances. All request instances are 

executed concurrently. Therefore, a workload is synonymous with 

a request mix that executes at a data service at any particular time, 

and we use them interchangeably. A performance model is trained 

and validated against a number of samples, where each sample is 

a different workload or request mix.  

We consider the following variables when building a performance 

model for workloads executing at a data service in a cloud: 

1. Workload and tenant diversity: The workload for a tenant 

may be entirely Online Transaction Processing (OLTP), 

entirely Online Analytical Processing (OLAP) or a mix of 

the two. The OLAP queries and OLTP transactions place 

significantly different requirements on a data service. The 

OLAP queries may take hours to execute, while OLTP 

transactions usually complete in a sub-second timeframe. In 

reality, a data service is rarely an analytical data source. 

Further, multi-tenancy increases the variance in the 

behaviour of a data service, since the tenants compete for 

shared resources such as memory. In this paper, we build 

performance models for any type of workload executing 

against a multi-tenant data service. 

2. Execution Platform: The system attributes, such as number 

of cores, memory and I/O performance, of the cloud VMs do 

not vary linearly [6]. Even the servers hosting the same VM 

type do not necessarily have the same processor type. For 

example, the xlarge VM type in the Amazon cloud is 

powered by either a Xeon or an Optron processor. This 

amplifies the variance many folds, which can be about 35% 

compared to the 0.1% on a local physical machine for the 

CPU [25].  

Given the non-linearity of the VM types and the 

heterogeneity of the processors, the workload behaviour is 

likely to be non-linear across VM types and their host 

servers. In order to limit the variance, we decide to build 

models for specific VM and processor types in this paper. 

3. Day of the week: Schad et al. [25] note that the CPU 

performance of a VM type also varies by the day of a week. 

This increases the variance in the training data for the 

performance model. Daily variance can be explicitly 

modelled using some additional attributes, say day of the 

week, or using techniques like time series. Either approach 

comes at the cost of additional complexity. Further, taking 

daily measurements is possible but labor-intensive. We want 

our performance model to be time independent. However, we 

leave the modelling of daily variance for future work. For 

now, we overlook the daily variance in building and 

validating our performance models. 

4. Model specificity: Building a performance model specific to 

a subset of workloads reduces the variance in the training 

data. Consequently, a workload specific performance model 

is more accurate compared to a model built for any type of 

workload. However, the building effort is exponential in the 

number of workloads in the worst-case scenario. This 

becomes excessively brute force and highly synonymous to a 

lookup table. Instead, we use stratified sampling over the 

workload space to give us a modest coverage. This is 

discussed further in Section 4.1. 

5. Prediction technique: The performance model can employ a 

number of regression methods or base classifiers such as 

linear regression or multi-layer perceptron. These classifiers 

vary in their ability to capture variance at the cost of training 

and runtime complexity. The training complexity places a 

requirement on the number of samples required for a 

representative model. Meanwhile, the runtime complexity 

can undermine the performance model if it is embarrassingly 

large. We compare different classifiers in Section 4.5. 

4. BUILDING THE PERFORMANCE 

MODEL  
Our approach is a typical experiment-driven performance 

modeling method customized to clouds. It consists of three stages: 

(a) sampling the space of possible request types and their 

instances for a request mix, (b) collecting data by executing 

possible request mixes or samples, and (c) pre-processing data and 

building performance models. In addition, we empirically 

determine a suitable number of samples for building a 

representative performance model, and we compare different 

prediction techniques to determine their suitability in our 

performance model. We believe that the latter two exercises need 

not be repeated every time a similar performance model is built.  

4.1 Sampling the space of request mixes 
The possible combinations of request mixes are exponential, so an 

effective sampling approach is essential. Similar to Tozer et al. 

[28], we randomly sample the N-dimensional space, where N is 

the number of request types, using a Latin Hypercube Sampling 

(LHS) protocol [15]. This protocol significantly reduces the 

number of experiments needed while providing a normal coverage 

of the possible request mixes. This is because the distribution of 

all the request instances, R, considering all the samples 

approximates a normal distribution around the mean value of R. 

This results in a somewhat narrow distribution of load, which is 

not desirable for building performance models for widely varying 

loads. That is why Sheikh et al. [26] perform uniform sampling 

across two dimensions: 1) total number of queries, and 2) the 

number of different types of concurrent queries. Nonetheless, we 

still settle for the LHS protocol to control the diversity in the 

samples. 

4.2 Experiment-driven data collection 
Once the samples are obtained, we execute them in a public cloud 

for each VM type. Both the client and the data-service exist in a 

public cloud to avoid communication delay over a WAN. We 

wrap up the tenant databases with the MySQL dbms and the 

ubuntu linux, and store that as an image.1 This greatly simplifies 

the engineering process, and the workloads can start execution as 

soon as the compute and storage resources are available, i.e. when 

the image is instantiated on a VM. On instantiation, the buffer 

pool occupies 80% of the total memory of a VM instance, and is 

partitioned in proportion to the number of tenants. Each sample is 

executed for some time (say around 10m). The request mix 

remains constant throughout the execution of the sample. The 

                                                                 

1 Our image (ami-7bc16e12) is publicly available at: 

http://thecloudmarket.com/owner/966178113014. Once the image 

is instantiated, the clients can connect (ssh in) to the instance and 

access the MySQL dbms as root user with wlmgmt password.  
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client collects run time statistics such as throughput and response 

times for each request type in a sample. This is the most time-

consuming part of the model building process and takes tens of 

hours to complete. Fortunately, this process need not be repeated 

for each request type unlike suitable parameter value search for 

non-linear modeling. 

4.3 Constructing the request mix model 
After all the samples are executed, we collect the sample 

execution results from the data repository of the client. We pre-

process the raw data before training a performance model. The 

pre-processing involves (a) adjusting the scale of the units e.g. 

converting response time from milliseconds to seconds, (b) 

analyzing the data to identify any data patterns such as non-linear 

trends, and (c) cleaning the data e.g. removing outliers. 

Understanding and treating data patterns improves the quality of 

the performance model (discussed later in detail in Section 5.3). 

Then we can train a performance model on the pre-processed data. 

We can use any regression method such as linear regression or 

multi-layer perceptron (mlp). We compare different regression 

techniques on the basis of correlation as discussed in Section 4.5. 

Finally, we validate the performance model against new data 

(presented in Section 5.4). 

4.4 Determining a suitable number of samples 
Traditional wisdom says that more samples produce a more 

representative prediction model. Executing samples is an 

expensive exercise, and therefore, we need some way of 

determining an appropriate sample size that gives reasonable 

accuracy and confidence in the performance model. We see two 

approaches of determining the appropriate number of samples: (a) 

a theoretical approach such as estimating the number of samples 

based on the confidence level and interval, or (b) an empirical 

approach such as using experimentation to determine the 

appropriate number of samples).  

 

Figure 1: Observing changes in correlation coefficients for 

multi-variate linear regression (LR) on a hp-xl VM instance 

against number of training samples (up to 100). 

In this paper, we explore the empirical approach further. We 

choose the High-CPU Extra Large (hp-xl) VM type in the 

Amazon cloud for analyzing the change in the quality of the 

performance model as the number of samples and their observed 

metrics (collectively called training samples) are increased. For 

example, we compare the correlation coefficient for three request 

types (Q6, stock-level and security-detail), each from a different 

database tenant (TPC-H [32], TPC-C [29] and TPC-E [31] 

respectively). Q6 is an analytical query, while the other two 

request types are transactions. The intention is to use diverse 

request types in our analysis. 

We execute about 100 samples obtained using the LHS protocol 

(experimental setup similar to Section 5.1). We divide the training 

samples into 10 intervals. Each interval also contains the training 

samples of its predecessor. We choose multi-variate linear 

regression (LR) as the base classifier for the performance model. 

We build and validate the LR models on each interval using 10 

folds cross-validation. We plot the correlation values of the LR 

models against the number of training samples as shown in Fig. 1. 

We see the greatest gains in accuracy when the numbers of 

training samples are in the first half of the plot. After that, there 

are diminishing returns, and the correlation coefficients seem to 

stabilize. 

We observe a similar pattern for a number of other request types. 

We analyze the effect of the sample size (up to 620) on the 

correlation values of the same request types as shown in Fig 2. 

We see the greatest gains in correlation value for about the first 

150 samples and limiting gains afterwards. This is similar to the 

observation of Sheikh et al. [26], who see greatest gains in 

accuracy for the first 100 samples and diminishing returns 

subsequently. Based on this analysis, the sample size of a few 

hundred should provide us with a representative prediction model. 

 

Figure 2: Observing changes in correlation coefficient for 

multi-variate linear regression (LR) on a hp-xl VM instance 

against the number of training samples (up to 620). 

4.5 Comparison of prediction techniques 
Cautious of high variance in the clouds, we consider a number of 

base classifiers for usage in our performance model. We compare 

four classification techniques: multi-variate linear-regression 

(LR), Gaussian Processes (GP), Multi-Layer Perceptrons (mlp) 

and Support Vector Machine (SVM). We consider two 

implementations of SVM (nuR [9] and SMO [22]). Tozer et al. 

[28] find LR to be sufficient as a base classifier for their 

performance model. LR is a simple regression model, and serves 

as a baseline in our case. Sheikh et al. find GP to be particularly 

accurate and adaptive to unseen request types, so we include that 

in our analysis. SVM has seen major development and fame in the 

last few years due to its robustness and transparency. Compared to 

other classifiers, mlp is a “black-box” type model and serves as an 

alternate comparison point. 

GP and SVM can employ various kernel functions. The kernel 

functions used in SVM rearrange the original training samples 

into a high dimensional space using a set of mathematical 

functions. The motivation is to better identify the boundaries 

between the training samples. The trade-off is higher prediction 

accuracy at the cost of increased computational complexity and 

the risk of over-fitting. 
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We consider two kernel functions: (a) linear, and (b) Radial Basis 

Function (RBF) for both GP and SVM. Linear kernel is similar to 

an identify function, while Radial Basis Function is a popular 

kernel. We use both linear and RBF kernels for GP and SMO with 

their default parameter values in Weka. We consider the default 

parameter values for each classifier to be a good starting point. 

More importantly, Witten et al. [36] suggest that the Weka 

Explorer generally chooses sensible default values for parameters. 

We consider 150 training samples for comparison. We compare 

the correlation values of the classifiers obtained after 10-folds 

cross-validation, in the bar chart (as shown in Fig. 3). We group 

variations of the same technique. Each group is distinguished by a 

different shade of grey. 

 

Figure 3: Comparing correlation values for trade-update. 

About 150 samples have been executed on a large VM 

instance. Variants of the same technique are grouped and 

distinguished by a different shade of grey. 

The high coefficient value of mlp is attractive but possibly 

misleading. A major drawback of a mlp consisting of any hidden 

layers is that the hidden neurons are essentially opaque. Secondly, 

a mlp is prone to over-training. The next candidate is LR, which 

tends to exaggerate the errors in the general case since it 

minimizes the predictions’ squared errors instead of absolute 

errors, which is the case with SMO with a linear kernel i.e. SMO 

(linear). Like LR, the basic idea of SMO (linear) is to find a 

function that approximates the training points well by minimizing 

the predictions’ absolute errors [36]. The crucial difference is that 

all deviations up to a user-specified parameter are ignored. We 

feel that SMO (linear) is an upgrade of LR. It uses SVM 

constructs while minimizing over-fitting right from the outset. 

Linear classifiers are preferable over non-linear classifiers, 

because the latter usually require specification of additional 

parameter values and are prone to over-fitting. Incorrect 

parameter values lead to poor correlation values, and we see that 

in the case of nuR(RBF). 

GP and its variants have been used for performance modelling [5; 

26], and the accuracy of a GP can be further improved by using an 

appropriate kernel and parameter values.  A GP is defined by a 

mean function and a co-variance function [24]. The co-variance 

function itself can have some parameters called hyper-parameters. 

Sheikh et al. [26] develop a configuration model to generate 

hyper-parameter values, which enables fast learning of unknown 

configurations. This is relevant for various types of unseen VMs 

and/or workloads, where prediction models have not been trained 

previously. Unfortunately, the GP implementation in Weka does 

not allow tuning of hyper-parameter values. 

As we show in Section 5.4, SMO (linear) suffices as the base 

classifier in modeling performance for many request and VM 

types. However, it is unsuitable for modeling non-linear trends in 

data, and we use non-linear modeling in such cases. Standard 

SVM training has O(n3) time and O(n2) space complexities, where 

n is the training set size [33]. Platt’s original Sequential Minimal 

Optimization (SMO) is linear in the amount of memory required 

for the training set size, and the training time of SMO empirically 

scales between O(n) and O(n2.2) on various test cases [22]. 

5. EVALUATION 

5.1 Experimental setup and validation 

method 
The LHS protocol draws a specified number of samples from a 

multi-dimensional space given the lower and the upper bounds of 

each dimension (i.e. a request type). The minimum number of 

instances of a request type in a sample mix is 0. Meanwhile, we 

set the upper bound to be the optimal mpl value on a VM type 

(e.g. 14 for small VM type for the request type considered). We 

determine the optimal mpl value for each VM type 

experimentally. 

We use the LHS protocol to generate two sets of samples with 

different random seeds. We consider a larger set (150 samples) for 

training and a smaller set (100 samples) for validation to be 

appropriate. We execute both sets in the Amazon cloud using 

separate VMs and clients. We execute each sample at the data 

service twice. The first round of sample execution is for warm-up, 

and the second round is for taking throughput and response time 

measurements. We employ SMO (linear) for learning. Then, we 

validate the performance model against the test set.  

We use popular metrics from the literature for comparison, 

namely correlation coefficient [28] and mean prediction %errors 

[26]1. Correlation quantifies the similarity between the actual and 

modeled trends – they may be far apart, and yet we can have 

excellent correlation. Meanwhile, prediction errors quantify the 

gap between the predicted and the measured values. Correlation 

coefficient and prediction accuracy are complementary, and we 

use both. 

Table 1: Specifications of the VM types considered in the 

Amazon cloud 

VM 

Type 

Cores 

(#) 

Memory 

(gb) 

Cost/hr($) Optimal 

mpl 

Small  1 1.7 0.065 14 

Large  2 7.5 0.260 75 

Xlarge  4 15 0.520 115 

High correlation coefficients (around 0.80 or above) and low 

prediction errors (around 20% or below) indicate the success of 

our performance model. We set these boundaries based on the 

existing literature [11; 26; 28]. The ideal value of a correlation 

coefficient is one, while the ideal value of mean-%error is zero. 

We consider three heterogeneous VM types for evaluation: (a) 

small, (b) large, and (c) xlarge. They vary in price, processing 

power and capacity to hold data in memory. Further, xlarge VM 

type has either Xeon or Optron processor, and we build our 

                                                                 

1 Percentage-error (%error) = |measured value – predicted 

value|/measured value 
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models for Xeon processor only. The data service is configured to 

occupy most of the available memory on a VM type. The 

specifications of the VM types we used are stated in Table 1. 

5.2 Tenant databases and selection of request 

types 
We use databases in well-known benchmarks as tenant databases 

in evaluating our work. We consider databases of two 

transactional benchmarks (TPC-C [29] and TPC-E [31]), and the 

database of an analytical benchmark (TPC-H [32]). Our 

workloads consist of a mix of queries and transactions from the 

stated benchmarks (as shown in Table 2).  

Table 2. Selected queries and transactions from the standard 

benchmarks 

Benchmark Request types 

TPC-H (OLAP) Q1, Q6, Q12, Q21 

TPC-C (OLTP) new-order, payment 

TPC-E (OLTP) trade-order, trade-update 

A request type in a workload may have multiple request instances 

that execute concurrently. Our workloads are bound by time. Until 

then, a request instance is continuously re-submitted if it finishes 

early. This ensures that the request mix remains constant at a data 

service throughout the time bound or an experimental run. 

We need data-intensive request types, which spend significant 

part of their execution time accessing (reading and/or writing) 

data. We also want diverse request types that place different 

requirements on the data service. Hence, we use both queries and 

(read/write) transactions in our workloads. Many request types 

cannot execute independently. For example, a payment 

transaction in the TPC-C benchmark assumes the presence of an 

unpaid order. In the absence of the unpaid order, the payment 

transaction fails and no change is made to the database. The 

payment failure is the exception rather than the norm, which also 

makes intuitive sense since the customer is not charged twice for 

the same order. 

We execute the samples over tens of hours, which results in 

millions of transactions being executed. We want to avoid 

millions of failed transactions, or worse, a mix of successful and 

failed transactions. The latter skew the execution results, such as 

throughput. Avoiding such transaction failures places a constraint 

on the selection of our workload. That is, the request type is either 

independent, or at most dependent on the other transactions in the 

workload. 

We select a subset of queries and transactions from the 

transactional and analytical benchmarks. We briefly describe each 

benchmark, and the role of the requests chosen from them. TPC-C 

models the principal activities (transactions) of an order-entry 

environment. These transactions include entering and delivering 

orders, recording payments, checking the status of orders, and 

monitoring the level of stocks at the warehouses. The payment 

transactions depend on the results of the new-order transactions, 

while the new-order transactions can execute independently. The 

pair of a new-order and a payment transaction can execute 

independently of the other transactions in the TPC-C benchmark. 

Therefore, we choose both of them for our workloads.  

TPC-E models the activity of a brokerage firm that must manage 

customer accounts, execute customer trade-orders, and manage 

interactions of customers with financial markets. The TPC-E 

benchmark has many “read-only” transactions, but only four 

“read/write” transactions. Amongst the read/write transactions, the 

trade-order can execute independently, while the trade-update 

depends on the results of the trade-order transaction. The trade-

order transactions represent buying or selling a security, and the 

trade-update transactions enable minor corrections or updates to a 

set of trades. We select them as candidate request types for our 

workloads. 

TPC-H is a decision support benchmark. It consists of a suite of 

business oriented ad-hoc queries and concurrent data 

modifications. We experimentally profile data access of all the 

TPC-H queries and calculate the ratios of data access to execution 

time for all the queries. We choose the top four queries (Q1, Q6, 

Q12, Q21) according to the values of ratios ordered decreasingly. 

Q1 reports the amount of business that was billed, shipped, and 

returned. Q6 quantifies the increase in revenue because of the 

elimination of some discounts. Q12 determines whether cheaper 

transportation is adversely affecting the priority of orders. Q21 

identifies suppliers whose shipments are late. 

5.3 Data patterns: Identification and 

treatment 
Our initial attempts at building a performance model with SMO 

(linear) were met with poor results. We discovered different 

patterns in the data upon investigation (as shown in Fig. 4).  

 

Figure 4: Different data classes in the response time 

measurements of Q12 on xlarge VM type. 

Understanding patterns helps us to improve the quality of the 

performance models. For example, it allows us to distinguish 

between outliers and non-linear trends. Removing outliers can 

sometime improve the mean-%errors significantly. Non-linear 

trends may require data transformations and place advanced 

modeling requirements on the performance model. 

We identify patterns in the execution results or the data, and the 

reasons for their existence. In hindsight, they uncover interactions 

among request types and their impacts on the performance 

metrics. For example, a large number of concurrent trade-update 

instances in a request mix reduce the trade-order throughput 

significantly due to locks on the shared tables and frequent 

accesses to disks. We describe the data pattern classes below, and 

their possible treatments before training a SVM.  

5.3.1 Data classes 
We categorize the data into four general classes: (a) zero, (b) 

linear, (c) anomalous, and (d) alternate. We also describe the 

heuristics for identifying each class. In this process, we use the 

Inter-Quartile Range (IQR) filter to identify any obvious oddities.  

 zero class  

 linear class 

 anomalous class   
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Zero class: The zero class represents the samples that have no 

instances of a request type (r) in the request mix, hence zero 

metric value for r (as shown in Fig. 4). This is normal behaviour, 

and we leave them in the data set. Unfortunately, we see some 

non-zero prediction values for the samples in the zero class. A 

simple adjustment to the performance model can fix this glitch. In 

this fix (called zero-fix), the performance model provides zero 

metric values for the samples where the request instance value is 

zero in the request mix. This fix considerably improves the 

correlation relationship between the predicted and measured 

metric values. 

Linear class: The members of the linear class represent a near-

linear change in the throughput or response time when sorted by 

the measured metric value in ascending order (as shown in Fig. 4). 

Naturally, the linear classifier performs best when the data set is 

mostly comprised of training samples in the linear class.  

Anomalous class: The anomalous class represents training 

samples with an unusually high or unusually low value of a metric 

(as shown in Fig. 4). They are few in number, say around 2% or 

less of the entire data set. For example, the training samples in the 

anomalous class for Q1 exist with unusually low response times 

due to the smaller number of concurrent Q1 query instances in the 

request mix in the case of xlarge VM type (discussed in Section 

5.4.3). We leave them in the data set unless they skew the 

validation results significantly. The reason for the divergence is 

sometimes unknown. 

Alternate class: If there are many training samples with 

unusually high or low metric values not following the linear trend, 

then they belong to the alternate class. This is the normal 

behaviour and the alternate class training samples are left in the 

data set. The unusual values for the metrics stand out from the 

values in the linear class due to non-linear trends. For example, 

about 23% of the training data for the trade-order transaction on 

the large VM instance consists of unusually high but legitimate 

metric values. The throughput for trade-order decreases 

exponentially (non-linearly) with increasing number of concurrent 

trade-update instances in the request mix. Catering to the 

combination of alternate and linear classes requires non-linear 

modeling. 

We collectively call all classes, except linear, the irregular class. 

We explored if existing clustering methods can give us the above 

(or different) classes. Wu et al. [37] put k-means in the second 

place in the top 10 algorithms in data mining. Unfortunately, we 

find that k-means and its extension x-means [21], are unable to 

differentiate the subtle boundaries between the classes. 

Raatikainen et al. [23] also find the workload classes obtained by 

k-means to be unsuitable. We want to classify the patterns based 

on the reasons for their existence, which is something not obvious 

to a clustering method. For example, members of zero and 

alternate classes can have zero and unusually small values 

respectively but exist due to different reasons. X-means, however, 

treats them as a single cluster. Therefore, we leave the exploration 

of other clustering methods for another venue, and currently 

identify classes manually. Fortunately, the IQR filter helps us 

partially in this job. We use an offset (of 1.5 ) on IQR over the 

entire data set to find the training samples that standout from the 

rest of the training samples.  

5.4 Validation results 
As mentioned in Section 4.5, we use SMO with a linear kernel as 

our base classifier. We build our performance model with the 

training set, and validate against the test set. We see that the linear 

classifier meets the validation criteria for most request types but 

performs poorly with non-linear trends. We deal with non-linear 

trends in Section 6. 

We analyze the validation results1 of the VM types in the 

following order: large, small and xlarge. This is because only two 

tenants fit in the memory of the large VM type, and it represents a 

“middle” case. All tenants fit in the memory of the xlarge VM 

type, and none fit in the memory of the small VM type. We 

discussed our choice for different request types in Section 5.2. 

Every request type needs a separate SVM. We build response time 

SVMs for the queries Q1, Q6, Q12, and Q21, and throughput 

SVMs for the transactions i.e., new-order, payment, trade-order, 

and trade-update. 

5.4.1 Large VM type (optimal mpl=75) 
We evaluate the SVMs of the queries first. We plot the frequency 

histogram of observed response times of Q1 after excluding 

members of the zero class (as shown in Fig. 5). We see that the 

distribution is normal-like. The frequency histograms for the 

remaining queries are similar to that in Fig. 5. 

 

Figure 5: Frequency histogram for observed response times of 

Q1 on the large VM type instance. 

The evaluation metrics are reported in Table 3. The SVMs for the 

queries have near-ideal correlation coefficients and single digit 

mean-%errors. We attribute the errors to a few anomalies which 

exist with unusually low response times due to the smaller number 

of concurrent queries in the request mix. 

Table 3: Evaluation metrics for the response time SVMs built 

for the large VM type 

 Q1 Q6 Q12 Q21 

Correlation 

coefficient 

0.99 1 0.96 0.97 

mean-%error 3.86 2.71 9.28 5.11 

For example, unusually low response times are observed for Q12 

as there is a smaller number of concurrent Q12 queries in the 

request mix compared to the request mixes belonging to other 

classes. This situation apparently leads to less load on the data 

service and hence lower response times for Q12.  

                                                                 

1 The raw data used to build the performance model is present at: 

http://research.cs.queensu.ca/home/mian/index_files/Page485.ht

m 
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We plot the correlation relationship between the predicted and 

actual response times for Q1 and Q12 in Fig. 6 and Fig. 7, 

respectively. 

 

Figure 6: Predicted vs. measured response times for Q1 on a 

large VM type. 

The correlation plots for the remaining queries are similar. The 

SVMs for all queries have excellent correlation coefficients (close 

to 1), and low mean-%errors. Therefore, they all meet the 

validation requirement. 

 

Figure 7: Predicted vs. measured response time for Q12 on a 

large VM type. 

Next, we evaluate the SVMs for transactions. We state the 

evaluation metrics for the throughput SVMs in Table 4. The 

SVMs for the new-order and payment transactions have excellent 

correlation coefficients and acceptable mean-%errors. Therefore, 

they pass the validation test. The mean-%errors are generally 

higher than their query counter-part. The irregular class for new-

order and payment mostly contains members of zero class and a 

few anomalies. The anomalies consist of unusually high 

throughputs, which are caused by a high number of concurrent 

new-order and payment transactions in a request mix. 

Table 4: Evaluation metrics for the throughput SVMs built 

for the large VM type 

 New-

order 

Payment Trade-

order 

Trade-

update 

Correlation 

coefficient 

0.97 0.97 0.58 0.80 

mean-%error 14.79 14.65 111.69 13.61 

The irregular class for trade-update also contains mostly members 

of zero class and a few anomalies. The anomalies have lower 

numbers of query instances compared to the training samples in 

the linear class. This suggests that the data service is under-

loaded, and is able to execute more transactions. The trade-update 

has acceptable mean-%error but the correlation coefficient is on 

the borderline. We plot the frequency histogram of observed 

throughput for trade-update after excluding members of zero class 

in Fig. 8. We see that the distribution is positively skewed. 

 

Figure 8: Frequency histogram for observed throughput for 

trade-update on the large VM type instance. 

Regression assumes that variables have normal distributions, and 

not non-normally distributed variables (highly skewed or kurtotic 

variables, or variables with substantial outliers) can distort 

relationships and significance tests [20]. It is possible to employ 

transformations (e.g. square root, log, or inverse), to the improve 

normality, but this complicates the interpretation of the results, 

and should be used in an informed manner. Due to an acceptable 

mean-%error, we do not perform any data transformation and 

consider that the trade-update SVM passes the validation test on 

the border. 

Meanwhile, trade-order has a large irregular class, which is 

mostly comprised of members from the alternate class. For 

example, we see 34 irregularities in the training set. This is about 

23% of the training data, and represents an unusually large 

proportion. Inspecting the training data for the respective samples, 

we see that the number of concurrent request instances of trade-

update is low in the alternate class. The trade-order and trade-

update share some tables in their operations [31]. In addition, the 

trade-update transaction generates a high disk I/O because it looks 

for older records that are usually not in the buffer pool due to their 

age and frequency of access [30]. 

We suspect that the low trade-order throughput (in the linear 

class) is due to the high lock contention over the shared tables and 

frequent access to the disk by trade-update. We perform a simple 

experiment to confirm this suspicion, in which we set the trade-

update instances to zero in all the samples. We see very high 

throughput values for trade-order, and this confirms our suspicion. 

The throughput for trade-order decreases exponentially (non-

linearly) with increasing number of concurrent trade-update 

instances in the request mix. 

We plot the frequency histogram of observed throughput for 

trade-order after excluding members of zero class in Fig. 9. We 

see that the distribution is heavily skewed with a long tail. We 

find that applying common transformations such as square root, 

log and inverse do not improve the normality of the measured 

throughput. In this case, the non-linearity in the data must be 
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explicitly modeled using a non-linear kernel for SVM, for 

example. We perform non-linear modeling in Section 6. The 

trade-order SVM fails the validation test with SMO (linear). 

 

Figure 9: Frequency histogram for observed throughputs for 

trade-order on the large VM type instance. 

5.4.2 Small VM type (optimal mpl=14) 
First, we evaluate the SVMs of the queries (see Table 5). The 

SVMs for Q1, Q12 and Q21 have excellent correlation values and 

acceptable mean-%errors, consequently, passing the validation 

test. 

Table 5: Evaluation metrics for the response time SVMs built 

for the small VM type 

 Q1 Q6 Q12 Q21 

Correlation 

coefficient 

0.90 0.86 0.90 0.90 

Mean-%error 15.65 25.43 13.07 17.56 

As highlighted in Table 5, Q6 has a relatively poor correlation 

value and high mean-%error. We observe three classes in the Q6 

data set: (a) zero (28 members), (b) linear (65 members), and (c) 

alternate (7 members). On average, the alternate class has a higher 

number of concurrent request instances compared to the linear 

class. We believe this situation leads to a greater load on the data 

service and hence higher response times for Q6. The alternate and 

linear classes represent non-linear trends, and the Q6 SVM does 

not meet validation requirement due to poor mean-%error. 

Next, we evaluate the throughput SVMs for the transactions as 

shown in Table 6. The SVMs for new-order and payment have 

excellent correlation coefficients and acceptable mean-%errors. 

Therefore, they pass the validation test. 

Table 6: Evaluation metrics for the throughput performance 

model built for the small VM type  

 New-

order 

Payment Trade-

order 

Trade-

update 

Correlation 

coefficient 

0.96 0.97 0.90 0.63 

Mean-%error 13.52 9.72 1465.84 34.80 

Interestingly, trade-order’s SVM has a high correlation value and 

an extremely poor mean-%error. Examining the samples (request 

mixes) in the test set, we see that the resulting throughput values 

belong to three classes: (a) linear (62 members), (b) zero (29 

members), and (c) alternate (10 members). We find that the 

number of concurrent trade-update transactions is at most two in 

any request mix. Consequently, the trade-order has high 

throughput (in tens) for most samples in the test set (i.e. linear 

class). As noted earlier, providing a performance model for both 

linear and alternate classes with acceptable evaluation metric 

values requires modeling of non-linear trends. Therefore, the 

SVM for trade-order fails validation. 

Similarly, trade-update consists of three classes in the test set : (a) 

linear  (56 members), (b) zero (29 members), and (c) alternate (15 

members). The respective SVM performs poorly and fails 

validation. 

5.4.3 Xlarge VM type (optimal mpl=115) 
First, we evaluate the SVMs of the queries as shown in Table 7. 

The SVMs for all the queries have excellent correlation values 

and mean-%errors within the set boundary. Therefore, they all 

pass the validation test. All SVMs except one (i.e. Q21) have 

single digit mean-%errors. The training samples for Q21 fall in 

three classes: (a) linear, (b) zero, and (c) anomalous. The 

anomalies exist with unusually low response times due to the 

smaller number of concurrent Q21 queries in the request mix.  

Table 7: Evaluation metrics for the response time SVMs built 

for the xlarge VM type 

 Q1 Q6 Q12 Q21 

Correlation 

coefficient 

0.99 0.99 0.93 0.93 

mean-%error 5.46 3.21 5.86 11.72 

Table 8: Evaluation metrics for the throughput SVMs built 

for the xlarge VM type 

 New-

order 

Payment Trade-

order 

Trade-

update 

Correlation 

coefficient 

0.97 0.97 0.46 0.87 

mean-%error 18.26 16.68 94.77 14.03 

Next, we evaluate the throughput SVMs for the transactions as 

shown in Table 8. The SVMs for new-order and payment have 

excellent correlation coefficients and acceptable, though high, 

mean-%errors. They pass the validation requirements. We 

attribute the high mean-%errors for the new-order SVM to a few 

anomalies in the new-order test set. The anomalies exist due to a 

high number of concurrent new-order transactions and a low 

number of other concurrent request types. The same is true for the 

payment transaction. 

We find a poor correlation coefficient for the SVM of trade-order. 

Like the data sets of trade-order in the case of large VM type, we 

see that many training samples belong to the alternate class. The 

throughput for trade-order decreases exponentially (non-linearly) 

with an increasing the number of concurrent trade-update 

instances in the request mix. The trade-order SVM fails the 

validation test with SMO (linear). 

The irregular class for trade-update contains members of two 

classes: (a) zero, and (b) anomalous. The numbers of trade-order 

and trade-update request instances in the request mix are similar 

across anomalous and linear classes. However, the anomalous 
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class has a lower number of query instances compared to the 

samples in the linear class. This suggests that the data service is 

under-loaded, and is able to execute more transactions. This 

cannot be said conclusively given the small size of the anomalous 

class (only 3 members in the test set), and we leave it as an 

observation. We also leave all anomalies in the data sets for trade-

update. We still get good correlation value with acceptable mean-

%error. Therefore, the trade-update SVM passes the validation 

test. 

6. MODELING NON-LINEAR 

BEHAVIOUR 
We have seen that SMO (linear) is sufficient for many request 

types, particularly where an alternate trend in the performance is 

non-existent. We consider a popular (non-linear) RBF Kernel to 

cater to the combination of linear and alternate trends. We further 

explore request types that failed their validation test with SMO 

(linear). We demonstrate the use of the RBK Kernel with the 

small VM type, but the process is the same for all the VM types. 

We choose the small VM type for demonstration because the 

SMO (linear) for the small VM type fails for the highest number 

of requests amongst all the VM types considered.  

Appropriate kernel and parameter settings can greatly improve the 

SVM classification accuracy. Suitable values for the penalty 

parameter, C, and the kernel function parameter, γ, are unknown 

beforehand. For medium-sized problems, the grid search 

approach is an efficient way to find the best C and γ [16]. In grid 

search, pairs of (C, γ) are tried and the one with the best cross-

validation accuracy is chosen.  

Before the grid search, we revise our data set to give us more 

training data out of the existing data set. This is possible using the 

0.632 bootstrap sampling method [14]. We aggregate the training 

and test data sets to provide us with a combined data set. We 

remove members of the zero class from the aggregated data set. 

This is because we can augment the performance model to 

provide zero values for samples belonging to the zero class, and 

therefore we do not need to train the performance model to cater 

for zero class. The revised aggregated dataset of n training 

samples is randomly sampled n times, with replacement, to give a 

learning dataset of n training samples. Because some elements in 

the learning dataset are (almost certainly) repeated, there must be 

some instances in the aggregated dataset that have not been picked 

by the random selection, which become part of the validation set. 

The size of the validation set is approximately 1/3rd of n. In this 

way, we retain the property of unseen training samples for 

validation similar to the test set. As stated in Section 5.1, training 

and test samples were generated randomly using different seeds. 

Then, we perform a grid search on the learning set using 10-folds 

cross-validation. In this search, we explore exponentially growing 

sequences of C (2-5, 2-3, …, 215) and γ (2-15, 2-11, …, 25), since Hsu 

et al. [16] find this to be a practical method to identify good 

parameter values. They further recommend a coarse grid search 

first, and then a finer grid search on a “promising” region. Once 

the search identifies good kernel parameters, we train a SMO 

(RBF) with these parameters using the entire learning set and 

validate against the validation set. We use this search, train and 

validate method for Q6.  

We find further data transformations for trade-order and trade-

update throughput to be appropriate. We discuss the 

transformation and the justification below. We sort the training 

samples of the trade-order transaction in the increasing order of 

throughput value. We plot throughput values against the instance 

numbers. Despite removing the zero class, the trade-order trend is 

still fairly non-uniform (as shown in Fig 10). While it is possible 

to model the trend, there is a large chance of over-fitting to obtain 

high accuracy given the number of bends and turns required for 

the curve fitting this trend. 

 

Figure 10: Trade-order throughput values sorted ascendingly. 

Instead, the level of symmetry increases significantly if we apply 

a logarithmic function (as shown in Fig. 11). The bends are near-

linear, and there is only one turn. We can train a SVM on the 

transformed trend without being overly concerned about over-

fitting. Therefore, we find the above data transformations for 

trade-order and trade-update throughput to be appropriate and 

apply them to the aggregated data set prior to bootstrap sampling. 

 

Figure 11: Ascendingly sorted logarithmic trade-order 

throughput values. 

We state the evaluation metrics for the non-linear SVMs trained 

using the revised training and validation schemes in Table 9. We 

find that the mean-%errors greatly improve, and the correlation 

coefficients are excellent for the two request types when we 

explicitly model the non-linear trends. 

Table 9: Evaluation metrics for the non-linear SVMs built for 

the small VM type 

 Q6 Trade-order Trade-update 

Correlation coefficient 0.97 0.98 0.79 

mean-%error 8.09 3.43 3.92 

We can further improve the representation of the real trend in the 

model for the above request types. Presently, linear and alternate 

class sizes are not in balance. A good strategy for producing a 

high accuracy classifier on imbalanced data is to classify any 
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example as belonging to the majority class, which is called the 

majority-class classifier [8]. This is what we have done although it 

may not be very useful in practice. The problem with the success 

rate is that it assigns equal importance to errors made on examples 

belonging to the majority class and the minority class. To address 

the imbalance in the data, we need to assign different penalty 

parameter values for misclassification to each class. 

We further observe that the workload behaviour changes 

dramatically depending on the amount of trade-update 

transactions in the request mix. For example, we see different 

phases in the trade-order throughput (as shown in Fig. 10). We 

can model each phase separately. This will likely: (a) improve the 

representation of the real trend in the model, and (b) avoid over-

fitting. However, this comes at the cost of identifying phases and 

boundaries between them. The process of identification may 

require validation. Presently, we leave class size and phase aware 

modeling as part of the future work. 

7. DISCUSSION 
We validate the performance models for the VM types that vary in 

their system capacity, and in particular their physical memory. As 

a result, the optimal mpl values as well as the range on the number 

of request instances vary on these VM types. The behaviour of a 

request is affected by other concurrently executing requests both 

in terms of the request types and their number of instances. For 

example, a smaller number of query instances in the request mix 

results in less load, and consequently an overall lower response 

time and for queries high throughput for transactions. We also 

observed that lock contentions and interactions between 

concurrently executing requests can have a significant impact on 

the performance of a database system. This supports the claim by 

Ahmed et al. [3], that interactions between concurrently executing 

requests can have a significant impact on the performance of a 

database system. 

We showed that the linear classifier is suitable for 19 out of 24 

request types, and can be modeled using an out-of-the-box tool 

such as Weka. However, it fails where there are non-linear trends 

in the performance data. In such cases, we explore non-linear 

modeling methods that require choosing a suitable kernel and a 

search for appropriate parameter values. Efficient search 

approaches such as the grid search can take several hours. As a 

result, we suggest that the linear classifier be used first to train the 

performance model, and in the case of unsatisfactory results, non-

linear modeling be used as the next step. 

Osborne et al. [20] state a number of assumptions for multiple 

regression that the researchers should test. We see that their 

assumptions (e.g. variables are normally distributed) do not 

always hold in our case. For example, the throughput distribution 

for trade-order in case of large VM type is highly skewed. Simple 

transformations, such as inverse, do not improve the normality of 

the distribution. Instead, explicit modeling of non-linear trends is 

required. We find grid search over RBF kernel promising, and see 

significant improvements in the evaluation metrics.  

Our workloads contain at most eight request types each with a 

different number of instances. This is reasonable since TPC-C and 

TPC-E benchmarks have five and ten transactions, respectively, 

although TPC-H has 22 queries. We believe a realistic data 

service is rarely a read-only or a write-only service. It usually 

serves a combination of transactional and analytical workloads. 

8. SUMMARY 
We employ an experiment-driven approach for building a 

performance model applicable in a cloud environment. The 

samples are generated using stratified sampling, and 

measurements are collected by executing these samples in a 

public cloud. We provide a comparison of different underlying 

prediction techniques based on accuracy, and justify our choice. 

Some data patterns are identified and their possible treatments are 

suggested. Then, we train our performance models using the 

measured and treated data. The performance models are judged 

against multiple evaluation metrics, and validated against fresh 

data. Finally, we analyze the performance models built for 

different types of Amazon VMs accessible on their  public IaaS 

EC2 cloud. 

Recent literature typically builds performance models for a single 

database tenant, provides response time predictions only, and 

validates the models on a local server or a local VM. Our 

performance model predicts throughput for transactions, and 

response times for queries. The performance model is built for 

workloads executing at a multi-tenant data-service hosted in a 

cloud. 

Presently, the performance model provides raw predictions 

without expressing any confidence in them. This is an important 

issue since the errors are cumulative in our framework, and we 

need some method of managing the errors across the framework 

components. Therefore, we intend to look at mechanisms which 

manage the error levels across the framework. 

We also intend to make the performance model adapt online, 

which is particularly relevant for provide predictions for unseen 

request types and the cloud environment. The magnitude of the 

errors may be large in the beginning but would reduce over time 

as the models learns the new setting. 
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