Benchmarking Approach for Designing a MapReduce
Performance Model

Zhuoyao Zhang
University of Pennsylvania
zhuoyao@seas.upenn.edu

ABSTRACT

In MapReduce environments, many of the programs are re-
used for processing a regularly incoming new data. A typi-
cal user question is how to estimate the completion time of
these programs as a function of a new dataset and the clus-
ter resources. In this work®, we offer a novel performance
evaluation framework for answering this question. We ob-
serve that the execution of each map (reduce) tasks consists
of specific, well-defined data processing phases. Only map
and reduce functions are custom and their executions are
user-defined for different MapReduce jobs. The executions of
the remaining phases are generic and depend on the amount
of data processed by the phase and the performance of un-
derlying Hadoop cluster. First, we design a set of parame-
terizable microbenchmarks to measure generic phases and to
derive a platform performance model of a given Hadoop clus-
ter. Then using the job past executions, we summarize job’s
properties and performance of its custom map/reduce func-
tions in a compact job profile. Finally, by combining the
knowledge of the job profile and the derived platform per-
formance model, we offer a MapReduce performance model
that estimates the program completion time for processing a
new dataset. The evaluation study justifies our approach and
the proposed framework: we are able to accurately predict
performance of the diverse set of twelve MapReduce applica-
tions. The predicted completion times for most experiments
are within 10% of the measured ones (with a worst case re-
sulting in 17% of error) on our 66-node Hadoop cluster.

Categories and Subject Descriptors: C.4 [Com-
puter System Organization] Performance of Systems,
D.2.6.[Software] Programming Environments.

General Terms: Measurement, Performance, Design.

Keywords: MapReduce, benchmarking, job profiling, per-
formance modeling

1. INTRODUCTION

MapReduce and Hadoop represent an economically com-
pelling alternative for efficient large scale data processing

1This work was completed during Z. Zhang’s internship at HP Labs.
Prof. B. T. Loo and Z. Zhang are supported in part by NSF grants
CNS-1117185 and CNS-0845552.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-0519-8/11/03 ...$15.00.

Ludmila Cherkasova
Hewlett-Packard Labs
lucy.cherkasova@hp.com

253

Boon Thau Loo
University of Pennsylvania
boonloo@seas.upenn.edu

and cost-effective analytics over “Big Data” in the enterprise.
There is a slew of interesting applications associated with
live business intelligence that require completion time guar-
antees. While there were a few research efforts to design
different models and approaches for predicting performance
of MapReduce applications [6, 5, 8, 9, 10], this question still
remains a challenging research problem. Some of the past
modeling efforts aim to predict the job completion time by
analyzing the execution times’ distribution of map and reduce
tasks [9], and deriving some scaling factors for these execution
times when the original MapReduce application is applied for
processing a larger dataset [10, 8]. Some other efforts [6, 5,
8] aim to perform a more detailed (and more expensive) job
profiling at a level of phases that comprise the execution of
map and reduce tasks.

In this work, we offer a new approach for designing a
MapReduce performance model that can efficiently predict
the completion time of a MapReduce application for process-
ing a new dataset as a function of allocated resources. In
some sense, it combines the useful rationale of the detailed
phase profiling method [6] in order to more accurately esti-
mate durations of map and reduce tasks, and then apply fast
and efficient analytical models designed in [9]. However, our
new framework proposes a very different approach to estimate
the execution times of these job phases. We observe that the
executions of map and reduce tasks consist of specific, well-
defined data processing phases. Only map and reduce func-
tions are custom and their computations are user-defined for
different MapReduce jobs. The executions of the remaining
phases are generic, i.e., strictly regulated and defined by the
Hadoop processing framework. The execution time of each
generic step depends on the amount of data processed by the
phase and the performance of underlying Hadoop cluster. In
the earlier papers [6, 5, 8], profiling is done for all the phases
(including the generic ones) for each application separately.
Then these measurements are used for predicting a job com-
pletion time. In our work, we design a set of parameterizable
microbenchmarks to measure generic phases and to derive a
platform performance model of a given Hadoop cluster. The
new framework consists of the following key components:

e A set of parameterizable microbenchmarks to measure
and profile different phases of the MapReduce process-
ing pipeline of a given Hadoop cluster. These mi-
crobenchmarks might be executed in a small cluster
deployment, e.g., having only 5 nodes. This test clus-
ter employs a similar hardware and Hadoop configura-
tion as a production cluster, and its advantage is that
the benchmarking process does not interfere with the
production jobs, and therefore, can be performed much
faster while testing a large set of diverse processing pat-
terns. The input parameters of microbenchmarks im-

pact the amount of data processed by different phases
of map and reduce tasks. We concentrate on profil-
ing of general (non-customized) phases of MapReduce
processing pipeline. Intuitively, the executions of these
phases on a given Hadoop cluster are similar for dif-
ferent MapReduce jobs, and the phase execution time
mostly depends on the amount of processed data. By
running a set of diverse benchmarks on a given Hadoop
cluster we collect a useful training set that characterizes
the execution time of different phases while processing
different amounts of data.

e A platform profile and a platform performance model
that characterize the execution time of each generic
phase during MapReduce processing. Using the created
training set and a robust linear regression we derive a
platform performance model that estimates each phase
duration as a function of processed data.

e A compact job profile for each MapReduce application of
interest that is extracted from the past job executions.
It summarizes the job’s properties and performance of
its custom map and reduce functions. This job profile
captures the inherent application properties such as the
job’s map (reduce) selectivity, i.e., the ratio of the map
(reduce) output to the map (reduce) input. This pa-
rameter describes the amount of data produced as the
output of the user-defined map (reduce) function, and
therefore it helps in predicting the amount of data pro-
cessed by the remaining generic phases.

e A MapReduce performance model that combines the
knowledge of the extracted job profile and the derived
platform performance model to estimate the completion
time of the programs for processing a new dataset.

The proposed evaluation framework aims to divide i) the
performance characterization of the underlying Hadoop clus-
ter and 4i) the extraction of specific performance properties
of different MapReduce applications. It aims to derive once
an accurate performance model of Hadoop’s generic execu-
tion phases as a function of processed data, and then reuse
this model for characterizing performance of generic phases
across different applications (with different job profiles).

We validate our approach using a set of 12 realistic appli-
cations executed on a 66-node Hadoop cluster. We derive the
platform profile and platform performance model in a small
5-node test cluster, and then use this model together with
extracted job profiles to predict the job completion time on
the 66-node Hadoop cluster. Our evaluation shows that the
designed platform model accurately characterizes different ex-
ecution phases of MapReduce processing pipeline of a given
cluster. The predicted completion times of most considered
applications are within 10% of the measured ones.

The rest of this paper is organized as follows. Section 2
provides MapReduce background and presents our phase pro-
filing approach. Section 3 describes microbenchmarks and
objectives for their selection. Sections 4 , 5 introduce main
performance models that form a core of the proposed frame-
work. Section 6 evaluates the accuracy and effectiveness of
our approach. Section 7 outlines related work. Section 8
presents conclusion and future work directions.

2. MAPREDUCE PROCESSING PIPELINE

In the MapReduce model [4], the main computation is ex-
pressed as two user-defined functions: map and reduce. The
map function takes an input pair and produces a list of in-
termediate key/value pairs. The reduce function then merges
or aggregates all the values associated with the same key.
MapReduce jobs are executed across multiple machines: the

map stage is partitioned into map tasks and the reduce stage
is partitioned into reduce tasks.

The execution of each map (reduce) task is comprised of
a specific, well-defined sequence of processing phases (see
Fig. 1). Note, that only map and reduce phases with cus-
tomized map and reduce functions execute the user-defined
pieces of code. The execution of the remaining phases are
generic (i.e., defined by Hadoop code), and mostly depend
on the amount of data flowing through a phase. Our goal is
to derive a platform performance model that predicts a dura-
tion of each generic phase on a given Hadoop cluster platform
as a function of processed data. In order to accomplish this,
we plan to run a set of microbenchmarks that create different
amounts of data for processing per map (reduce) tasks and
for processing by their phases. We need to profile a duration
of each generic phase during the task execution and derive
a function that defines a phase performance as a function of
the processed data from the collected measurements.

Barrier between Map

and Reduge Stages

Output Data
Input Data Intermediate Data P

! Mie‘Ta_sk

''''''''' i) (e]
user-defined T
functions

Figure 1: MapReduce Processing Pipeline.

Map task consists of the following generic phases:

1. Read phase — a map task typically reads a block (e.g.,
64 MB) from the Hadoop distributed file system (HDFS).
However, written data files might be of arbitrary size, e.g.,
70 MB. In this case, there will be two blocks: one of 64 MB
and the second of 6 MB, and therefore, map tasks might read
files of varying sizes. We measure the duration of the read
phase as well as the amount of data read by the map task.

2. C(Collect phase — this generic phase follows the execu-
tion of the map phase with a user-defined map function. We
measure the time it takes to buffer map phase outputs into
memory and the amount of generated intermediate data.

3. Spill phase — we measure the time taken to locally sort
the intermediate data and partition them for the different
reduce tasks, applying the combiner if available, and then
writing the intermediate data to local disk.

4. Merge phase — we measure the time for merging different
spill files into a single spill file for each destined reduce task.

Reduce task consists of the following generic phases:

1. Shuffle phase — we measure the time taken to transfer
intermediate data from map tasks to the reduce tasks and
merge-sort them together. We combine the shuffie and sort
phases because in the Hadoop implementation, these two sub-
phases are interleaved. The processing time of this phase
depends on the amount of intermediate data destined for each
reduce task and the Hadoop configuration parameters. In
our testbed, each JVM (i.e., a map/reduce slot) is allocated
700 MB of RAM. Hadoop sets a limit (~46% of the allocated
memory) for in-memory sort buffer. The portions of shuffled
data are merge-sorted in memory, and a spill file (~320 MB)
is written to disk. After all the data is shuffled, Hadoop
merge-sorts first 10 spilled files and writes them in the new
sorted file. Then it merge-sorts next 10 files and writes them
in the next new sorted file. At the end, it merge-sorts these
new sorted files. Thus, we can expect that the duration of the
shuffle phase might be approximated with a different linear
function when the intermediate dataset per reduce task is
larger than 3.2 GB in our Hadoop cluster. For a differently
configured Hadoop cluster, this threshold can be similarly
determined from the cluster configuration parameters.

2. Write phase — this phase follows the execution of the

254

reduce phase that executes a custom reduce function. We
measure the amount of time taken to write the reduce output
to HDFS.

Note, that in platform profiling we do not include phases
with user-defined map and reduce functions. However, we
do need to profile these custom map and reduce phases for
modeling the execution of given MapReduce applications:

e Map (Reduce) phase — we measure a duration of the en-
tire map (reduce) function and the number of processed
records. We normalize this execution time to estimate
a processing time per record.

Apart from the phases described above, each executed task
has a constant overhead for setting and cleaning up. We
account for these overheads separately for each task.

For accurate performance modeling it is desirable to mini-
mize the overheads introduced by the additional monitoring
and profiling technique. There are two different approaches
for implementing phase profiling.

1. Currently, Hadoop already includes several counters
such as the number of bytes read and written. These coun-
ters are sent by the worker nodes to the master periodically
with each heartbeat. We modified the Hadoop code by adding
counters that measure durations of the six generic phases to
the existing counter reporting mechanism. We can activate
the subset of desirable counters in the Hadoop configuration
for collecting the set of required measurements.

2. We also implemented the alternative profiling tool in-
spired by Starfish [6] approach based on BTrace — a dynamic
instrumentation tool for Java [1]. This approach does have
a special appeal for production Hadoop clusters because it
has a zero overhead when monitoring is turned off. However,
in general, the dynamic instrumentation overhead is much
higher compared to adding new Hadoop counters directly in
the source code. We instrumented selected Java classes and
functions internal to Hadoop using B7Trace in order to mea-
sure the time taken for executing different phases.

In this work, first, we use profiling to create a platform per-
formance model. We execute a set of microbenchmarks (de-
scribed in the next Section 3) and measure the durations of
six generic execution phases for processing different amount
of data: read, collect, spill, and merge phases for the map
task execution, and shuffle and write phases in the reduce
task processing. This profiling is done on a small test clus-
ter (5-nodes in our experiments) with the same hardware and
configuration as the production cluster. While for these ex-
periments both profiling approaches can be used, the Hadoop
counter-based approach is preferable due to its simplicity and
low overhead, and that the modified Hadoop version can be
easily deployed in this test environment.

The MapReduce performance model needs additional mea-
surements that characterize the execution of user-defined map
and reduce functions of a given job. For profiling the map and
reduce phases of the given MapReduce jobs in the production
cluster we apply our alternative profiling tool that is based on
BTrace approach. Remember, this approach does not require
Hadoop or application changes, and can be switched on for
profiling a targeted MapReduce job of interest. Since we only
profile map and reduce phase executions the extra overhead
is relatively small.

3. MICROBENCHMARKS AND PLATFORM
PROFILE

We generate and perform a set of parameterizable mi-
crobenchmarks to characterize execution times of generic
phases for processing different data amounts on a given
Hadoop cluster by varying the following parameters:

1. Input size per map task (Mi"p): This parameter con-
trols the size of the input read by each map task. There-
fore, it helps to profile the Read phase durations for
processing different amount of data.

2. Map selectivity (M*®'): this parameter defines the ra-
tio of the map output to the map input. It controls
the amount of data produced as the output of the map
function, and therefore directly affects the Collect, Spill
and Merge phase durations in the map task. Map out-
put determines the overall amount of data produced for
processing by the reduce tasks, and therefore impacting
the amount of data processeded by Shuffle and Reduce
phases and their durations.

3. A number of map tasks N™P: increasing this param-
eter helps to expedite generating the large amount of
intermediate data per reduce task.

4. A number of reduce tasks N"°%: decreasing this parame-
ter helps to control the number of reduce tasks to expe-
dite the training set generation with the large amount
of intermediate data per reduce task.

Thus, each microbenchmark M B; is parameterized as

MB; = (M[™, M, N"*" Nj).

Each created benchmark uses input data consisting of 100
byte key/value pairs generated with TeraGen [3], a Hadoop
utility for generating synthetic data. The map function sim-
ply emits the input records according to the specified map
selectivity for this benchmark. The reduce function is defined
as the identity function. Most of our benchmarks consist of a
specified (fixed) number of map and reduce tasks. For exam-
ple, we generate benchmarks with 40 map and 40 reduce tasks
each for execution in our small cluster deployments with 5
worker nodes (see setup details in Section 6). We run bench-
marks with the following parameters: M™P={2MB, 4MB,
8MB, 16MB, 32MB, 64MB}; M**'={0.2, 0.6, 1.0, 1.4, 1.8}.
For each value of M and M*®, a new benchmark is exe-
cuted. We also use benchmarks that generate special ranges
of intermediate data per reduce task for accurate characteri-
zation of the shuffle phase. These benchmarks are defined by
N™={20,30,...,150,160}; M"P = 64M B, M**" = 5.0 and
N7 = 5 which result in different intermediate data size per
reduce tasks ranging from 1 GB to 12 GB.

We generate the platform profile by running a set of our mi-
crobenchmarks on the small 5-node test cluster that is similar
to a given production Hadoop cluster. We gather durations
of generic phases and the amount of processed data for all
executed map and reduce tasks. A set of these measurements
defines the platform profile that is later used as the training
data for a platform performance model:

e Map task processing: in the collected platform profiles,
we denote the measurements for phase durations and
the amount of processed data for read, collect, spill,
and merge phases as (Duri, Datai), (Durz, Datas),
(Durs, Datas), and (Durs, Datas) respectively.

e Reduce task processing: in the collected platform pro-
files, we denote phase durations and the amount of pro-
cessed data for shuffle and write as (Durs, Datas) and
(Durg, Datag) respectively.

Figure 2 shows a small fragment of a collected platform pro-
file as a result of executing the microbenchmarking set. There
are six tables in the platform profile, one for each phase. Fig-
ure 2 shows fragments for read and collect phases. There are
multiple map and reduce tasks that process the same amount
of data in each microbenchmark. This is why there are multi-
ple measurements in the profile for processing the same data
amount.

255

Row Data Read Row Data Collect
number MB msec number MB msec
g Dataq Dury 7 Datas Dursg
1 16 2010 1 8 1210
2 16 2020 2 8 1350

Figure 2: A fragment of a platform profile for read and
collect phases.

4. PLATFORM PERFORMANCE MODEL

Now, we describe how to create a platform performance
model Mppqses which characterizes the phase execution as a
function of processed data. To accomplish this goal, we need
to find the relationships between the amount of processed
data and durations of different execution phases using the set
of collected measurements. Therefore, we build siz submod-
els My, Ms, ..., M5, and Mg that define the relationships for
read, collect, spill, merge, shuffle, and write respectively of a
given Hadoop cluster. To derive these submodels, we use the
collected platform profile (see Figure 2).

Below, we explain how to build a submodel M;, where 1 <
i < 6. By using measurements from the collected platform
profiles, we form a set of equations which express a phase
duration as a linear function of processed data. Let Data] be
the amount of processed data in the row j of platform profile
with K rows. Let Dur] be the duration of the corresponding
phase in the same row j. Then, using linear regression, we
solve the following sets of equations (for each i =1,2,--- ,6):

Ai+Bi~Dataz :Durf, where j=1,2,--- K (1)

To solve for (A;, B;), one can choose a regression method
from a variety of known methods in the literature (a popular
method for solving such a set of equations is a non-negative
Least Squares Regression). To decrease the impact of occa-
sional bad measurements and to improve the overall model
accuracy, we employ robust linear regression [7].

Let (A;, B;) denote a solution for the equation set (1). Then
M; = (A;, B;) is the submodel that defines the duration of ex-
ecution phase i as a function of processed data. The platform
performance model is Mprases = (M1, M2, ..., M5, Ms).

In addition, we have implemented a test to verify whether
two linear functions may provide a better fit for approxi-
mating different segments of training data (ordered by the
increasing data amount) instead of a single linear function
derived on all data. As we will see in Section 6, the shuffle
phase is better approximated by a combination of two linear
functions over two data ranges: less than 3.2 GB and larger
than 3.2 GB (confirming the conjecture that was discussed in
Section 2).

S. MAPREDUCE PERFORMANCE MODEL

In this section, we describe a MapReduce performance
model that is used for predicting a completion time of a given
MapReduce job. We do it by applying the analytical model
designed and validated in ARIA [9]. The proposed perfor-
mance model utilizes the knowledge about average and max-
imum map (reduce) task durations for computing the lower
and upper bounds on the job completion time as a function
of allocated resources (map and reduce slots). Typically, the
estimated completion time based on the average of lower and
upper bounds serves as a good prediction: it is within 10%
of the measured completion time as shown in [9)].

To apply the analytical model, we need to estimate the map
and reduce tasks distributions to approximate the average
and maximum completion time of the map and reduce tasks.
To achieve this, for a given MapReduce job, a special compact

job profile is extracted automatically from the previous run
of this job. It includes the following metrics:
e Map/reduce selectivity that reflects the ratio of the
map/reduce output size to the map/reduce input size;
e Processing time per record of map/reduce function.
We also collect characteristics of the input dataset such as
1) the number of data blocks, and 2) the average/maximum
data block size (both in bytes and in the number of records).
Such information defines the number of map tasks and the
average/maximum input data per map task.

For map tasks, the task completion time is estimated
as a sum of durations of all the map stage phases. The
generic phase durations for read, collect, spill and merge
are estimated according to the platform model Mpposes =
(M1, Ma, ..., M5, Mg) by applying a correspoding function to
the data amount processed by the phase. Note, that the data
size for collect, spill, and merge phases is estimated by ap-
plying the map selectivity to the map task input data size
(this information is available in the extracted job profile).
The map phase duration depends on the user-defined map
functions and is estimated according to the number of in-
put records and the map function processing time per record
(again available from the extracted job profile). Depending
on the average and maximum input data size, we estimate
the average and maximum map task durations respectively.

For reduce tasks, the task completion time is estimated
as a sum of durations of shuffle, reduce, and write phases.
Similarly to the map task computation described above, the
shuffle and write phase durations are estimated according to
the platform model and the phase input data size. The reduce
function duration is estimated according to the number of
reduce records and the reduce function processing time per
record available from the job profile.

The input size for the shuffle phase depends on the overall
data amount of the map outputs and the number of reduce
tasks. Thus the input size of the reduce task can be estimated
as:

Dataspuge = (M™ x M* x N™*P)/N"?, (2)
where we assume that each map output is uniformly dis-
tributed across the reduce tasks.

6. EVALUATION

All experiments are performed on 66 HP DL145 G3 ma-
chines. Each machine has four AMD 2.39GHz cores, 8 GB
RAM and two 160 GB 7.2K rpm SATA hard disks. The ma-
chines are set up in two racks and interconnected with gigabit
Ethernet. We used Hadoop 0.20.2 with two machines dedi-
cated as the JobTracker and the NameNode, and remaining
64 machines as workers. Each worker is configured with 2 map
and 2 reduce slots. The file system blocksize is set to 64MB.
The replication level is set to 3. We disabled speculative ex-
ecution since it did not lead to significant improvements in
our experiments.

To profile the generic phases in the MapReduce process-
ing pipeline of a given production cluster, we execute the
designed set of microbenchmarks on the small 5-node test
cluster that uses the same hardware and configuration as the
large 66-node production cluster. Figure 3 shows the relation-
ships between the amount of processed data and the execu-
tion durations of different phases for a given Hadoop cluster.
Figures 3 (a)-(f) reflect the platform profile for six generic
execution phases: read, collect, spill, and merge phases of the
map task execution, and shuffle and write phases in the reduce
task. Each graph has a collection of dots that represent phase
duration measurements (Y-axes) of the profiled map (reduce)
tasks as a function of processed data (X-axes). The red line

256

8000 10000

L .
6000

4000

Collect Phase Duration (ms)

Read Phase Duration (ms)
1000 2000 3000 4000 5000 6000

2000

0
L
0

T T T T
40 50 60 20 40 60 80 100 120
Data Size (MB)

(b) collect

T
0 10 20 30
Data Size (MB)

(a) read

7000
L

7000

5000

5000

3000

Merge Phase Duration (ms)
3000

Spill Phase Duration (ms)

0 1000

1000

T T T T T
40 60 80 100 120

Data Size (MB)

T T T T
0 20 40 60 80 100 120
Data Size (MB)

(c) spill (d) merge

1500000
L
350000

1000000
250000

150000

500000
Write Phase Duration (ms)

Shuffle Phase Duration (ms)

50000

0

6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Data Size (MB)

(e) shuffle (f) write
Figure 3: Benchmark results.

2000 4000
Data Size (MB)

on the graph shows the linear regression solution that serves
as a model for the phase. As we can see (visually) the linear
regression provides a good solution for five out of six phases.
As we expected, the shuffle phase is better approximated by
a linear piece-wise function comprised of two linear functions
(see a discussion about the shuffle phase in Section 2): one is
for processing up to 3.2 GB of intermediate data per reduce
task, and the second segment is for processing the datasets
larger than 3.2 GB.

In order to formally evaluate the accuracy and fit of the
generated model Mppqses We compute for each data point in
our training dataset a prediction error. That is, for each row
4 in the platform profile we compute the duration dur?™** of
the corresponding phase i by using the derived model M; as
a function of data Data’. Then we compare the predicted
value dur?™** against the measured duration d****"®. The
relative error is defined as follows:

|d;’ncasrd _ d?rEdl

error; = Jreasrd
K2

We calculate the relative error for all the data points in the
platform profile. Table 1 summarizes the relative errors for
derived models of six generic processing phases. For example,
for the read phase, 66% of map tasks have the relative error
less than 10%, and 92% of map tasks have the relative error
less that 20%. For the shuffle phase, 76% of reduce tasks have
the relative error less that 10%, and 96% of reduce tasks have
the relative error less that 20%.

In summary, almost 80% of all the predicted values are
within 15% of the corresponding measurements. Thus the

Table 1: Relative error distribution

phase error < 10% [error < 15% [error < 20%
read 66% 83% 92%
collect 56% 73% 84%
spill 61% 76% 83%
merge 58% 84% 94%
shuffle 76% 85% 96%
write 93% 97% 98%

derived platform performance model fits well the collected
experimental data.

Next, we validate the accuracy of the proposed MapRe-
duce performance model by predicting completion times of
12 applications made available by the Tarazu project [2].

Table 2 gives a high-level description of these 12 applica-
tions with the job settings (e.g, number of map and reduce
tasks). Applications 1, 8, and 9 process synthetically gen-
erated data, applications 2 to 7 use the Wikipedia articles
dataset as input, while applications 10 to 13 use the Net-
flix movie ratings dataset. We will present results of running
these applications with: i) small input datasets defined by pa-
rameters shown in columns 3-4, and i) large input datasets
defined by parameters shown in columns 5-6 respectively.

Table 2: Application characteristics.

Input Input | #Map, | Input #Map,
Application data (GB) | Reduce | (GB) Reduce

(type) small tasks large tasks
TeraSort Synthetic 2.8 44, 20 31 495, 240
WordCount Wikipedia 2.8 44, 20 50 788, 240
Grep Wikipedia 2.8 44, 1 50 788, 1
Invindex Wikipedia 2.8 44, 20 50 788, 240
RankInvindex || Wikipedia 2.5 40, 20 46 745, 240
Term Vector Wikipedia 2.8 44, 20 50 788, 240
SeqCount Wikipedia 2.8 44, 20 50 788, 240
SelfJoin Synthetic 2.1 32, 20 28 448, 240
AdjList Synthetic 2.4 44, 20 28 508, 240
HistMovies Netflix 3.5 56, 1 27 428, 1
HistRatings Netflix 3.5 56, 1 27 428, 1
KMeans Netflix 3.5 56, 16 27 428, 50

Figure 4 shows the comparison of the measured and pre-
dicted job completion times ? for 12 applications (with a small
input dataset) executed using 5-node test cluster. The graphs
reflect that the designed MapReduce performance model closely
predicts the job completion times. The measured and pre-
dicted durations are less than 10% for most cases (with 17%
error being a worst case for WordCount and HistRatings).
Note the split at Y-axes in order to accommodate a much
larger scale for a completion time of the KMeans application.

1700

Predicted-CT
Measured-CT B

1600 -

1500~
300

200

Job Completion Time (s)

> PSS S o

S B F & QT & @
> (€ b & ¢ NS N
< q\o6 & Qﬁ,&"\ ,gz‘& & ‘f‘\ >

Figure 4: Predicted vs. measured completion times of
12 applications on the small 5-node test cluster.

The next question to answer is whether the platform per-
formance model constructed using a small 5-node test cluster
can be effectively applied for modeling the application perfor-
mance in the larger production clusters. To answer this ques-
tion we execute the same 12 applications (with a large input
dataset) on the 66-node production cluster. Figure 5 shows
the comparison of the measured and predicted job completion

2All the experiments are performed five times, and the measurement
results are averaged. This comment applies to the results in Figure 4, 5.

257

times for 12 applications executed on the 66-node Hadoop
cluster. The predicted completion times closely approximate
the measured ones: for 11 applications they are less than 10%
of the measured ones (a worst case is WordCount that exhibits
17% of error). Note the split at Y-axes for accomodating the
KMeans completion time in the same figure.

3800

Predicted-CT
Measured-CT EE3

3600
400

300

200

100

Job Completion Time (s)

% RS QUL
?3&’ @&b & &

R &
& o
(€ &‘_\o

& Qd
o« o o

S QY
&
Figure 5: Predicted vs. measured completion times of
12 applications (with a large input dataset) on the large

66-node production cluster.

These results justify our approach for building the plat-
form performance model by using a small test cluster. Run-
ning benchmarks on the small cluster significantly simplifies
the approach applicability, since these measurements do not
interfere with production workloads while the collected plat-
form profile leads to a good quality platform performance
model that can be efficiently used for modeling production
jobs in the larger enterprise cluster.

7. RELATED WORK

In past few years, performance modeling and workload man-
agement in MapReduce environments have received much at-
tention, and different approaches [6, 5, 8, 9, 10] were offered
for predicting performance of MapReduce applications.

Starfish [6] applies dynamic Java instrumentation to collect
a run-time monitoring information about job execution at a
fine granularity and by extracting a diverse variety of metrics.
Such a detailed job profiling enables the authors to predict job
execution under different Hadoop configuration parameters,
automatically derive an optimized cluster configuration, and
solve cluster sizing problem [5]. However, collecting a large
set of metrics comes at a cost, and to avoid significant over-
head profiling should be applied to a small fraction of tasks.
Another main challenge outlined by the authors is a design of
an efficient searching strategy through the high-dimensional
space of parameter values. Our phase profiling approach is
inspired by Starfish [6]. We build a light-weight profiling tool
that only collects selected phase durations and therefore, it
can profile each task at a minimal cost. Moreover, we ap-
ply counter-based profiling in a small test cluster to avoid
impacting the production jobs.

Tian and Chen [8] propose an approach to predict MapRe-
duce program performance from a set of test runs on small in-
put datasets and small number of nodes. By executing 25-60
diverse test runs the authors create a training set for building
a regression-based model of a given application. The derived
model is able to predict the application performance on a
larger input and a different size Hadoop cluster. It is an in-
teresting approach but it cannot be directly applied for job
performance optimization and parameter tuning problems.

ARIA [9] proposes a framework that automatically extracts
compact job profiles from the past application run(s). These
job profiles form the basis of a MapReduce analytic perfor-
mance model that computes the lower and upper bounds on
the job completion time. ARIA provides a fast and efficient
capacity planning model for a MapReduce job with timing

258

requirements. The later work [10] enhances and extends this
approach by running the application on the smaller data sam-
ple and deriving the scaling factors for these execution times
to predict the job completion time when the original MapRe-
duce application is applied for processing a larger dataset.

In our current work, we consider a more detailed profiling of
MapReduce jobs via six generic and two customized execution
phases. The proposed models aim to estimate durations of
these phases and accordingly the durations of map and reduce
tasks when the application is executed on the new dataset.
Once, we obtain predicted map and reduce task durations
(by applying the proposed platform performance model and
using the extracted job profile), we can utilize performance
models designed in [9] for predicting the job completion time
as a function of allocated resources.

8. CONCLUSION

Hadoop is increasingly being deployed in enterprise private
clouds and also offered as a service by public cloud providers
(e.g. Amazon’s Elastic Map-Reduce). Many companies are
embracing Hadoop for advanced data analytics over large
datasets that require completion time guarantees.

In this work, we offer a new benchmarking approach for
building a MapReduce performance model that can efficiently
predict the completion time of a MapReduce application. We
use a set of microbenchmarks to profile generic phases of
the MapReduce processing pipeline of a given Hadoop clus-
ter. We derive an accurate platform performance model of a
given cluster once, and then reuse this model for character-
izing performance of generic phases of different applications.
The introduced MapReduce performance model combines the
knowledge of the extracted job profile and the derived plat-
form performance model to predict the program completion
time on a new dataset. In the future work, we intend to apply
the proposed approach and models for optimizing program
performance, e.g., by tuning the number of reduce tasks and
tailoring the resource allocation to meet the required comple-
tion time guarantees.

9.
(1

(2]

REFERENCES

BTrace: A Dynamic Instrumentation Tool for Java.
http://kenai.com/projects/btrace.

F. Ahmad, S. Chakradhar, A. Raghunathan, and T. Vijaykumar.
Tarazu: Optimizing MapReduce on heterogeneous clusters. In
Proc. of ASPLOS, 2012.

Apache. Hadoop: TeraGen Class.
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/
hadoop/examples/terasort/TeraGen.html.

J. Dean, and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the
ACM,51(1), 2008.

H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
Automatic cluster sizing for data-intensive analytics. In Proc. of
ACM Symposium on Cloud Computing, 2011.

H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin,
and S. Babu. Starfish: A Self-tuning System for Big Data
Analytics. In Proc. of 5th Conf. on Innovative Data Systems
Research (CIDR), 2011.

P. Holland and R. Welsch. Robust regression using iteratively
reweighted least-squares. Communications in Statistics-Theory
and Methods, 6(9):813-827, 1977.

F. Tian and K. Chen. Towards Optimal Resource Provisioning for
Running MapReduce Programs in Public Clouds. In Proc. of
IEEE Conference on Cloud Computing (CLOUD 2011).

A. Verma, L. Cherkasova, and R. H. Campbell. ARIA: Automatic
Resource Inference and Allocation for MapReduce Environments.
Proc. of the 8th ACM International Conference on Autonomic
Computing (ICAC), 2011.

[10] A. Verma, L. Cherkasova, and R. H. Campbell. Resource
Provisioning Framework for MapReduce Jobs with Performance
Goals. Proc. of the 12th ACM/IFIP/USENIX Middleware
Conference, 2011.

(3]

(4]

(5]

(6]

[7

(8]

(9]

