On-Line Fair Allocations Based on Bottlenecks
and Global Priorities

Yoel Zeldes
Department of Computer Science
The Hebrew University
91904 Jerusalem, Israel
yhotdog @ gmail.com

ABSTRACT

System bottlenecks, namely those resources which are subjected
to high contention, constrain system performance. Hence effective
resource management should be done by focusing on the bottle-
neck resources and allocating them to the most deserving clients.
It has been shown that for any combination of entitlements and re-
quests a fair allocation of bottleneck resources can be found, using
an off-line algorithm that is given full information in advance re-
garding the needs of each client. We extend this result to the on-line
case with no prior information. To this end we introduce a simple
greedy algorithm. In essence, when a scheduling decision needs to
be made, this algorithm selects the client that has the largest min-
imal gap between its entitlement and its current allocation among
all the bottleneck resources. Importantly, this algorithm takes a
global view of the system, and assigns each client a single priority
based on his usage of all the resources; this single priority is then
used to make coordinated scheduling decisions on all the resources.
Extensive simulations show that this algorithm achieves fair allo-
cations according to the desired entitlements for a wide range of
conditions, without using any prior information regarding resource
requirements. It also follows shifting usage patterns, including sit-
uations where the bottlenecks change with time.

Categories and Subject Descriptors

C.2.3[COMPUTER-COMMUNICATION NETWORKS]: Net-
work Operations—Network management; D.4.1 [OPERATING
SYSTEMS]: Process Management—Scheduling; K.6.2 [MANA-
GEMENT OF COMPUTING AND INFORMATION SYST-
EMS]: Installation Management—~Pricing and resource allocation

General Terms

Design, Management, Performance

Keywords

Fairness; Bottlenecks; Resource allocation; Entitlements; Online
algorithm; Priority inversion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, April 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

229

Dror G. Feitelson
Department of Computer Science
The Hebrew University
91904 Jerusalem, Israel
feit@cs.huiji.ac.il

1. INTRODUCTION

Fairness is a basic issue in scheduling and resource manage-
ment, and there are many different definitions of what “fairness”
means. We use the definition that a fair system is one which allo-
cates resources according to each client’s entitlement: a client that
is entitled to 30% of the system should get 30% of the resources’.
However, this definition is problematic, because clients may have
uneven requirements. For example, if a client is entitled to 30% of
the system, and he would like to use 70% of the network bandwidth
but only 10% of the CPU cycles, what would be a fair allocation?

A system in which clients alternate between using multiple re-
sources, e.g. the CPU, network, and disk, can be modeled as a
queueing system. In queueing systems one finds that clients spend
the majority of their time waiting in queue for a specific subset
of the resources, namely the bottleneck resources. The degree to
which clients make progress is constrained by the service they re-
ceive on these bottlenecks [14]. It has therefore been suggested that
bottleneck resources are the most important resources in terms of
scheduling and resource allocation [7, 5]. By controlling alloca-
tions of the bottlenecks, one controls allocations across the whole
system.

Given the insight about focusing on bottlenecks, one can define
a fair allocation as follows: each client should be given his enti-
tlement of the system bottleneck [7, 5]. Thus if the network is the
bottleneck, our example client will be cut beck and given only 30%
of the bandwidth. But if the CPU turns out to be the bottleneck,
and the network is not, then he can get all he wants, because his
requirements on the bottleneck are lower than his entitlement.

This definition can be extend to the case where the system suffers
from multiple bottlenecks by guaranteeing that each client receives
his entitlement on at least one bottleneck. It has been shown that,
for any combination of entitlements and requests, a fair allocation
according to this definition exists [4]. However, the algorithm to
find this allocation works off-line and assumes full information is
available.

Our main contribution is to extend this result with an on-line
algorithm, that achieves a fair allocation without knowing each
client’s requirements in advance. In fact, it doesn’t even have to
know which clients are going to be active and when. All it needs to
know is their relative entitlements. It then serves the requests they
make in an order that is based on their entitlements and the alloca-
tions they have received so far. Essentially, this is a simple greedy
algorithm.

In the next section we provide more details about previous work
and the required background. Section 3 then explains the details of
the on-line algorithm. An evaluation using extensive simulations to

!"Thus entitlements are similar to capacity or throughput guarantees
in SLAs.

show that this algorithm indeed achieves the desired allocations is
presented in Section 4. We conclude in Section 5.

2. BACKGROUND AND RELATED WORK

The two main considerations for scheduling algorithms are fair-
ness and quality of service. In the context of interactive and real-
time applications, quality of service (as reflected in response times
and meeting deadlines) is paramount [8, 21]. We focus on fair-
ness, which is more relevant to servers, especially in the context
of clouds and virtualization where several servers are consolidated
onto a common physical platform.

The notion of fairness is somewhat tricky to nail down. At its
core lies a conflict between accounting, where we just count how
much each client receives, and utilitarianism, where we consider
the benefit derived from the allocated resources [20]. In the context
of computing systems we typically do not know the benefits, so we
are left with different forms of accounting. In particular, striving to
satisfy given entitlements is known as “fair-share” scheduling. In
this context, a major aspect of fairness is isolation between com-
peting clients: guaranteeing a certain share of the resources to one
client implies that this share will be received irrespective of the ac-
tions of other clients. For example, this may be important in real-
time settings and to prevent certain denial-of-service attacks [15].

An example of a large-scale system based on such fairness con-
siderations is the Intel NetBatch platform [23]. This is essentially a
global enterprise grid system with hundreds of clusters and tens of
thousands of machines in dozens of locations around the world. In-
tel business and engineering groups purchase computing resources
according to their needs and make them available to other groups as
part of the grid. However, each group retains ownership of their re-
sources. This means that each group’s jobs receive priority for run-
ning on their own machines: if no alternative resources are avail-
able, whatever is running on these machines will be suspended and
the owner’s jobs will run instead. Thus allocations reflect own-
ership, and by implication allocations reflect the entitlements as
represented by the relative fraction of the resources that have been
purchased by each group.

Many schemes have been devised to achieve fair-share schedul-
ing. These include simple accounting where allocations are simply
not made to clients who have achieved their entitlement [13], lot-
tery scheduling where lottery tickets are distributed according to
entitlements and the actual allocations are randomized [19], ma-
nipulation of a process’s priority so as to nudge it towards achiev-
ing the desired allocation [6], and using the min-max principle to
prioritize those clients who are lagging behind [17].

A whole class of fair allocation schemes is based on the notion
of virtual time [22, 16]. This essentially means that time is counted
at different rates for different clients, thereby leading to different
but controlled allocations. A more sophisticated approach is to de-
fine fairness according to the divergence between what a client has
received and what he was entitled to receive up to now [18]. This
can also be used directly to prioritize scheduling decisions [8, 3].

All the above schemes are oblivious to the system state. There
has been very little work considering scheduling decisions that are
driven by resource contention. Unlike bottleneck-based scheduling
(to be defined more fully below), this work is usually concerned
more with preventing bottlenecks than with focusing on them. The
idea is to prefer clients that make little use of contended resources,
so as to reduce the danger of congestion [1, 11].

The schemes described above were typically applied to one spe-
cific resource, most commonly the CPU or the network. This leaves
the question of how to control the joint allocation of multiple re-
sources. The simplest approach is asset fairness. This means that

230

we sum up the usage of the different resources, and ensure that this
sum is proportional to the entitlement. However, this is inefficient
in the sense that someone who is the sole client of an unpopular re-
source will be held back due to contention by others for a resource
in which he is not interested.

Another approach is dominant-resource fairness [10, 9]. In this
scheme each client is represented by the resource he wants the most
of, which is called his dominant resource. The allocations of the
dominant resources are then made proportional to the entitlements.
A simple algorithm that achieves this has been shown, which is
also “strategy proof”. This means that a client cannot increase his
allocation and his throughput by increasing his demands. However,
note that as long as fairness (however one may decide to define it)
is maintained, there is no way that the system can distinguish be-
tween a client that genuinely requires more resources and one that
is trying to game the system. In particular, if a client can cause the
system to give him a larger allocation, but this larger allocation is
still considered fair, this is not necessarily a problem. It is therefore
not clear that the property of strategy proofness as defined above is
indeed appropriate.

Asset fairness and dominant-resource fairness are oblivious to
the system state. The alternative is to monitor the system to iden-
tify the current bottlenecks, which may change from time to time
[7, 5]. In bottleneck-based fairness an allocation is considered fair
if all clients do not have justified grounds for complaining. This
means that either they receive all they want, or else they receive
their entitlement on at least one bottleneck. The claim that they
cannot complain about this is based on the fact that bottlenecks are
by definition contended resources, so giving more would have to
come at the expense of other clients who also have their entitle-
ments?. It has been shown that an allocation based on this principle
is guaranteed to exist [4, 12]. Note that asset fairness and dominant
resource fairness do not possess the “no justified complaints” prop-
erty: in those schemes, a client may be prevented from receiving
resources that could have been allocated without hurting anyone
else.

In order to sharpen the differences between the above approaches,
we suggest the fruit salad metaphor. Assume a fruit salad buffet
with a bowl of diced apples, a bowl of diced oranges, a bowl of
cherries, etc. Each diner is invited to create his or her own mix.
Asset fairness then means that each diner gets a small bowl of the
same size and can fill it in whatever way he chooses. This is intu-
itively fair but inefficient: if ten people like cherries, but only one
each like apples, oranges, and bananas, why not let these three take
everything that is there? Dominant resource fairness means each
diner gets the same amount of his favorite fruit. This suffers sim-
ilar inefficiency as asset fairness. The bottleneck-based approach
means that each diner gets the same amount from one of the fruits
that ran out, thus emphasizing the importance of those fruit which
are in high demand, while explicitly allowing you more of fruit that
nobody else wants. This analogy also shows the problem in finding
a fair solution according to this definition: when you are making
the allocations, how do you know which fruit are going to run out?

Given a scheduling scheme, the remaining question is how to
apply it. The simplest approach is to schedule each resource indi-
vidually. However, this may lead to undesirable results. For exam-
ple, a client may use less than his entitlement of one resource, and
more than his entitlement of another. Assume the first resource is
a bottleneck, while the second is not. This client should therefore
be prioritized in order to provide it with its due entitlement of the

Note that a resource may become a bottleneck even if it is used
by only one client. But in that case this client is fully utilizing the
resource, so there is no more to allocate.

bottleneck resource. But when it is waiting for the second, non-
bottleneck resource, it will receive a low priority. This will cause
delays that affect the fairness as reflected by using the bottleneck
resource. The solution to such mixed priorities is to use a global
priority across the whole system. This global priority is computed
based on the bottleneck resources, but it is applied to all the re-
sources.

A building block that can be used to implement the idea of bottle-
neck-based fairness is the RSVT scheduler, which is a modular
scheduler that can be “glued” to different resources to provide virtual-
time-based prioritization [2]. This needs to be combined with a
centralized monitoring facility that identifies bottleneck resources,
and sets the global priorities. In this paper we fill in the algorithmic
details and simulate how such an implementation may be expected
to operate when faced with various scenarios of contending clients
with different requirements. The actual implementation, and an
evaluation of the overheads and performance characteristics, are
left for future work.

A basic assumption of all the above works dealing with the al-
location of multiple resources is that clients have constant resource
usage profiles. For example, a client may always use twice as much
disk as CPU, so if we allocate 30% of the CPU he will also use 60%
of the disk bandwidth, and if we limit his disk usage to 20% we are
effectively also limiting his CPU usage to 10%. This assumption
is reasonable in cases where clients are performing essentially the
same actions all the time, for example serving incoming requests
that all have the same nature. However, our on-line algorithm does
not rely on such persistence. Rather, it just tracks the cumulative
usage of different resources by each client, regardless of the precise
patterns in which requests are made. In particular, clients are free
to change their behavior, and the algorithm will follow them and
even identify changes in the set of bottlenecks.

3. THE ON-LINE ALGORITHM

Consider a set of clients with different entitlements, each with his
unique resource usage profile. We know that a bottleneck-based fair
allocation exists for any combination of entitlements and require-
ments. But the proofs given in [4, 12] are non-trivial, use complete
information about the requirements in order to find the solution,
and require the resource usage profile to be constant. The diffi-
culty stems from the fact that we do not know in advance which
resources will turn out to be bottlenecks. Moreover, it turns out
that there may be multiple solutions, and even different solutions in
which different resources become the bottlenecks.

An interesting question is therefore whether the principles of
bottleneck-based fairness can be distilled into an on-line algorithm
that will maintain a fair allocation despite not knowing what the
requests are in advance. Obviously such an algorithm also does
not know the bottlenecks in advance, but we assume it can discover
them when they materialize, by monitoring the utilization of each
resource. Thus it can also adjust if the bottlenecks change with
time.

Our algorithm is based on the following two principles:

1. The “no justified complaints” condition requires that clients
receive their entitlement on at least one bottleneck resource.
This leads to the idea that a client’s priority should be pro-
portional to the divergence between his entitlement and his
actual consumption, on the bottleneck resource where this
divergence is minimal. The reason is that as we allocate more
resources and enable him to run, this is where the gap will be
closed first. A process that suffers from a larger minimal gap
should be given priority in order to enable it to catch up and
achieve its entitlement.

231

2. Given that there may be several bottlenecks and any one of
them may be used to satisfy a client, a global viewpoint is
required. Thus each client will be assigned a global, system-
wide priority value, and scheduling decisions on all the dif-
ferent resources will be made based on these system-wide
priorities.

While the algorithm based on these principles is simple (as shown
below), it is not self evident. In particular, basing priorities on the
minimal gap contradicts the commonly used max-min approach,
which bases priorities on the minimal consumption, which is equiv-
alent to using the maximal gap. But in the multi-resource scenario
with fixed usage profiles this is problematic, because boosting the
usage of the least-used resource also increases the usage of the
heavily used resources, which may be impossible (or at least un-
desirable) if they too are bottlenecks.

Importantly, using global prioritization implies that scheduling
on the different resources will be coordinated. This is in stark con-
trast with the prevailing methodology used today, where each re-
source has its own scheduler, and the scheduling is done based on
a myopic view of each individual resource. As a result, we pre-
vent situations in which a scheduler responsible for some resource
that is not contended decides to run client A and let client B wait
in the queue, due to some local efficiency consideration, when A
is actually receiving all he wants while B is not receiving his due
allocation on the system bottlenecks.

To formalize these ideas we need some notation. Let there be
N clients and M resources. Client ¢ has entitlement e;, where
>, ei = 1. Ideally, the fraction of the system that client ¢ was
entitled to receive up to time ¢ is simply a;(t) = e;t. For each
resource 7, his consumption of resource j up to time ¢ will be de-
noted ¢;(j,t). Both allocation and consumption are expressed in
the same units, namely time using the resource, and these units
apply equally to all resources (as opposed to units like bandwidth
which are specific to a certain resource). Let J(t) denote the set of
resources that are bottlenecks at time ¢. Based on the above consid-
erations, we calculate the global priority of client ¢ as the minimal
difference between the ideal allocation and the consumption, across
bottleneck resources:

pris(t) = min {a;(t) —ci(j, 1)}
JEI(t)

The queue of each resource will be sorted according to these global
priorities, and the highest priority client will be selected. If several
clients have the same global priority, the local scheduler may use its
local considerations to break the tie. In either case, the selection is
always for a limited time: a quantum of CPU time, the sending of a
packet, the reading of a disk block, etc. This causes ¢;(j, t) to grow
for the selected client, while at the same time a;(t) grows for all
clients (but by less). As a result another client will most probably
be selected the next time around, and if all the clients have the
same entitlements our algorithm will produce simple round-robin
scheduling.

But what happens if there are no bottlenecks? In this case we
prioritize the different processes according to the difference be-
tween their allocation and their total consumption on all resources,
namely we revert to asset fairness:

prii(t) = a;i(t) — Z ci(g,t)

Note, however, that this only affects the scheduling order and does
not affect the allocations. When there are no bottlenecks there is no
real contention and therefore all requests will be granted.

The above formalization cannot be used as described because it
assumes that all clients arrived at the system at time 0 and have been
active continuously ever since. In general, of course, this is not
the case. Clients may come and leave at different times, and may
suspend waiting on some external event. Therefore the following
adjustments must be made.

First, at each time ¢ only active clients are considered: clients
who have terminated or have not arrived yet (or are suspended)
will be excluded. Thus the entitlements need to be renormalized.
Denoting the set of active clients by A, the entitlements used to
calculate the priorities will be e; = e;/ Y, 4 €i.

Second, if a new client enters the system at time %o, his entitle-
ment will be computed as a;(t) = e;(t — to). As e; may change
with time, this is actually computed piecemeal by summing over
intervals where e is constant.

Third, handling clients who become suspended or do not use
their full allocation is done similarly to RSVT [2]. The problem
is that clients may divide their time across the resources in very
different ways. Thus we may encounter situations where a client
predominantly uses a resource that nobody else is interested in. As
a result, his consumption may outstrip his entitlement (and there
is no reason to prevent this, as otherwise the resource would stay
idle). But if later some other client starts using this resource, and
the resource becomes a bottleneck, then the first client will have
a hugely negative priority and will be locked out for a long time.
This should be prevented.

Conversely, consider a resource that nobody uses to a great de-
gree. This resource is mostly idle, and for all clients their consump-
tion will lag way below their allocation. Then, if the client with
the highest entitlement starts to use this resource extensively and
turns it into a bottleneck, and assuming this is the only bottleneck,
he will lock out all others, because his allocation had outgrown his
consumption more than for all others. This too should be prevented.

The above scenarios can be summarized as follows. Ideally, we
want to make allocations based on entitlements, and have the con-
sumption follow these allocations. But if the consumption does not
follow the allocation, and becomes either too big or too small rel-
ative to the allocation, we need to bound this difference [22]. The
way to do this is simple: instead of accumulating allocations and
consumptions since the client arrived, we only consider a window
of the last 7" seconds. In such a limited window allocations and
consumptions reflect the most recent entitlements and actual use,
but they cannot diverge by more than 7'.

An important concern for online algorithms is their overhead.
Our algorithm is centralized in the sense that it utilizes global infor-
mation for its prioritization. Hence it faces the danger of not scaling
for large systems. However, we note that only the accounting needs
to be performed on each and every dispatch decision, and this can
be incorporated into the mechanism performing the dispatch — for
example, the CPU scheduler or the mechanisms controlling packet
sending and disk I/O. The prioritization which uses this informa-
tion can be limited to a desired granularity, e.g. once every so many
seconds, as we indeed do in the simulations.

4. SIMULATION RESULTS

In this section we describe some of our simulation results, focus-
ing on those that best illustrate various features of the scheduling
algorithm.

4.1 The Simulator

To assess the behavior of the algorithm presented above we wrote
an event-based simulator. This simulates the evolution of a system
supporting several processes (or a server with several virtual ma-

232

Priority:

34

Requests:

loop 1

CPU_CS 2 0 NORM

loop 40

DISK CS 0.1 0.05 NORM
CPU_CS 0.1 0.05 NORM

Figure 1: Example process program in the simulation.

chines). The processes represent the clients. Each process runs a
“program”, which specifies its resource usage. The programs are
composed of multiple iterative phases, where each iteration con-
sists of using different resources in the system one after the other.
Use of a resource is described by a tuple of the form (res, mean,
width, dist). res is the resource being used. The other three
parameters describe the distribution of service times when the re-
source is used (dist can be UNIForm, EXPonential, or NORMal;
mean is obviously the mean, and width is half the range for UNIF
or the standard deviation for NORM). As each use of each resource
is simulated, the service time for this instance is selected at random
from the specified distribution. We typically use the normal distri-
bution, because the service times are expected to be influenced by
many independent factors.

An example program is shown in Fig. 1. This process has a
relative priority (entitlement) of 34. Its program consists of using
the CPU for precisely 2 seconds, and then performing 40 iterations
of using the disk for 0.1 seconds and then the CPU for an additional
0.1 seconds, both with a standard deviation of 0.05 seconds.

Each process that wishes to use a certain resource is passed on
to that resource’s scheduler. Each scheduler keeps track of every
process’s usage of its resource in the last 3 seconds (This is the T’
mentioned above). A global prioritization agent collects the pri-
oritization data from the schedulers of bottleneck resources so as
to create the global priorities. Bottleneck resources are those that
have been active for more than 90% of the time in the last 3 seconds
(these are all configurable parameters). Thus the identification of a
bottleneck will lag 3 seconds behind the time it actually became a
bottleneck.

Allocations can either be continuous, or, if the resource name
ends with _CS (allows context switching), they are done in quanta
of 0.1 seconds. This may represent a scheduling quantum, the send-
ing of a packet, or the reading of a disk block. Note, however, that
the resource names and the service times should not be taken too
literally. Obviously in many real systems CPU quanta are much
shorter than disk access times. We use “CPU”, “disk”, and “net-
work” to easily refer to the resources, but they could just as well
be abstracted as “R1”, “R2”, etc. Our goal in the simulations is to
probe the behavior of the algorithm under diverse conditions, not
to approximate specific benchmarks.

The simulator as described has the limitation that each process
uses one resource at a time. This is not completely realistic, as a
process may spawn multiple parallel threads on a multiprocessor
system, and asynchronous I/O can be done in parallel to computa-
tion. Note, however, that this is a limitation of only the simulator
and not of the algorithm itself.

4.2 Simple Experiments

The first experiments are meant to demonstrate that the simulator
works as expected on simple scenarios with a single resource, and
to explain the way we present the simulation results.

scheduling, bottleneck

cpu_cst j

IDLER 1

0 2 4 6 8 10 12 14
wallclock time

16

10 accumulated usage: CPU_CS

consumed time

O0 2 4 6 8 10 12 14

wallclock time

16

Figure 2: An example of two processes with different priorities
contending for a resource. Service times are deterministic.

Each experiment involves one or more processes, using one or
more resources. In the graphs, the horizontal axis represents wall-
clock time. The first graph for each experiment is actually a Gnatt
chart, with a lane for each resource. This lane is color-coded ac-
cording to which process is using the resource at each instant; no
coloring indicates that the resource is idle. A black line segment
above the lane identifies those intervals in which the resource is
considered to be a bottleneck. The second graph shows the cumu-
lative resource usage by each process. Each process is represented
by a line, with the same color as in the Gnatt chart. If a process
is continuously active, on whatever resource, this will be a straight
line with slope 1. When a process waits for a resource, this is repre-
sented by a horizontal line segment. When two or more processes
share a resource the effect is to produce a slope smaller than 1, but
this is actually a sequence of small steps. We occasionally also
look at the cumulative usage of a select resource, rather than all
resources together.

A simple example is shown in Fig. 2, involving two processes.
The red process has a relative priority of 33% and wants to use the
CPU for 10 seconds, while the blue one has 67% and wants 5 sec-
onds. Initially only the red process runs, and gets full use of the
CPU (note that we use the “idle” resource to delay the blue pro-
cess). 5 seconds later, when the blue process starts, their relative

233

12 accumulated usage: CPU_CS

101 1

consumed time
o
T
.

0 30 35 40

0 5 10 15

20 25
wallclock time

45

Figure 3: An example of four processes with different priorities
contending for a resource. Service times are deterministic.

shares become governed by their priorities. This is achieved by
giving the blue process two quanta each time, while the red pro-
cess only receives one. As the blue process has a higher priority it
terminates first, again leaving the CPU exclusively to the red pro-
cess. A generalization to four processes that start together with
priorities of 10%, 20%, 30%, and 40% is shown in Fig. 3. As they
all want to run for 10 seconds, the one with the highest allocation
terminates first, and then the others in decreasing order. As each
one terminates, the CPU is divided among the remaining processes
according to their designated shares.

Note the smooth transition as the blue process starts running in
Fig. 2. This reflects two features of the scheduling algorithm. First,
when the red process runs alone, its effective relative priority is
100% because there is no other process in the system. As it indeed
receives full use of the CPU, it does not accumulate any lag be-
tween its entitlement and its consumption. Second, when the blue
process starts, it is initialized with zero entitlement and consump-
tion. As a result both processes start from an equal footing, and
immediately receive allocations according to their relative entitle-
ments.

4.3 Properties of the Scheduling Algorithm

Fig. 4 shows how the algorithm adjusts when different processes
use different resources. Here we have 3 processes, that repeatedly
(5 times) use the CPU for 0.1 second and then some other resource
for 10 seconds. The blue process has an entitlement of 70%, and
uses the network. The green and red processes have entitlements of
20% and 10%, respectively, and use the disk. As we see, the blue
process actually receives nearly 100% of the network, despite hav-
ing an entitlement of only 70%, because no other process requests
it. Green and red receive approximately 67% and 33% of the disk,
which are also much higher than their entitlements, but maintain
the correct ratio. The CPU is hardly used, and therefore does not
affect these allocations.

Note that due to the randomization used in the simulations the
total time in any specific run does not necessarily sum to exactly
50 seconds of resource use. However, as shown in the bottom plot,
the average of multiple runs does come out right. The error bars
show the distribution of values observed in the individual runs. Im-
portantly, in the initial part of the simulation, when all processes
are active, there are no such variations. In the sequel, we will typi-

scheduling, bottleneck

40 50 60 70 80
wallclock time

0 10 20 30 90

60 accumulated usage: NET_CS, CPU_CS, DISK_CS

50

consumed time
w N
(=] o

N
=]

101

40 50 60 70 80
wallclock time

0 10 20 30 90

60 accumulated usage: NET_CS, CPU_CS, DISK_CS

Iy

consumed time
w IN
o =]

N
o

101

60 80 100
wallclock time

40 120

Figure 4: An example of three processes using different resources,
and thus enjoying a higher effective entitlement. Service times are
randomized, with the top two graphs showing a specific run while
the bottom one shows an average of many runs.

234

scheduling, bottleneck

DISK_CS|
CPU_CSH
————————————————————————————————
0 5 0 1 20 25
wallclock time
1 accumulated usage: CPU_CS, DISK_CS
12+
10+
g
S 8
el
[
£
2
2 6
o
o
al
ok
% 5 20 25

(] 1
wallclock time

Figure 5: Example where the grace period increases the ideal allo-
cation also when a resource is not used. Service times are random-
ized.

cally use averages and error bars to show the results of randomized
experiments.

An important feature of the algorithm is the way it handles pro-
cesses that skip from one resource to another, or become suspended.
On one hand, we want continuity: if a process does not use a re-
source for a short time, its allocation should nevertheless continue
to grow, so as to be available once it requests to use this resource
again. On the other hand, we do not want the allocation to grow
excessively relative to the consumption, so as to avoid situations
that give the process an unbeatable priority that will allow it to lock
out all other processes.

Following the RSVT scheduler [2] we define a grace period of 1
second during which the allocation continues to grow. The effect
of this grace period is demonstrated in the following two experi-
ments. In both experiments, the red process represents the user and
has an entitlement of 70%, and the blue process represents some
background activity with an entitlement of only 30%. In the first
experiment (Fig. 5) the red process alternates between using the
CPU for 2 seconds and then accessing the disk for 0.5 second. This
is shorter than the grace period, so the allocation of the CPU con-
tinues to rise, and when he returns he gets exclusive access for a
short while in order to make up for the deficit in consumption. In
the other experiment (Fig. 6) the red process uses the CPU for 2

scheduling, bottleneck

cpu_cst j

IDLER 1

0 5 10 15 20 25 30 35 40
wallclock time
2 accumulated usage: CPU_CS
20f / j
/
/
/
7] /
€ 15f g 1
s 7
2 /
2 /
S 10r / 1
o
sl a |
S
/ﬁ
/
% 5 10 15 20 25 30 35 40

wallclock time

Figure 6: Example where the grace period is not long enough to in-
crease the ideal allocation also when a resource is not used. Service
times are randomized.

seconds and then suspends waiting for user input for 4 seconds on
average. This is longer than the grace period, so when he returns
he has to share the CPU with the blue process. To enable this to
be seen clearly, we do not average multiple random runs but rather
show a single run.

4.4 Further Examples of Controlled
Allocations

A slightly more involved example is shown in Fig. 7. Here we
have 3 processes with different priorities contending for the use of
two resources:

e Red, with priority 40%, wants 10 seconds on the CPU

e Blue, with priority 40%, wants 10 seconds on the disk

e Green, with priority 20%, wants 2 seconds on the CPU and
then 8 seconds on the CPU and disk alternately

The results of the run are as follows. Initially blue uses the disk
with no contention, while red and green share the CPU according
to their relative priorities. Then green starts using the disk. As a re-
sult we find that now all three processes make progress at the same
overall rate. However, on each resource, green gets half what the
other process gets. Thus red and blue receive their relative enti-

235

scheduling, bottleneck

8 10
wallclock time

12 14 16

12 accumulated usage: CPU_CS, DISK_CS

101 1

consumed time
o
T
.

n n

0 14 16 18

0 2 4 6 8 10
wallclock time

12

Figure 7: An example of three processes with different priorities
contending for two resources. Service times are deterministic.

tlements of 67% on their resources, and green receives his relative
entitlement of 33% on each of the resources, for a total of 67%.

Fig. 8 shows what happens when the priorities are changed. In
the first plot, all three processes have equal priorities of 33%. As a
result the green process receives the same allocation as the others
on each resource. But due to the fact that it uses both resources, its
total rate of progress becomes double that of the others. This high-
lights the difference between asset fairness and bottleneck-based
fairness: In bottleneck-based fairness, we are not bothered by the
total allocations, but only by the allocations on each bottleneck.

The second plot shows what happens when the green process has
a priority of 50, and the other two 25. We would then expect the
green process to make progress at twice the rate on each resource,
and at four times the rate in total because it uses both resources.
However, this does not happen. The explanation is that when green
alternates between the two resources, it leaves each of them idle
half of the time. The other processes pick up the slack rather than
leaving them idle. This illustrates the increased efficiency relative
to dominant resource fairness.

Interestingly, these effects are observed only when the service
times are all deterministic and equal, i.e. when the standard devia-
tions in the distributions are O (and indeed this is the configuration
shown in the graphs). When this is the case, the processes proceed

accumulated usage: CPU_CS, DISK_CS

10 .
sl i
[
E 6 1
5
[
£
2
S 4t 1
o
o i
1
% 2 4 6 s 10 12 14 16 18
wallclock time
10 accumulated usage: CPU_CS, DISK_CS
sl i
[
E 6 1
5
[
£
2
S af 1
o
o i
1
% 2 4 6 s 10 12 14 16 18
wallclock time
Figure 8: The same scenario as in Fig. 7 but with different relative

priorities. Service times are deterministic.

in lockstep and the different allocations match perfectly. But if ran-
domization is introduced, the synchronization is broken. The green
is then not always available at the right instant to receive his share
of each resource, but blue and red, which only use one resource
each, are always there waiting. As a result green is cut back, and
makes progress at about the same rate as the other two.

‘We now turn to a couple of more complex scenarios. A rather ex-
treme example is shown in Fig. 9. Here four processes execute the
same type of iterations 3 times each. The iterations are composed
of 0.5 second network, 1 second CPU, and 2 seconds disk (as may
happen when serving requests). The differences are in their prior-
ities: purple has a priority of 97%, and the other three 1% each.
Obviously purple’s priority is much higher than the others, and in-
deed we find that it never has to wait for a resource (except to wait
for the end of the current quantum) and makes the most progress.
As a result it manages to finish its 3 iterations way ahead of the
others. They are then left to contend with each other, and enjoy
similar performance on average. However, each run may actually
be somewhat different. Specifically, the in run depicted in the top
two graphs of Fig. 9, blue was lucky and required slightly less CPU
than green and red in the first iteration. As a result it managed to get
to the disk first, and continued to run out-of-phase with the other
two and to make better progress. Nevertheless, each process still

236

NET_CS ‘
DISK_CS}E

cpu_cst

12

scheduling, bottleneck
I —
-]

15 20
wallclock time

25

accumulated usage: NET_CS, CPU_CS, DISK_CS

30

consumed time
o
T

f/ 1
a
2r / 1
7/4/4
o /"' I u I -
0 5 10 15 20 25

12

wallclock time

accumulated usage: NET_CS, CPU_CS, DISK_CS

30

consumed time
o
T

\‘,,p

\ \ \ \ [A I
i

/

Figure 9: An example of four processes with widely different pri-
Service times are randomized, with the top two graphs
showing a specific run while the bottom one shows an average of

orities.

many runs.

15 20
wallclock time

5 10

35

accumulated usage: NET_CS, CPU_CS, DISK_CS

101

consumed time
o

15 20 25 30
wallclock time

10 35

accumulated usage: NET_CS, CPU_CS, DISK_CS

101

consumed time
o

15 20 25 30
wallclock time

10 35

Figure 10: Variations on the experiment shown in Fig. 9. Service
times are randomized.

receives at least his entitlement on the bottleneck, in this case the
disk.

Fig. 10 shows two variations on this experiment. In the first the
priorities are not so extreme: purple is only 40%, and the other
three are 20% each. In the second variation the priorities are in-
verted: purple is down to 10%, and the other three are 30% each.
In these variations individual runs may be even more noisy than in
the original experiment, but on average they are pretty clear. In the
second variation purple appears to achieve more than % of the oth-
ers, because they sometimes need to wait for each other to release
some resource, and thus leave another resource idle. This can be
seen more clearly in longer runs, where the noise becomes smaller
in relative terms, and therefore individual runs are very close to the
average of many runs.

As mentioned in Section 3, there exist configurations in which
several off-line solutions are in principle possible. Moreover, dif-
ferent solutions may involve different sets of bottleneck resources.
One example of such a situation is the following. We have 8 pro-
cesses and 4 resources. All the processes have equal entitlements,
and they are arranged in pairs. Each pair uses 3 resources itera-
tively, for 0.1 seconds each time. The pattern is completely sym-
metric: if we arrange the resources in a circle, then each pair uses
a different set of 3 consecutive resources on this circle. Possible

237

scheduling, bottleneck

wallclock time

accumulated usage: NET_CS, CPU_CS, DISK_CS, DISK2_CS

3.5

3.0f

N N
=) %)

=
5

consumed time

1.0r

0.5F

0.0

0 1 2 3 4 5 6 7 8
wallclock time

Figure 11: An example where several different solutions are possi-
ble, and the algorithm gravitates towards the symmetrical solution.
Service times are randomized.

solutions that abide by the no justified complaints criterion are as
follows:
e All resources become bottlenecks, and all processes contin-
uously use their 3 resources for % of the time each.

e Two of the pairs run for 25% of the time on each of their re-
sources, while the other two run for 37.5% of the time (this
is why we need pairs: a single process cannot utilize 3 re-
sources at 37.5% each). As a result two resources become
bottlenecks, while the other two are only utilized 87.5% of
the time. There are six such solutions with different sets of
bottleneck resources.

Simulating this configuration with deterministic service times leads
to the symmetric solution, with all resources utilized 100% of the
time. The result of a randomized simulation is shown in Fig. 11.
This is slightly less clear-cut than the deterministic version, and
none of the resources maintain their bottleneck status without some
gaps and idle periods. However, when observing the progress made
by the 8 processes, they are found to achieve largely the same rate.

4.5 Allocations Based on Bottleneck Usage

In the previous examples the bottlenecks did not play a dominant
role in the scheduling. However, there are situations where the

scheduling, bottleneck

10

NET_CS

DISK_CS |

CPU_CS

15 20 25
wallclock time

30

1 accumulated usage: NET_CS, CPU_CS, DISK_CS

= = =
o N B

consumed time
00

15 20 25
wallclock time

10 30

16 accumulated usage: CPU_CS

14f

12

—
o

consumed time
=

15 20 25
wallclock time

10 30

Figure 12: An example where allocations change once a resource
becomes a bottleneck. Service times are randomized.

bottleneck resource actually has a decisive effect. An example is
shown in Fig. 12. We start with 2 processes, with entitlements 33
and 67. The red process uses 1 second of CPU per 2 seconds of
disk. The green process uses 1 second of CPU per 2 seconds of
network. These requirements to not stress the system, so each runs
continuously, and all 3 resources are 67% utilized. As there is no

238

scheduling, bottleneck

I
- ‘
I
CPU_CS|‘||“||||||‘H||”“‘||““|I‘||‘Hml“Hll‘“I“”““ ”H"‘||V|||‘||’||H||||“|““‘|H““ 7
IDLE-
0 5 10 15 20
wallclock time
1 accumulated usage: NET_CS, CPU_CS, DISK_CS
12+
10+
g
S 8 I
= A
[,/
1S 1
2 gL)
§ A
© ,,
/"J(/
4t A~
A
/*//
2f 7
% 5 10 15 20

wallclock time

Figure 13: An example where the focus shifts from one bottleneck
to another. Service times are randomized.

contention, the entitlement do not influence the allocations. After
5 seconds a third process (blue) becomes active. This process has
entitlement 100, and only uses the CPU. The CPU then becomes a
bottleneck. As a result we allocate 50% of the CPU (on average)
to the blue process, 17% to the red process, and 33% to the green
process. For the red process this is half what he got before, and as
a result the usage of the disk also drops to half what it was. For the
green process it happens to be exactly what he received before the
blue process arrived, so nothing much changes.

Another example shows how the algorithm manages to track a
shift from one bottleneck to another (Fig. 13). There are 4 pro-
cesses, with entitlements of 50, 25, 12.5, and 12.5. The first uses
the CPU 80% of its time, and the disk and network 10% each. The
other three initially iterate between the CPU and disk, but then add
the network too, for 70% of each iteration. As a result the CPU is
the bottleneck in the first part of the simulation, but the network be-
comes the bottleneck in the later part, leading to a change in relative
allocations.

Our last example is derived from the recent paper by Ghodsi et
al. about using dominant resource fairness in network settings [9].
In that paper they suggest a test case where two processes each pre-
dominantly uses a different resource, and speculate that bottleneck-
based scheduling would lead to strong oscillations as the system
tries to satisfy them in turn. They further conjecture that a third pro-

12 accumulated usage: CPU_CS

101 1

consumed time
o
T
.

S
—

0 20 25

10

15
wallclock time

30

12 accumulated usage: NET_CS

101 y 1

g
£ S
3, 7
s //
2
o
o

Al , |

///
2t J/ 1
P
p
. : ‘ ‘ ‘ ‘
0 5 10 15 20 25 30

wallclock time

20 accumulated usage: NET_CS, CPU_CS

151 1

101

consumed time

0 10 15 20 25

wallclock time

30

Figure 14: Results for processes with complementary require-
ments. Service times are randomized.

cess that wants both resources would not receive its due allocation
at all. We implemented this scenario, with one process requesting
0.014 seconds on the network for each 0.1 second quantum on the
CPU, a second requesting 0.1 seconds of the network for 0.017 of
the CPU, the a third requesting equal use (in 0.1 second quanta) of
both. All three processes have equal entitlements.

239

The simulation results show that the concerns were unfounded
(Fig. 14). As expected, both the CPU and network become bottle-
necks, and retain this status until one of the processes terminates.
While some oscillations do occur, they are small. Moreover, these
oscillations involve the third process, which tends to get ahead of
the other two rather then not receiving its due entitlement. The
scheduler responds by occasionally stopping it momentarily to al-
low the other two to catch up. The erroneous prediction seems to
follow from a mindset where at each instant only one of the first
two processes is active. But in reality their usage profiles are ac-
tually complementary, and the system quickly falls into a pattern
where this is exploited.

5. CONCLUSIONS

We define fair allocations of resources based on bottlenecks, and
specifically, require that each process receive at least its entitlement
on at least one bottleneck resource. Previous work showed that
for any combination of entitlements and requirements it is possible
to find a fair allocation according to this definition. However, the
proof was based on an off-line procedure that assumed full knowl-
edge and a static configuration. We now augment this with a dy-
namic on-line algorithm that achieves a fair allocation without prior
knowledge, and adjusts to changing conditions.

The algorithm itself is essentially a greedy algorithm. In a nut-
shell it can be described as follows:

1. Define a global (system-wide) priority order, and schedule
processes according to this order on all resources.

2. The priority of a process is the minimum of its priorities on
the different bottleneck resources.

3. The priority on each bottleneck resource is calculated based
on the lag between what the process is entitled to receive and
what it had actually received so far.

The main innovations in this algorithm are that it uses a global
view, and that it focuses on the system bottlenecks. The prioriti-
zation of processes is system-wide: each process has a single pri-
ority, which is calculated based on all the bottlenecks, and is valid
for all the resources. This produces coordinated scheduling deci-
sions, thus preventing resource-specific schedulers from counter-
acting each other and causing priority inversions.

The algorithm provides the conceptual framework for an on-
line bottleneck-based scheduling and allocation mechanism, that
accommodates shifting usage patterns and provides allocations ac-
cording to pre-defined entitlements. In future work we intend to
incorporate these ideas into a working system, by using an RSVT
scheduler [2] to control each resource, in conjunction with a mon-
itoring facility that will identify the system bottlenecks. The mon-
itoring will involve a recording of the periods during which re-
sources are busy, and identifying those that are busy a large fraction
of the time (e.g. above 90%). To reduce overheads, the calculation
of priorities will be done at a fixed granularity, e.g. once a second.
These priorities will then be used by all dispatch decisions until
new priorities are computed.

Apart from the implementation, there is also more to be done
regarding the algorithm itself. Group accounting (e.g. multiple
threads in a process that share their entitlement and allocations, or
asynchronous /0 leading to concurrent use of multiple resources
by the same process) is a challenging and interesting issue. Fur-
ther on, we would also like to investigate additional resources that
might become bottlenecks, such as cache space, bus bandwidth,
accelerators such as GPGPUs, and memory.

6.

ACKNOWLEDGMENTS

This research was supported by the Israel Science Foundation
(grant no. 28/09) and by an IBM faculty award.

7.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

REFERENCES

Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and

A. Keren, “An opportunity cost approach for job assignment
in a scalable computing cluster”. IEEE Trans. Parallel &
Distributed Syst. 11(7), pp. 760-768, Jul 2000.

T. Ben-Nun, Y. Etsion, and D. G. Feitelson, “Design and
implementation of a generic resource sharing virtual time
dispatcher”. In 3rd Ann. Haifa Experimental Syst. Conf.,
May 2010.

A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair
scheduling: A proportional-share CPU scheduling algorithm
for symmetric multiprocessors”. In 4th Symp. Operating
Systems Design & Implementation, pp. 45-58, Oct 2000.

D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and
N. Linial, “No justified complaints: On fair sharing of
multiple resources”. In 3rd Innov. Theor. Comput. Sci., pp.
68-75, Jan 2012.

N. Egi, A. Greenhalgh, M. Handley, G. lannaccone,

M. Manesh, L. Mathy, and S. Ratnasamy, “Improved
forwarding architecture and resource management for
multi-core software routers”. In 6th IFIP Intl. Conf. Network
& Parallel Comput., pp. 117-124, Oct 2009.

D. H. J. Epema, “Decay-usage scheduling in
multiprocessors”. ACM Trans. Comput. Syst. 16(4), pp.
367-415, Nov 1998.

Y. Etsion, T. Ben-Nun, and D. G. Feitelson, “A global
scheduling framework for virtualization environments”. In
5th Intl. Workshop System Management Techniques,
Processes, and Services, May 2009.

Y. Etsion, D. Tsafrir, and D. G. Feitelson, “Process
prioritization using output production: scheduling for
multimedia”. ACM Trans. Multimedia Comput., Commun. &
App. 2(4), pp. 318-342, Nov 2006.

A. Ghodsi, V. Sekar, M. Zaharia, and 1. Stoica,
“Multi-resource fair queueing for packet processing”. In
ACM SIGCOMM Conf., pp. 1-12, Aug 2012.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica, “Dominant resource fairness: Fair
allocation of multiple resource types”. In 8th Networked
Systems Design & Implementation, pp. 323-336, Mar 2011.

240

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

F. Guim, I. Rodero, and J. Corbalan, “The resource usage
aware backfilling”. In Job Scheduling Strategies for Parallel
Processing, E. Frachtenberg and U. Schwiegelshohn (eds.),
pp- 59-79, Springer Verlag, 2009. Lect. Notes Comput. Sci.
vol. 5798.

A. Gutman and N. Nisan, “Fair allocation without trade”. In
11th Autonomous Agents & Multiagent Syst., Jun 2012.

G. J. Henry, “The fair share scheduler”. AT&T Bell Labs
Tech. J. 63(8, part 2), pp. 1845-1857, Oct 1984.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C.
Sevcik, Quantitative System Performance: Computer System
Analysis Using Queueing Network Models. Prentice-Hall,
Inc., 1984.

A. Mancina, D. Faggioli, G. Lipari, J. N. Herder, B. Gras,
and A. S. Tanenbaum, “Enhancing a dependable multiserver
operating system with temporal protection via resource
reservations”. Real-Time Syst. 43(2), pp. 177-210, Oct 2009.
J. Nieh, C. Vaill, and H. Zhong, “Virtual-Time Round Robin:
An O(1) proportional share scheduler”. In USENIX Ann.
Technical Conf., pp. 245-259, Jun 2001.

B. Radunovi¢ and J.-Y. Le Boudec, “A unified framework for
max-min and min-max fairness with applications”.
IEEE/ACM Trans. Networking 15(5), pp. 1073—1083, Oct
2007.

D. Raz, H. Levy, and B. Avi-Itzhak, “A resource-allocation
queueing fairness measure”. In SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 130-141,
Jun 2004.

C. A. Waldspurger and W. E. Weihl, “Lottery scheduling:
Flexible proportional-share resource management”. In 1st
Symp. Operating Systems Design & Implementation, pp.
1-11, USENIX, Nov 1994.

M. E. Yaari and M. Bar-Hillel, “On dividing justly”. Social
Choice and Welfare 1(1), pp. 1-24, May 1984.

T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss, “Redline: First class support for interactivity in
commodity operating systems”. In 8th Symp. Operating
Systems Design & Implementation, pp. 73-86, Dec 2008.

L. Zhang, “Virtual clock: A new traffic control algorithm for
packet switching networks”. In ACM SIGCOMM Conf., pp.
19-29, Sep 1990.

Z.Zhang, L. T. X. Phan, G. Tan, S. Jain, H. Duong, B. T.
Loo, and I. Lee, “On the feasibility of dynamic rescheduling
on the Intel distributed computing platform”. In 11th Intl.
Middleware Conf. (Industrial Track), pp. 4-10, Nov 2010.

