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ABSTRACT

Nowadays, enterprise software systems store a large amount
of operational information in logs. Manually analysing these
data can be time-consuming and error-prone. Although a
static knowledge database eases the task to capture recur-
ring problems, maintaining such a knowledge repository re-
quires periodic knowledge updates by domain experts. More-
over, as the repository grows, the problem of memory effi-
ciency will also arise.

Our goal is to enable administrators to efficiently cap-
ture interesting data in a high volume stream of events in
real-time. We are proposing a statistical approach for soft-
ware applications to be automatically trained with a smaller
dataset to efficiently predict interesting data under such con-
ditions. The proposed solution maintains a stable memory
usage by migrating keywords from a dynamic data structure
to fixed sized data structures (Bloom Filter). In particular,
the solution has achieved better prediction results by en-
hancing the Bayesian theory with belief modifiers.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion filtering; H.3.4 [Systems and Software]: Performance
evaluation (efficiency and effectiveness)

General Terms

Algorithms, Design, Performance
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1. INTRODUCTION

Over the last decade, computers have been fast developed
with many advances in hardware technologies from powerful
servers to lightweight handsets. The highly developed tech-
nologies have also caused the amount of computer data to
rapidly grow such that gigabytes of data are now very com-
mon. In particular, data streams have gained a great popu-
larity for many real-life use cases such as video/voice stream-
ing, distributed file sharing, and sensor networks. However,
as the information contained in a data stream would con-
tinuously flow through the system, the data processing al-
gorithms need to be designed as efficiently as possible to
avoid data to be queued in the network. As a result, when
dealing with a large volume of stream data, processing the
same piece of information multiple times is not feasible, in-
stead, single pass techniques are often preferred. Further-
more, data streams can also lead to other problems in rela-
tion to limited CPU and memory resources [1].

A common approach to recognise recurring problems and
interesting data is to use a set of patterns and rules main-
tained in a static knowledge database, which must be de-
fined prior to the data matching process [12, 14, 31]. How-
ever, most of pattern-based approaches require domain ex-
pert knowledge and extra maintenance costs for periodi-
cally updates [4], of which tasks are often manually carried
out [26]. In summary, when dealing with a high volume of
stream events, which are single raw text messages such as
log records, a pattern-based approach would suffer following
problems: a) Can not easily be extended to recognise new
patterns; b) If the size of patterns keep growing, there can
be too much information saved in the memory repository;
¢) A disk-based pattern repository can cause significant per-
formance overhead in the pattern detection process due to
much slower data access speed caused by disk 1/O opera-
tions. As a result, an automatic way to detect problematic
and interesting events has been strongly required by system
administrators [10].



The statistical approach [10, 19, 26, 27] is dynamic and
enables a software application to be automatically trained
with a fraction of the dataset to capture interesting data,
which may not even have been seen before. The focus of this
paper is to discuss the statistical techniques to automatically
predict interesting events through a raw event stream by
assuming no dependency exists between each event and also
no prior knowledge on incoming events either.

The bag-of-words is a traditional strategy to save training
keywords and corresponding statistics in the memory [28].
In particular, the tree data structure allows keywords with
the same prefixes to share a single branch, which is more
memory efficient than saving each individual keyword sep-
arately. However, a tree has to be expanded for each dis-
tinct keyword, in which case the size of the tree can easily
grow up depending on the number of distinct keywords and
their length. As a result, using the tree data structure can
potentially carry a risk of the memory-intensive problem,
especially in a large-scale heterogenous environment such
as Cloud [15], where a variety of software applications can
work together and produce a high volume of dynamic data
contents such as transaction IDs and session IDs.

Furthermore, we are proposing a statistical approach to
predict interesting events through a dynamic stream events.
Our approach has been built top of Bayesian and Bloom
filter techniques with the ability to predict the interesting
events through a large volume of stream data produced by
enterprise software applications. In particular, this paper
contains following contributions:

1. Using normalised probabilities to avoid the lowest and
highest probabilities especially for the zero probability
to cause inaccurate prediction results.

2. Allowing the memory to be effectively maintained by
periodically migrating keywords from a dynamic data
structure (Tree) to fixed sized data structures (Bloom
Filter), which are created based on minimal and maxi-
mal probabilities. In particular, such a keyword migra-
tion does not require the quality of prediction results
to be sacrificed.

3. Proposing the belief modifier to improve the accuracy
of the Bayesian filtering technique.

4. The proposed solution enables both event training and
prediction processes to deliver a high system through-
put to cope with a large volume of stream events.

5. In addition, we are able to show that the proposed
event prediction mechanism can also be used to dis-
cover interesting data through static documents.

2. BACKGROUND AND MOTIVATIONS

Log data analysis is an important task for administra-
tors to understand the behaviour of software applications.
However, due to the amount of information, manually per-
forming such a task is time-consuming and thus ineffective.
To ease the log analysis tasks, Run Time Correlation En-
gine (RTCE) [11] has been developed as a framework to
automatically collect large amounts of log data from differ-
ent application logs, and correlate them together to provide
a single view to monitor all application instances. RTCE
was designed to handle generic data types and developed in
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conjunction with our industrial partner (IBM Dublin Soft-
ware Group), where RTCE has been successfully deployed
by their testing teams. In particular, many teams have
achieved significant time saving by using RT'CE to automate
their log analysis tasks [30] for variants of real industrial ap-
plications. In this paper, we are using the RTCE framework,
which contains various log adapters to automate event con-
version tasks for enterprise application logs.

The current success of RTCE has been mainly built based
on the efficient run-time data analysis tasks such as the
symptom matching algorithm [31], which enables the XPath-
based evaluation engine to efficiently process a large set of
XPath queries to match against stream events. However,
maintaining a large symptom database, which contains hun-
dreds of thousands of entries is not an easy task, which re-
quires domain expert knowledge for each enterprise appli-
cation and frequent data updates. To ensure our research
work is able to solve more real-life problems for real indus-
tries, we have also carried our regular weekly meetings with
IBM System Verification Test (SVT) team managers and ex-
perts to discuss further improvements to ease their testing
experiences. As a result, we have decided to discover a new
approach to enable their daily tasks to maintain the knowl-
edge database to be automated as well as automating the
problem detection process. The goal is to enhance the cur-
rent RTCE framework with additional automated function-
ality for testing teams to gain more time saving on system
monitoring related tasks.

3. EVENT PREDICTION SYSTEM

In order to support efficient event training and predic-
tion processes for timely data analysis without sacrificing
the quality of result, we have developed a new stream pro-
cessing engine consisting of following components:

e Event Trainer: continuously breaks incoming events
into a set of keywords and sends these keywords with
statistics to appropriate data structures.

e Tree: saves keywords and statistics, which have not
rarely or popularly occurred.

e Bloom Filter (BlmF) [6]: maintains two bit arrays
separately such that one for rare keywords and the
other one for popular keywords.

e Event Predictor: continuously examines the prob-
ability of the belief for each incoming event to find
interesting ones with strong believes.

e Bayesian Filter (BayeF) [24]: calculate the overall
probability of the belief for a set of keywords using the
tree and BlmFs.

The purpose of distinguishing rare and popular keywords
from the normal ones is to reduce the memory overhead
caused by the tree. Typically a rare keyword is a set of
distinct characters from other keywords. To save such a
keyword, the tree data structure has to be expanded with a
new branch and leaf, which will cause the size of tree grows
up. On the other hand, the popular keywords are the ones
that can be migrated to reduce the performance overhead for
frequent calculations, which are mostly repeated. Further-
more in addition to the core system components, we have
also used following thresholds to ease the event training and
prediction process:



e Minimal probability (Ppmi»): The minimal frequency
of a keyword that could possibly occur in interesting
events. This value has to be normalised to be greater
than zero.

e Maximal probability (Pmnqz): The maximal frequency

of a keyword that could possibly occur in interesting
events. This value has to be normalised to be less than
one.

e Strong threshold (ST): A probability threshold to
decide if an event is interesting such that the overall
probability of the event has to be greater than or equal
to this value.

e Strong belief modifier (T5): The probability of how
likely an event can be believed interesting by a given
keyword, which has occurred in interesting events.

e Weak belief modifier (T,): The probability of how
likely an event can be believed interesting by a given
keyword, which has not occurred in interesting events.

3.1 Event Trainer Overview

The event training engine is responsible for constructing a
repository of keywords and corresponding statistics of their
occurrences. The aim to allow a high volume of stream
events to be efficiently trained without sacrificing the quality
of the repository for event prediction during run-time.

As shown in Figure 1, when an event arrives in the sys-
tem, the event training will use the ‘Keyword Extractor’ to
convert the message body into a list of keywords. Then the
extracted keywords will be added to the ‘Tree’ data struc-
ture and the statistics of each keyword will also be updated
on associated leaf nodes. Once the tree is fully updated, all
the updated and new leaf nodes will be sent to the ‘Thresh-
old Examiner’, which periodically checks if any keyword has
occurred with a rare or popular frequency, which has been
calculated as:

occurrence in interesting events

P = Freqgnteresting) = the total occurrence

(In this example, we use Pnin as the rare frequency and
Pryae as the popular frequency for rare and popular key-
words, which have 1% and 99% probabilities to occur in
interesting events respectively while both values can be re-
adjusted depending on the actual use cases.)

If any leaf node with a rare or popular frequency is found,
the ‘TreeNode Extractor’ will find the corresponding key-
word from the ‘Tree’ using the parent reference contained
in each tree node. During the keyword extraction, all the
standalone tree nodes will be discarded to reduce the mem-
ory usage of the tree. Thereafter, the ‘TreeNode Extractor’
will send rare and popular keywords to the rare and popular
BlmF processors respectively.

During the training phase, a user has to define the pattern
to select interesting events depending on the actual datasets.
For example, the keyword ‘spam’ would allow the FEvent
Trainer to select all spam messages as interesting events.
The purpose is to allow our system to be trained with a lit-
tle user input (common keywords) to automatically predict
future events.
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Figure 1: Stream-Based Event Training System.

3.2 Tree Structure

The tree structure (Figure 1) consists of a static root node
and a list of leaf and transition nodes. New transition nodes
are created when none of the existing nodes can form an
incoming keyword. The last character of a keyword always
settles on a leaf node. In the case of common strings being
shared by multiple keywords, we allow all existing nodes to
be reusable for them. As a result, a transition node can also
become a leaf node if one keyword string is a subset of an-
other keyword. As shown in the graph, the leaf node ‘r’ will
be reused as a transition node, if the keyword ‘error’ comes.
Furthermore, a path traversal between a leaf node and the
root node can always precisely form a previously processed
keyword. Consequently, each keyword’s statistics such as
the frequency occurring in interesting events and overall oc-
currence only need to be saved on their corresponding leaf
nodes. For our current implementation, the statistics are
collected as integers with a maximal limit of 2°% — 1, which
we expect to work for most situations.

During the tree node extraction phase, the engine will it-
erate all leaf nodes that have rare and popular occurrences
in interesting events. From each leaf node the engine will
traverse back to the root node in order to form the corre-
sponding keyword for BlmFs. During the tree traversal the
engine will also discard the current leaf node and all other
transition nodes, unless any of them have been either linked
by other descendant nodes or used as the leaf nodes by other
keywords. By performing such a keyword migration process,
the memory usage for the tree data structure can be greatly
saved and the effectiveness is shown in the experiment sec-
tion 4.2.

Furthermore, the rare and popular thresholds are defined
as the lower and upper bounds of keywords’ occurrence that
core engine calculates. In this paper, we mainly use percent-
ages for statistical calculations thus 1% and 99% have been
used as the thresholds for determining rare and popular key-
words. By defining the lower and upper bounds of keywords’



occurrence, we are also able to assign fixed probabilities in
the BlmF's during keyword lookups to avoid unnecessary cal-
culations for a better performance.

From the memory consumption perspective, there are also
other competitive techniques available. For example, key-
words can be converted into hash values and saved in a hash
table; A list of keywords can also be compressed using vari-
ous data compression techniques. Although both approaches
would allow keywords to be stored with a reduced memory
consumption than the tree data structure, during the key-
word lookup process the tree data structure would become
more optimal. Because a hash table has to iterate through
a list of records to search for a given keyword and results
in longer response time if the number of records is large.
By using data compression techniques, keywords need to do
the data decompression, which will introduces extra perfor-
mance overhead. Comparing other techniques, a key fea-
ture of using the tree data structure as the main knowledge
repository to save keywords along with their occurrences is
because of its efficient keyword lookups, which allows a given
keyword to be searched through a large set of keywords via
a single pass.

3.3 Bloom Filter

The BlmF technique has the advantage of space efficiency
by encoding and merging each keyword into a fixed sized bit
array. When a BlmF stores a keyword, it encodes the key-
word into hash values (a bit array with 0 and 1 values) using
a hash function and then merges the result into a predefined
bit array. Then when a BlmF checks a keyword’s existence,
it has to convert the keyword into a hash value and check
if all 1’s in the keyword’s hash value can be matched to the
1’s in the BlmF’s bit array. If all 1’s are matched, then it
means the BF has previously stored the same keyword in
the bit array. Otherwise, the keyword has not been stored.
As all keywords are saved together, it is impossible to assign
or fetch statistics for individual keywords from the BImF’s
bit array. Instead when a rare or popular keyword is found,
the BImF processor will simply return a fixed frequency of
Proin or Phgz accordingly.

We use the following function to calculate the size of the
bit array:

n-log f

(log 2)*

Where ‘m’ is the number of bits required in the array, ‘n’
is the total number of keywords going to be inserted into
the bit array (the maximal capacity of the BlmF), and ‘f’
is the false positive rate, which can be tolerated by this
BlmF. (During the implementation, we have defined each
BlmF, which consumes less than 1 MB memory space to
allow maximal 100,000 keywords to be saved by tolerating
0.01 false positive.) To efficiently convert each keyword into
hash values, the MurmurHash2 ! algorithm has been used.

Furthermore rare and popular keywords are migrated from
the tree data structure based on their extreme occurrences,
during the keyword lookup process the fixed occurrence val-
ues for BlmFs’ keywords are immediately returned as the
minimal and maximal likelihoods to believe an event to be
interesting. By defining such normalised thresholds to rep-
resent the lower and upper bounds of likelihoods, we assume
that the prediction process can tolerant little precision loss,

"http://code.google.com/p/smhasher /wiki/MurmurHash?2
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in which case it might result in mismatching a small frac-
tion of interesting events that have their overall likelihoods
slightly below the predefined (ST'). However, depending on
the actual deployment environment, the optimal value of ST
can be re-adjusted to either capture more mismatched inter-
esting events by reducing ST or less non-interesting events
by increasing ST.

The BlmF-based solution has been proposed as a space
efficient technique for examining the keywords’ existence.
However, a BlmF has to risk certain chances of false posi-
tive, which causes a keyword to be falsely reported as being
contained in the bit array. The false positive problem oc-
curs because the 1’s bits of a keyword are fully satisfied by
the BImF’s bit array but in fact some 1’s bits in the BlmF
are set by storing other keywords’ hash values rather than
the current keyword. An example of such a problem is illus-
trated in Figure 2. As assuming the original bit array has
not stored the hash value for neither ‘Keyword A’, ‘Keyword
B’ nor ‘Keyword C’, when ‘Keyword A’ arrives for the train-
ing purpose, all the corresponding 1’s bits must be turned
on within the original bit array. However, the new bit array
produced after such a merging process might also contain all
necessary 1’s bits for other keywords, which have never been
stored before. For example, during the querying phase, al-
though both ‘Keyword B’ and ‘Keyword C’ have never been
merged into the bit array, the hash value of ‘Keyword C’ has
just become fully satisfied after the new bit array has the
1’s bits turned for both ‘Keyword A’ and previous keywords.
Consequently, the ‘Keyword C’ would be falsely reported as
a keyword, which has been theoretically stored in the bit
array previously.

Original ol alslolob .
bit array /OAO_O_"»O_OV 0
oy - ——
Keyword A 1/0[1/0/0|0fF------------ 1
New
bit array

Queried keyword B

Queried keyword C

Figure 2: The False Positive Problem in Bloom Fil-
ter.

3.4 Event Predictor

The event prediction engine is responsible for evaluating
the probability of each arrival event to be believed interest-
ing based on previous keywords and statistics, which have
been saved in the ‘Tree’ and rare and popular BlmFs. The
aim is to develop an efficient event prediction algorithm to
capture interesting events through a high volume of stream
events in real-time.

During the event prediction process, once a stream event
arrives, the event prediction engine uses the Algorithm EP to
calculate the overall probability of the event and determine
how likely the event is believed to be interesting. Before an



Algorithm EP BayeF-based Event Prediction (event)

: Ts = 90% {Strong belief modifier}

: Tw = 10% {Weak belief modifier}

ST = 90% {Strong Threshold}

Prin = 1% {Minimal probability}

¢ Praz = 99% {Maximal probability}

k =0 {Keyword Counter}

: for all keywords in event do

if keyword exists on the tree then
occurrence in interesting events

® ST wy

i
9: Pr =

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

the total occurrence
else if keyword exists in rare BlmF then

else if keyword exists in popular BImF then
pi = Pma,z
else {keyword is unknown}
skip and continue with the next keyword
end if
pr = pi X T
P =1 =pi) x Tw
k=k+1
end for
if k is equal to 0 then

22: return No keyword found
23: else X
" _ [ii ()
H?:1(pi) + Hf:l(p;)
25:  if P is greater than or equal to ST then
26: return Event is interesting
27:  else
28: return Event is not interesting
29: end if
30: end if

event is processed, the engine will initialise a variable ‘6’ as
the counter for the number of processed keywords, which
are recognisable within the training repository (See line: 6).
Then for each arrival event, the engine will extract all the
keywords from the message body (See line: 7) and collect the
associated probability for each keyword (See line: 8 — 16).

In order to reduce the chances of having false positive
problems in both BlmFs, the execution order of the proba-
bility collection process needs to be properly arranged such
that the engine always tries to find an extracted keyword
from the tree first before using BlmFs. As a result, the key-
words saved on the tree will not be falsely found from BlmF's.
Thereafter, if a keyword is found on the tree, the correspond-
ing probability for the current event to be believed interest-
ing is going to be calculated based on the previous formula
‘Freq(interesting) - 1f the keyword can be found in the rare
BlmF, a static probability will be assigned to the keyword
using the value of Pp,in. Consequently, if a keyword can only
be found in the popular BlmF, the Py,q. will be assigned to
the keyword. However, if the keyword has not been found
in neither ‘IT'ree’ nor the two BlmFs, the keyword is consid-
ered neutral such that its probability will be skipped for the
current event’s probability calculation.

Furthermore for the best practice, the execution order be-
tween rare and popular BlmF's should be adjusted based on
the number of merged keywords in their bit arrays such that
the one with a smaller number is always executed before the
other. As more keywords are merged into the bit array,
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more 1’s bits will be turned on, in which case the chances of
having false positive problems will be increased. Therefore
when collecting the probability for each keyword, executing
the BlmF with less merged keywords prior to the other can
practically reduce the risk of false positive problems. Such
an optimisation can be implemented before the ‘for loop’
(line: 7) by assigning BlmF to two separate variables and
then replacing linel0, 12 with the BlmF variables contain-
ing less and more keywords respectively, while assigning the
corresponding probability to p}, (line: 11,13).

Once a probability is successfully calculated for a keyword,
the engine will use the Bayesian theory to calculate the like-
lihood statistics of the current event based on the processed
keywords. The basic formula is defined as:

P1-p2-P3... Pk
P1- D2 Ps... Dk + Dy - Ph - Py P

P=

P is the probability of how likely the event is believed to
be interesting, py is the probability of the keyword, which
has occurred in interesting events to allow an event to be
believed interesting, and p}, is the probability of the keyword,
which has not occurred in interesting events to allow an
event to be believed interesting. If pi, is the probability of the
keyword occurring in interesting events (Freqinteresting))
then:

e pir = pi. x Ts: By applying the strong belief modifier to
the frequency of the keywords occurring in interesting
events, the probability of of an event believed to be in-
teresting can be more realistically reflected, because a
single interesting keyword should not make the event
believed to be interesting with 100% certainty. In-
stead, an interesting keyword should only give a strong
belief (90%) to the event for being interesting.

o p,, = (1—pL) x Ty: As opposite to p, pj, is calculated
based on a weak belief modifier to the frequency of the
keyword occurring in non-interesting events. Although
in this case the probability represents the chance of a
keyword to occur in non-interesting events, the belief
of such events to be interesting should not be abso-
lutely impossible. Instead, a non-interesting keyword
should give a weak belief (10%) to the event for being
interesting.

As shown in the Algorithm EP, the engine updates the
product over the overall probability from the 1st to cur-
rent keywords with two realistic probabilities of px and pj,
(See line: 17 — 19). When the engine finishes collecting all
probabilities with the keyword counter ‘k’, the overall prob-
ability of the belief for the current event being interesting
is calculated using the Bayesian theory as line 24. In this
case, Hle(pi) is the probability of the event to be inter-
esting based on keywords occurred in interesting events and
Hle (p;) represents how likely the event is interesting based
on keywords occurred in non-interesting events. An the end
of the algorithm, the engine will compare the overall prob-
ability ‘P’ to the predefined threshold ‘ST’ to determine
whether the event is interesting (See line: 25 — 29).

4. EXPERIMENT

The implementation of the proposed solution has been
developed in Java and evaluated using a standard desktop



machine?. During all experiment tests, the implemented ap-
plication has been running with a default memory setting,
which allows maximal 123MB to be consumed and using
20% ~ 31% of the quad-core CPU on average. To clearly
demonstrate the performance of our solution, the experi-
ment has been broken down into 7 sub-sections.

In Section 4.1, we will explain the memory-intensive prob-
lem caused by the tree data structure. In Section 4.2, we
will show the effectiveness of the keyword migration mech-
anism for stream-based event training. In Section 4.3, we
will evaluate the quality of our solution from the following
aspects:

e False positive: representing the percentage of the
non-interesting events, which should not be captured
out of the entire set of captured events. The value gives
an impact on the amount of non-interesting events that
an administrator needs to filter out from the predicted
events.

e False negative: representing the percentage of the
missing events out of the interesting events, all of which
should be captured. The value gives an impact on
the amount of interesting events that an administra-
tor needs to filter out from the entire event stream.

As a high quality result, the value of both evaluation
criteria should be kept low. In the case that only one of
evaluation criteria can be maintained low, the false positive
is always sacrificed to achieve a low false negative value.
Because finding interesting data through a high volume of
stream events is much more difficult and time-consuming
than finding non-interesting data through a small fraction
of the stream dataset.

In particular, Section 4.3 will also demonstrate the system
throughput for stream-based event training and prediction
processes in addition to the accuracy assessment. The aim
is to show the applicability of applying our solution for real-
time event prediction use cases.

In Section 4.4, we will show the effectiveness of the belief
modifiers by comparing to the BayeF without belief modi-
fiers. In Section 4.5, we will demonstrate the performance of
RTCE before and after being integrated with our solution.
The aim is to show the performance overhead introduced
by our solution to the original RTCE framework. In Sec-
tion 4.6, we will evaluate the quality of our solution by pro-
cessing static data using two open source datasets. The aim
is to show the applicability of our solution for various data
types. In Section 4.7, we will compare three other classifiers
against our approach.

4.1 Memory-Intensive Problem for Tree

During our experimental test, we use the B-Tree data
structure to store indexing keywords. Each tree node con-
sists of three possible fields: a word character in all tree
nodes, a word frequency value on the leaf node, and a list of
node transitions on the transition nodes. Such a tree data
structure can achieve space efficiency for storing keywords
with the same prefix on a single tree branch. In order to

2Ubuntu 8.10, x86_64 GNU/Linux, J2RE 1.6.0 J9 2.4 Linux
amd64-64, Intel Q9400 2.66GHz, 8GB RAM, Western Digi-
tal 7200rpm SATA-IT
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Figure 3: Memory consumptions for saving UUIDs
in a tree architecture

simulate unique keywords, our test data consists of a list of
random UUIDs? (Universal Unique IDentifier [20]).

Figure 3 illustrates the memory consumptions for storing
different amounts of UUIDs in the tree data structure. As
the number of stored UUIDs increases, the more memory are
consumed by the tree. To be precise, the size of the tree is
increased by 8 megabytes for every 10,000 UUIDs under our
Java implementation. In the case that tens of thousands of
UUIDs need to be processed, the memory exhaustion would
become significant. In addition, the memory consumption
shown in the graph is only for storing a series of UUIDs. If
storing real log events, which may contain the UUID, times-
tamp, and message body for each log entry, then the size of
the tree will consume even more memory space. Therefore,
we would conclude that purely using the tree data structure
to store the training keywords and statistics is not a feasible
solution to deal with a large volume of stream events.

4.2 Keyword Migration for Event Training

As explained previously, processing a dynamic stream data
can potentially cause the memory-intensive problem. Be-
yond the solution of upgrading machines with more physical
memory chips, we have proposed a new approach to migrate
rare and popular keywords into two fixed sized BlmF's. The
effectiveness of our approach is shown in Figure 4.

During the experiment, the implemented application has
been constantly trained with a set of log events collected
from the IBM SVT lab environment. The overall dataset
consists of 27m lines of events and 2.5¢ in size. The num-
ber of processed keywords is 62k, which consequently re-
quire 563k tree nodes to be created in total. The number of
tree nodes is periodically examined against the pre-defined
threshold of 100k to trigger the keyword migration process,
which has caused the number of keywords to be dramatically
reduced from the tree as shown in Figure 4.

Moreover, the set of log files used in this experiment is
only a snapshot of a typical enterprise application in soft-
ware industries. In the case of handling a real production
application running for weeks or even months, the training
dataset can be much bigger. As a result, purely saving all
keywords and statistical data on a tree data structure would
require much more memory space than our approach.

3http://docs.oracle.com /javase/1.5.0/docs/api/
java/util/UUID.html
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Table 1: Performance of Stream Event Prediction

Stream Source:

Application Server

UI Server

Training
Throughput

118k events/sec
10.2m bytes/sec

115k events/sec
10.7m bytes/sec

Training Dataset

1.4m events

2.7m events

(First 25% of stream events)

Interesting Events 20, 826 42,184

Rare Words 8,937 2,170
Popular Words 792 40

Training Words 10, 394 3,134

Prediction 119k events/sec 112k events/sec
Throughput 10.3m bytes/sec | 10.4m bytes/sec
Prediction 5.9m events 10.8m events
Dataset
Neutral Words 137,667 3,936
Interesting Events
(Predicted) 80, 898 173,753
Total Events
(Predicted) 93,092 192,725
False Positive 13% 9.8%
False Negative 0.3% 0%

4.3 Stream-Based Event Prediction

For the stream-based event prediction, we have used an-
other desktop machine (Pentium4) as the load generator
connected to the implemented application via a 100Mbps
local network. The data source consists of two sets of log
files produced by various system components of an enterprise
social application [13]. During the experiment, the load gen-
erator has been constantly sending each line of log events to
the implemented application until the last event is reached.
(The load generator is capable of sending up to 130k events
per second on average.) Based on the experiment result,
we have seen that using 90% as the threshold value for ST
and Ts and 10% as T, has been able to predict interest-
ing events with a reasonable accuracy, which is expected to
tolerate 10% false positives and 1% false negatives.

As shown in Table 1, the two stream sources are col-
lected from an application server and UI server. From the
system throughput perspective, the Ul Server events have
been processed with a slightly lower event processing rate

(events/sec) but a higher data processing rate (bytes/sec).
The main reason is because each Ul Server event is longer
than the application server. More importantly, the imple-
mented application is able to deliver a high system through-
put for both applications during event training and predic-
tion phases. As a result, the proposed solution should be ef-
ficient enough to handle real-time event prediction use cases.

During the event training phase, the implemented applica-
tion has only been trained with a 25% of the overall stream
data source produced by each enterprise application. For
the best practise, the training dataset for the implemented
application should be made as small as possible to reduce
the performance overhead introduced by the training pro-
cess. From the QoS perspective, the more data is trained,
the more accurate results can be achieved because less neu-
tral words will be experienced during the prediction phase.
However, sometimes the increased training dataset can not
significantly improve the quality of the result, instead a sig-
nificant performance overhead can be introduced. As a re-
sult, after trying different sizes of training datasets, the per-
centage 25% has been found as the most optimal training
threshold for all use cases presented in this paper.

In order to maintain a stable heap usage, the keyword
migration mechanism has been used to move the rare and
popular keywords from the tree to BlmF. As shown in the
table, the majority of processed event keywords have rarely
occurred, while a small set of keywords have popularly oc-
curred in both application servers. Because the BlmF's are
fixed sized data structures, the significant amount of mi-
grated keywords removed from the tree can dramatically
reduce the overall heap usage.

From the performance perspective, RTCE has been able
to process over a hundred thousands of events per second for
both training and prediction processes. The data processing
throughput has almost reached the maximal theoretical lim-
itation on the network bandwidth (12.5m bytes/sec). How-
ever due to time constraints, we have been able to carry out
additional tests in a more powerful hardware environment,
which would be done in our future work. In this paper, the
main purpose of demonstrating the result of system perfor-
mance for the current experiment is to show the prospective
efficiency of our event training and prediction processes to
handle a high volume of stream data. In particular, all the
event training and prediction results are almost processed
in real-time with no sophisticated buffering techniques be-
ing enabled.

Furthermore, due to a small dataset being trained for the
implemented application, there has been many neutral key-
words found during the event prediction phase. For the
application server, 57% of the neutral keywords belong to
interesting events and for the UI server 19% of neutral key-
words belong to interesting events. Although providing a
complete training with the entire stream would make more
realistic statistics available for the probability calculation,
such an experiment has not been able to significantly im-
prove the quality of the result. In both stream sources, the
non-interesting keywords have got low occurrences, which
can only give little impact on the probabilities (‘P’) of in-
teresting events. As a result, the false negative values for
both servers have remained the same for a complete train-
ing.

From the false positive perspective, by training the full
dataset the application server has achieved a lower value of



12%, while the UI Server has got a slightly higher value of
10.3% comparing to the 25% of training data. In the applica-
tion server, most of the interesting keywords have been seen
in the interesting events but only a small number of interest-
ing keywords exist in the non-interesting events. When the
number of non-interesting keywords increases with a com-
plete training, the probabilities (‘P’) on many of the non-
interesting events have been dramatically reduced such that
thousands of such events have no longer believed to be in-
teresting. As a result, the value of false positive has been
reduced to 12% from 13%.

However, with a complete training the Ul server has achieved

a slightly different result, which has increased the value of
false positive to 10.3% from 9.8%. For a small fraction of
the stream events, the probability of the belief (‘P’) has
surpassed the threshold of interesting events because some
of the newly recognised interesting keywords have gained
higher occurrences than the non-interesting keywords. But
as the probabilities of the majority of the non-interesting
events have still been dominated by the non-interesting key-
words, most of the non-interesting events were still classified
in the result. Thus, a small variance of the false positive has
been seen.

More importantly, we have seen that a complete training
has only been giving small impact on the quality of result.
As the training workload and duration have been signifi-
cantly increased for training, the trade-off between accuracy
and performance has not been equalised. Therefore, a 25%
of training dataset is optimal for event training and suffi-
cient for prediction. In real use cases, such a configuration
can be predefined based on the requirement of the moni-
tored application. For example, if a testing team is going to
evaluate the stability of an enterprise application based on
a 4-days run, our solution can be trained with stream data
produced by the application during the 1st day.

4.4 Belief Modifier Effectiveness

In order to examine how effectively the strong and weak
belief modifiers can impact on the event prediction results.
Two experiment tests have been carried out for the same
stream dataset, which consists of log events produced by
the Application and Ul servers. The experiment results have
shown that applying the belief modifiers the average proba-
bility of each stream event has been increased and enabled
the engine to make more accurate decisions.

As shown in Figure 5, without using the belief modifiers
the event probabilities calculated by the BayeF has varied
between 1.0777 and 0.99. By using the belief modifiers, the
probabilities varied between 1.0723 and 0.99. In addition,
without belief modifiers the most of the events have achieved
the probabilities between 1.073% and 1.0™** while using be-
lief modifiers most events have had probabilities between
1.07'% and 1.077. Although most of the events have gained
the probabilities below the strong threshold, the belief mod-
ifiers have enabled the engine to capture interesting events
with a relatively high accuracy as shown in the previous
Table 1.

Figure 6 illustrates a similar event distribution to what the
application server has achieved. The average event probabil-
ities with the belief modifiers are higher than the ones with-
out using belief modifiers. While most of the stream events,
which contained a small of interesting keywords have gained
low probabilities (lower than the strong threshold), by using
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belief modifiers the proposed solution can still capture all
the interesting events in the prediction result dataset, which
also contains 9.8% of non-interesting events. (See Table 1)

Table 2 gives a detailed breakdown of the event prediction
result without using the belief modifiers. During this test,
we have trained the engine with the same dataset (25%)
for each event stream. However, the experiment has shown
a bad quality for the event prediction result, which have
gained 62% and 3.4% of false negative rates for the applica-
tion and Ul servers respectively. As discussed previously, the
false negative is a worse quality indicator than false positive.
Because to deal with a false positive problem, administra-
tors only need to go through a small dataset containing all
the predicted events. In the case that a high false negative
is achieved, the administrator has to go through the entire
stream dataset to find interesting events, which were miss-
ing. However, finding the other 62% of interesting events for
the application server through millions of events can be an
extremely time-consuming task for administrators to carry
out.
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Figure 5: The Event Distribution of Bayesian Prob-
abilities across Application Server’s Event Stream.

Table 2: The Prediction Results Without Belief
Modifiers
Stream Source: Application Server | UI Server
Interesting Events
(Predicted) 30,778 167,844
Total Events
(Predicted) 30,778 167,867
False Positive 0% 0.014%
False Negative 62% 3.4%

4.5 RTCE Integration

In addition to the experiment tests for the standalone
application, we have also integrated the solution into the
RTCE framework. The goal is to extend the tool with more
useful functionality to enable testing teams to easily perform
system monitoring related tasks.

During the experiment, we have increased the maximal
heap usage to 256 MB for running the RTCE framework
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Figure 6: The Event Distribution of Bayesian Prob-
abilities across Ul Server’s Event Stream.

due to more system components being loaded. Because the
proposed solution has mainly focused to enhance the run-
time data analysis tasks, the data persistence functionality
of RTCE, which is the ‘Run’ system component described
in the previous work [11] has been disabled during each test.
Also, the same stream dataset has been used for all the tests.

As shown in Table 3, the first experiment test has been
carried out to show the baseline for the RTCE performance
assessment. The result has shown that the original RTCE
has achieved a high system throughput of 108.4k events per
second, which equally gives the data processing rate of 10.06
megabytes per second. Thereafter, the result of the second
test has shown that after integrating our solution to the
RTCE framework, the system throughput has slightly de-
creased to 102.2k events per second for the event training
process. Finally, when the integrated RTCE framework per-
forms the event prediction tasks, the system throughput has
slightly increased to 106.2k events per second but still lower
than the original RTCE performance. From the CPU us-
age perspective, the integrated RTCE framework has shown
a significant increase than the original RTCE due to extra
data mining tasks being performed.

Table 3: The Performance of RTCE with Event Pre-
diction Integrated

RTCE System Throughput
Performance CPU Usage (events/sec) | (bytes/sec)
Original 27.5% ~ 30% 108.4k 10.06m
Integrated 1 y1or 48.5% | 102.2k 9.48m
(Training)

Integrated

(Prediction) 40% ~ 46% 106.2k 9.86m

4.6 SMS Spam and Farm Ad Prediction

Beyond the stream-based event prediction experiment, we
have also assessed our solution against static documents:
SMS messages [2] and farm ads [23], which have been used
by other research works of [3] and [22] respectively.

As shown in Table 4, both documents have been trained
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to predict interesting records, which are spam SMS messages
and accepted farm ads. Because the size of each document is
small such that our solution can almost process both docu-
ments instantly, the training and prediction throughputs are
excluded in this table. By training first 25% of each docu-
ment, the SMS and farm-ad documents have been trained
with 202 spams and 568 accepted-ads respectively.

Table 4: SMS Spams & Farm Ads Prediction

Data Source: SMS Messages Farm Ads
Training Dataset 1,393 Messages 1,035 Ads
Interesting Records Spam: 202 Accepted: 568
Training Words 4,240 17,971
Prediction Dataset | 5,574 Messages 4,143 Ads
Neutral Words 10,627 68,001
Interesting Events 741 1.708
(Predicted) ’
Total Events
(Predicted) 865 3,027
False Positive 14.9% 43.5%
False Negative 0.8% 22.7%

During the event prediction phase, a significant amount
of neutral keywords have been seen for both SMS and farm-
ad documents. As discussed previously, depending on the
ratio of interesting to non-interesting keywords in the new
messages, the values of false positive and false negative can
vary a lot.

For the SMS messages, our solution has achieved a 14.9%
of false positive and 0.8% of false negative. For the farm
ads, 43.5% of false positive and 22.7% of false negative have
been achieved. Comparing to the SMS document and other
stream-based log events, the farm-ads document has been
predicted with much higher false positives due to stronger
believes built based on interesting keywords in the new events.
Because in many of the new non-interesting events, the in-
teresting keywords have occurred more frequently than non-
interesting keywords. As the neutral keywords can not give
any impact on the probabilities, such non-interesting events
have been falsely included in the interesting event category.

Furthermore during the prediction phase, 99.2% of new
spam messages in the SMS dataset have higher recurrence
of interesting keywords than non-interesting keywords. As
a result, there has been only 0.8% of spam messages miss-
ing. In the farm-ad dataset, 24% of accepted-ads have been
missing due to many non-interesting keywords occurred in
the new accepted-ads, which probabilities have been reduced
below the strong threshold due to the lack of unrecognised
interesting keywords contained in the neutral keyword set.

4.7 Comparing to Other Classifiers

In order to further assess the quality of our solution, we
have compared our approach with three other popular clas-
sifiers: Naive-Bayes Tree (NBTree) [18], C4.5 [25], and Se-
quential Minimisation Optimisation (SMO) [17]. C4.5 is a
decision tree based algorithm featuring the branch pruning
ability. NBTree is a hybrid algorithm consisting of both
Naive-Bayes and decision tree classifiers. SMO is the suc-
cessor to the Support Vector Machine (SVM) and optimises
the data processing speed. To compare the performance of
each algorithm against our approach, we have obtained the



implementation for each algorithm from Weka *, which is an
open source project with a wide range of machine learning
algorithms implemented in Java.

During the first experiment, we have used the farm-ads
dataset to assess the performance of each algorithm. As
shown in Table 5, we have trained all four algorithms with
25% of farm-ads for prediction. As a result, both C4.5 and
NBTree have achieved the highest number of correctly clas-
sified farm-ads, while RT'CE and SMO being the second and
third accurate approaches. From the memory efficiency per-
spective, the C4.5 and RTCE have both been able to suc-
cessfully run with the default JVM setting, which is 123MB.
Furthermore, the time taken to build and predict farm-ads
has also been measured for each algorithm to assess their ca-
pabilities to fulfil the real-time event prediction requirement.
As shown in the table, RTCE has been the least time con-
suming approach to process farm-ads, while NBTree being
the slowest approach.

Table 5: Classifier Comparison Using Farm Ads

Classifiers: C4.5 | SMO | NBTree | RTCE
Training Data 1,035 Farm Ads
Prediction Data 4,143 Farm Ads
Correctly 2,361 2,210 2,361 2,322
Classified 56.98% | 53.34% | 56.98% | 56.04%
Incorrectly 1,782 1,933 1,782 1,821
Classified 43.01% | 46.65% | 43.01% | 43.95%
Memory Setting | default | 512MB | 512MB | default
Time to Build 10.64s 2.11s 45.44s 0.077s
Time to Predict | 2.58s 2.79s 5.56s 0.698s

During the second experiment, we have used the SM'S mes-
sage dataset to assess the performance. The same as farm-
ads experiment each algorithm has been trained with 25% of
SMS messages. As shown in Table 6, RTCE has achieved the
highest number of correctly classified SMS messages. Fur-
thermore while C4.5 and RTCE are still the most memory
efficient approaches, RTCE has been found to be the fastest
approach to build and predict SMS messages.

Table 6: Classifier Comparison Using SMS Spams

Classifiers: C45 | SMO [ NBTree | RTCE
Training Data 1,393 SMS Messages
Prediction Data 5,574 SMS Messages
Correctly 4,827 4,827 4827 5,438
Classified 86.59% | 86.59% | 86.59% | 97.56%
Incorrectly 747 747 747 136
Classified 13.40% | 13.40% | 13.40% | 2.43%
Memory Setting | default | 256MB | 256MB | default
Time to Build 3.64s 0.64s 7.6s 0.035s
Time to Predict 0.8s 1.09s 1.47s 0.09s

Additionally we have also carried out a training test us-
ing the full dataset of farm-ads for C'4.5, which has been
the most memory efficient approach beyond RTCE. How-
ever, the experiment has shown that C'4.5 requires a mini-
mum 1.5G' B memory setting to successfully process the full
farm-ads dataset while taking 354.38s and 34.41s to build

4Weka: Machine Learning Software in Java,
http://sourceforge.net/projects/weka/files /weka-3-6/3.6.8
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and predict data respectively. Comparing to the our ap-
proach, which has been able to process the full dataset al-
most instantly (0.109s to build and 0.792s to predict) with
the default JVM memory setting, the C'4.5 is still much less
memory efficient and slower.

S. RELATED WORK

Naive Bayes Classifier (NBC) [24] has been proposed as an
efficient solution to classify raw text documents with mul-
tiple attributes. The probabilities of various terms for cer-
tain attributes are calculated based on their frequencies in
the training dataset. Comparing to other learning methods,
NBC is more efficient and suitable for processing a large set
of data due to the avoidance of the searching process for
possible hypothesis. In addition, NBC also classifies docu-
ments when the contents of data are independent. In the
case that one of the terms has gained a 0 probability, an
estimating probability has to be calculated by adding ‘mp’
to the ‘numerator’ and ‘m’ to the ‘dominator’, where ‘m’
is the equivalent sample size and ‘p’ is the estimated prior
probability. Such a 0 probability problem is avoided in our
solution by assigning the minimal probability (1%). Fur-
thermore, a following research work [5] has found that NBC
scores can unrealistically move close to 0 or 1 when the num-
ber of input words increases.

Iterative Bayes Classifier (IBC) [7] and Adaptive Bayes
Classifier (ABC) [8] are two of extended approaches to the
core NBC technique. The IBC can further improve the pre-
diction probability by iterating the training dataset. Af-
ter a normal NBC training process, the IBC needs to cycle
through the same dataset again to allow the desired classes
to be predicted more confidently, in which case IBC would
increase the probability of predicted classes and decrease
the probabilities of other classes that are not selected. As
a result, the confidence of selecting the predicted classes
will become stronger and give more significant impact on
the believes of further predictions. For the ABC approach,
the confidence of predicted classes is improved by learning
from new data contents instead of iterating the old training
dataset. In the case of predicting stream events, the ABC
approach is more suitable for handling dynamic data con-
tents, which can not be accurately predicted by IBC if there
is any changes occurring in the stream. However, neither
NBC, IBC, nor ABC has considered the memory-intensive
problem to fulfill the requirement of processing a large vol-
ume of stream data.

The Conceptual Clustering and Prediction (CCP) frame-
work [16] has been proposed as a stream-based email filtering
system, which assumes there is only a limited memory re-
source available. In their related work section, a number of
previous works have been discussed to emphasis the mem-
ory constraint problem for stream processing. In order to
solve such a memory issue, CCP uses a mapping function to
transform every batch of stream data into conceptual vectors
and groups multiple vectors into clusters. For each cluster,
CCP needs to assign a corresponding classifier, which is also
trained and updated by the batch of data. By only keep-
ing the cluster centroid and corresponding classifiers in the
main memory, the CCP framework can easily cope with a
stream data while there is a constraint on the memory us-
age. However, in order to achieve an optimal performance,
the proper batch size can only be selected after the prelimi-
nary experiment results are gained.



Context-aware Ensemble (CAE) [9] is one of recently pro-
posed stream processing engines, which use the ensemble ap-
proach [29] to train and update classifiers. CAE maintains a
pool of classifiers and based on their weights, an appropriate
classifier is used and trained for recurring concepts process-
ing. CAE can improve the adaptation to recurring concepts
by exploiting the relationship between contexts and con-
cepts. To deal with memory constraints, CAE can periodi-
cally prune away classifiers, which have the lowest utilisation
when the maximal number of classifiers is reached. However,
the experiment result shows that the accuracy of the CAE
approach would be significantly affected when there is some
noise data occurring in the underlying stream.

Classifier4j [21] is an open source tool supporting text
classification based on the Bayesian theorem. Classifier4;j
uses the relational database (RDBMS) technology to save
the processed keywords and corresponding statistics. Be-
cause RDBMS persists data directly onto the hard disk, the
memory-intensive problem can be easily avoided by Classi-
fier4dj due to a much smaller set of data being kept in the
memory. However, as each RDBMS data access requires one
disk I/O operation, which is much slower than the RAM
data access, the overall system throughput can be limited
by a large amount of I/O waiting time while dealing with a
high volume of stream data. Moreover, Classifier4j only uses
the keywords’ frequency as the probability of the belief by
assuming a 100% belief for keywords existing in both inter-
esting and non-interesting events. As discussed previously,
this mechanism is likely to produce inaccurate probability
results when dealing with a high volume of dynamic stream
data, where many interesting keywords in predicting events
have only been trained with low probabilities.

From the log analysis perspective, Xu.W and et al. [32]
have proposed an interesting four-step approach to detect
problems through system console logs. Their first step en-
ables unstructured log messages to be parsed based on the
logging points of source codes. The second step allows pre-
defined functions to be executed to provide fine-grained in-
formation for the third step, which detects the anomalies
through variants of variables and identifiers. The last vi-
sualisation step shows a decision tree graph to allow users
to gain a detailed problem description. By making use of
several open source libraries such as Apache Lucene and
Hadoop, they have been able to process millions of messages
per minute with dozens of nodes while achieving a high re-
sult accuracy. Comparing to their approach, which mainly
focuses anomaly detection based on related numerical vari-
ables and identifiers, our solution is a more light-weighted
approach to only predict the existence of an anomaly mes-
sage rather than message correlation. However, during the
experiment, their approach has failed to parse some of the
“message type” attributes containing long strings, in which
case a complete understanding of all message types, which
are not required by our approach is required by their ap-
proach to properly process various logs. Furthermore to ease
troubleshooting tasks, LogEnhancer [33] has been proposed
to enhance logging points in the source code. Comparing to
these two approaches, both of which would require the access
to the source code and domain expert knowledge to under-
stand it, our solution has been mainly focusing on anomaly
detection with non-expert knowledge and assuming source
code access is not always possible.
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6. CONCLUSIONS

In this paper, we have explained the advantage of using a
statistical approach to predict interesting data based on lim-
ited training resources. Thereafter, the memory-intensive
problem has been detailed under the context of coping with
a large volume of stream events. The proposed solution
tackles such a problem by using two BlmF's, which are both
fixed sized and efficiently save periodically migrated key-
words from the tree data structures. To avoid inaccurate
prediction results, the lowest and highest probabilities have
been normalised using minimal and maximal probabilities
respectively. By assigning the minimal and maximal proba-
bilities to each BlmF, the migrated keywords have avoided
the sacrifice to the quality of prediction results. The pro-
posed solution has also enhanced the Bayesian theory with
strong and weak belief modifiers to achieve better predic-
tion results. Furthermore during the experiment, the im-
plemented event prediction system has been able to predict
interesting data through a high system throughput for log-
based stream events produced by enterprise software appli-
cations, while only being trained with a fraction of the en-
tire stream. As a result, we would conclude that the goal of
the research, which develops an effective and efficient event
prediction technique to allow stream processing engines to
capture interesting data with a high throughput in real-time
has been achieved. In the future work, we would like to find
a way to automatically discover the optimal belief modifiers
without relying on any experiment experience and also try
our solution in a much larger environment with much higher
workloads over a long period of time.
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