Parallelism Profiling and Wall-time Prediction for
Multi-threaded Applications

Achille Peternier
Institute of
Computational Science (ICS)
University of Lugano (USI)
Lugano, Switzerland
achille.peternier@usi.ch

ABSTRACT

A detailed and accurate characterization of the parallelism
of applications is essential for predicting their wall-time on
different platforms, both for an application running in isola-
tion and for a set of consolidated applications executing on
the same platform. However, prevailing profilers are often
based on sampling and do not provide exact information on
the parallelism of the profiled application. In this paper we
present a novel profiler that logs all thread scheduling activ-
ities within the operating system kernel. These logs enable
us to accurately characterize applications’ parallelism on a
given platform by computing the number of threads that
are active at each moment. We also present a simple math-
ematical prediction model to estimate wall-time for program
execution on a ke-core machine using profiles collected us-
ing a ki-core machine (of the same architecture and running
at the same clock speed). We use our profiler to assess the
parallelism of several CPU-bound DaCapo benchmarks and
evaluate the accuracy of our prediction model.

Categories and Subject Descriptors

D.2.8 [Software Engineering]:
measures

Metrics—performance

Keywords

Profiling, workload characterization, performance predic-
tion, multicores

1. INTRODUCTION

The level of parallelism is a crucial parameter in deter-
mining applications’ performance, especially in the multi-
core era. An application with high level of parallelism is
able to leverage the abundant hardware resource available in
today’s computing system, particulary the CPU cores. How-
ever, many applications have limited parallelism, which can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPE’13, March 21-24, 2013, Prague, Czech Republic.

Copyright 2013 ACM 978-1-4503-1636-1/13/03 ...$15.00.

Walter Binder
Akira Yokokawa
Dynamic Analysis Group (DAG)
University of Lugano (USI)
Lugano, Switzerland
{first.last}@usi.ch

211

Lydia Chen
IBM Research Lab

Zurich, Switzerland
YIC@zurich.ibm.com

potentially result in system under-utilization. The straight-
forward solution to this problem is to consolidate such ap-
plications on a single system. The challenge here is how to
allocate resources to those consolidated applications based
on their level of parallelism, such that the overall system
efficiency is maximized.

As today’s applications are built on a complex software
stack, it is not a trivial task to know the parallelism level of
applications, especially when runtime systems of managed
languages—which often feature concurrent dynamic code
optimization and parallelized Garbage Collection (GC)—are
part of the stack. To predict the wall-time of an application
via its parallelism level, profiling methods usually require the
execution of applications on all system configurations of in-
terest. The complexity of profiling thus grows in the number
of applications as well as system configurations. In this pa-
per, we seek a light-weight profiler, which only collects per-
application parallelism on a base system with k1 CPU cores
and enables the wall-time prediction on different systems
with ks cores. We will assume that the ki-core and ks-core
systems only differ in their number of cores, but otherwise
feature the same architecture and have the same hardware
and software components. That is, our parallelism charac-
terization and wall-time predictions are platform-specific.

In this work we first present a novel profiler which operates
at the Linux-kernel level and offers detailed and configurable
traces of scheduler behavior. Based on these traces, a de-
tailed characterization of the parallelism of applications is
possible. Second, we provide a simple wall-time prediction
model for (multi-threaded) applications on k-core machines
using our parallelism characterization. Third, we present a
detailed parallelism characterization of selected CPU-bound
benchmarks of the DaCapo suite [3]. Fourth, we predict the
wall-time of these benchmarks on a multicore machine with
a varying number of cores and assess the relative error of
our predictions.

2. KERNEL-LEVEL PARALLELISM PRO-
FILER

Our approach is based on empirical analysis and measure-
ments. We aim at minimizing the perturbations introduced
by monitoring the applications we are profiling. To this
end, we implemented a kernel-level module based on [12]
that keeps track of all the state changes happening within a
specified list of threads defined by their process and thread
identifiers (Linux PIDs and TIDs). Each time a state change
happens, the modified kernel scheduler logs the correspond-

ing event into the system log directory. This information
enables post-mortem analysis of the parallelism of an appli-
cation during its runtime.

The parallelism profiler is composed of three main ele-
ments: (1) the kernel module, (2) the command-line config-
urator, and (3) the trace generator.

The kernel module patches the Linux kernel by adding
per-thread state logging to the methods that are invoked by
the OS scheduler upon each thread state change. In this
way, internal kernel-space events are logged in user-space
and become accessible through log files. Each time such an
event is generated, timestamp, TID, PID, and the new state
are recorded.

In Linux-based systems, the thread state is encoded as R
when the thread is running or runnable, as S when it is
waiting for an event to complete, as T when it is stopped,
etc. In our work, we are mainly interested in distinguishing
the R state from all the other states to identify when and
how long a thread has been active (i.e., running or runnable).

The command-line configurator is used to intercept all
the threads that are spawned within a specified process.
The configurator is built on top of libmonitor' and logs the
timestamps, TIDs, and PIDs of the various threads and sub-
processes starting and terminating.

The trace generator gathers the log files produced by both
the kernel module and the command-line configurator to
combine the information using the timestamps and to gen-
erate a trace of the state changes that happened during the
observed time for each thread, including thread creation and
termination events.

Thanks to the traces generated by our parallelism pro-
filer, we can evaluate the maximum degree of parallelism
that an application is using (i.e., identify how many con-
current threads are being used), and for each level of par-
allelism 7 > 0, we can compute the wall-time spent when
j threads were active. Based on the information provided
by the traces, parallelism profiles can be created to point
out an application’s parallelism changes over time. Met-
rics such as the level of parallelism reached within a specific
time interval, or for how long a specific level of parallelism
is available can then be computed to produce charts such as
the ones used in our evaluation.

The total overhead added by our monitoring infrastruc-
ture depends on the state change frequency. For the Da-
Capo benchmarks we used in our evaluation, the overhead
is 2.16% on average, with a maximum of 7.98%.

3. WALL-TIME PREDICTION MODEL

In this section, we present a predictive model for multi-
core systems using our profiling tool. The idea is based on
Amdahl’s Law [9], which states that the execution time can
be improved by speeding up the parallel part of the program
on additional hardware. The challenge of applying Amdahl’s
Law lies in identifying and quantifying the parallel part of
a program. In a multi-threaded program, the parallel part
can be viewed as the fraction of the program where there
are more than one active threads. As the number of ac-
tive threads is not constant, the degree of parallelism in a
program also fluctuates. One needs to incorporate variabil-
ity of parallelism in applying Amdahl’s Law to predict the
program execution time on a k-core system. Furthermore,

Thttps://outreach.scidac.gov/projects,/libmonitor/

212

depending on the number of available cores, those fractions
of time can be accelerated accordingly.

To such an end, we first leverage the timing information
about the number of active threads provided by our profiling
tool. Let Tj(1) denote the execution time when there are
j active threads executing the program on a single core.
The number of active threads can range from zero to J,
that is, j € {0,...J}. Zero active thread denotes that no
thread is active (e.g., all threads are blocked on I/0). Also
let k denote the number of cores available for execution. On
the one hand, when the number of cores is greater or equal
to the number of threads (i.e., k > j), all j threads can
run on available cores without any competition, assuming
no dependencies among those threads. On the other hand,
when there is not a sufficient number of cores for j threads
(i.e., j > k), the maximum speedup is restricted by the
number of available cores. As such, when executing on a k-
core system, the execution under j active threads, T;(k),
can be further improved by the minimum value between j
threads and k cores:

To(k) = To(1)

T;(1)
min{j, k}
Note that when j = 0 or j = 1, no acceleration is possi-
bile. The overall execution time of a program on a k-core
system, E(k), is thus the summation of fractions of time in
all possible numbers of active threads:

T;(k) = .3 >0.

E(k) = ZTj(k)
T
= DO+ os

To accommodate wider profiling and prediction scenarios,
that is, on any different number of cores, we further gen-
eralize the aforementioned analysis. The profiling of active
threading time is executed on a system with ki cores and
we aim at obtaining the prediction of execution time on a
system with ko cores. To derive Tj(k2), we first classify
two cases, (1) k1 < k2 and (2) k1 > k2, and then discuss
the performance improvement (resp. slowdown) due to the
parallelism.

In case one, various parts of execution time of a program
can be improved, depending on the relationship between the
degree of parallelism, T} (k1), k1, and k2. When j < kg, it
implies this part of the program is at its best speed and can-
not be further accelerated by being executing on kz-cores.
We thus know Tj(k1) = Tj(kz), j < k1 < ka. As for the
times when j > ki, T;(k1) can be improved by leverag-
ing the extra cores on a kg-core system, given the avail-
able threads and cores. Essentially, the execution time of j
threads on k2 cores is speed by a factor of %]1@}’ from
T;(k1). The rational behind is that as T; (k1) is already fully
acerbated by ki cores, the improvement of 7} (k2) needs to
be first normalized by ki1 and then multiplied by the maxi-
mum parallelism, that is, min{j, k2}. As such, one can de-
rive Tj(ks) = Tj (kl)/(%ik"’}) Similar analysis can be
applied for case two. The only difference is that some part
of the program can be scaled down, due to the decrease of
parallelism when moving from ki cores down to ks cores.

In summary, the generalization of our predictive model is
the following:

J
E(k2) = ZT](kz), where
=0
Tj(k1), X Jj < min{k1, ka};
Tj(k‘g) = Tj(kl)w, k1 < ks, k1 < 7.
T (k) ™2, k2 < kika <.

4. EVALUATION

In this section we first explore the parallelism profiles of
a series of DaCapo benchmarks using a single core (k1 = 1).
We then use these profiles to predict wall-time using more
cores (e.g., ka = 2, ko = 3, and ko = 4).

4.1 Testing Environment and Settings

Experiments have been conducted on a desktop Dell
Optiflex 760 PC with 8 GB of RAM equiped with an In-
tel Core2Quad Q9650 3.0 GHz CPU with 4 cores, referred
to as Intel-4. To obtain more stable results, we disabled
frequency scaling.

As software environment we use Ubuntu Linux
Server 64bit version 11.04 with a custom modified
version of kernel 2.6.39.4 to log thread state changes.
The Java Virtual Machine (JVM) used is Oracle’s
Hotspot 1.6.0-23 64bit Server VM. We focus on a selection
of nine DaCapo benchmarks, version 9.12 Bach (with
default workload size) [3]. We based our selection on
benchmarks that are CPU-bound. When necessary, we
restrict the scheduling of threads to selected cores to
simulate machines with a configuration different than k = 4
cores. To this end, we use the taskset command.

Since the DaCapo benchmarks have very different execu-
tion times (by default, some of them are very short), we
perform a series of iterations over each test to have longer
runs within the same JVM process. In more detail, a sin-
gle benchmark run executes 15 iterations for batik, 40 for
fop, 5 for h2, 5 for jython, 30 for luindex, 10 for lusearch,
10 for pmd, 10 for sunflow, and 10 for zalan. For each ex-
periment, we measure the wall-time of the whole execution,
including the JVM bootstrapping time and all the itera-
tions. Before each measured experiment, we run the same
experiment once (without measurement) to ensure that disk
caches already hold the required data (e.g., the Java class
files linked during benchmark execution); this helps keep the
JVM startup phase (which is less interesting for us) short.

4.2 Parallelism Characterization of DaCapo
Benchmarks

We used our parallellism profiler to characterize the se-
lected DaCapo benchmarks. In this phase, we produce the
input data for our prediction model. We generate a paral-
lelism profile for each benchmark by restricting the schedul-
ing of the whole application (including all the threads be-
longing to the JVM) to a single core (i.e., k1 = 1).

The results are reported in Figure 1, showing the levels
of parallelism reached by each benchmark and for how long
during its execution time. These results represent the val-
ues observed in a single run. Several independent runs of
the same benchmark show very similar execution times. The
non-determinism observed during repeated runs (in separate

213

JVM processes) is due to application-level non-determinism,
differences in the thread scheduling, different identity hash-
codes for objects [2], and other phenomena studied in the
literature [7, 11].

The DaCapo benchmark suite is based on Java and it is
an interesting evaluation environment since several system
threads are automatically generated by the JVM for per-
forming tasks such as GC, thus making the system more
complex. The JVM inspects the hardware configuration to
determine how many system threads to create upon startup.

Since our single-core scheduling constraint (to enforce
k1 = 1) is invisibile for the JVM, the total number of system
threads is related to the total number of CPU cores avail-
able on the machine (Intel-4). For example, by default, the
Hotspot VM used in our evaluation tends to allocate one
GC thread per core.

For example, this behavior is clearly pointed out by the in-
formation gathered through our parallelism profiler for the
zalan benchmark. According to the DaCapo documenta-
tion?, zalan allocates a thread pool with a number of worker
threads corresponding to the number of available CPU cores.
By looking at the bars in Figure 1, zalan has two parallelism-
level peaks at 4 and 6 threads. This means that for the ma-
jority of its execution time, xzalan has 4 respectively 6 active
threads. A comparison of the wall-time recorded for each
parallelism level with the GC and just-in-time compilation
times monitored through the Java ThreadMXBean API is
left for future work.

The sunflow parallelism profile shows that the benchmark
is designed to use four threads for its execution: in fact,
this benchmark allocates one thread per core available to
perform parallel ray-tracing. As ray-tracing is commonly
known as an efficient case taking advantage from parallel
execution, most of the application execution time is spent
running 4 threads.

Both the batik and luindex benchmarks are mainly single-
threaded (using some helper threads for a few tasks). Their
parallelism profiles confirm this characteristic, showing that
most of the execution time is consumed at a parallelism level
of 1, while during GC phases there are several active GC
threads.

The pmd benchmark uses one thread per hardware core to
analyze a set of Java classes for a range of source code prob-
lems. Since many objects are allocated and released during
the application life-time, the GC is particularly stressed. Ac-
cording to the documentation, this benchmark is “driven by
a single client thread that is internally multi-threaded using
one worker thread per hardware thread”. This behavior is
well visible in the parallelism profile, through the first par-
allelism peak reached at 1 (for the single thread client), and
between 3 and 6 (when both the client and worker threads,
as well as additional internal JVM threads are used).

4.3 Wall-time Prediction for DaCapo Bench-
marks

Figure 2 shows the measured (BH) and predicted (1) wall-
time of the DaCapo benchmarks considered in our evalua-
tion. The measurements are obtained by running the bench-
marks on a varying number of cores ko € {1,...4}. All pre-
dictions are based on the parallelism characterization pre-

’http://dacapobench.org/threads.html

batik fop h2
20 10 20
g g £
£ 10 [5 g 10
0 0 0]
0 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Parallelism Parallelism Parallelism
— jython 20 luindex 40 — lusearch
— b 15 _ 30
£ £ 10 £ 20
3 3)
5 5 10
0 0 33128] 0
0 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 0o 1 2 3 4 5 6 7 8 9
Parallelism Parallelism Parallelism
. pmd 100 sunflow .
=
£ E 50 £ 10
3 3 3
5
o b fe o o RIS :
0 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 0o 1 2 3 4 5 6 7 8 9
Parallelism Parallelism Parallelism
par. batik fop h2 jython | luindex lusearch pmd sunflow xalan
0 0.1135 0.3272 6.2622 1.6383 4.4334 0.1052 0.1286 0.6091 0.2665
1 23.7125 11.7187 | 23.1446 17.4342 | 20.0666 1.9308 9.9018 1.9215 1.6435
2 6.5175 6.3705 | 10.0869 15.8579 3.6819 2.7649 4.0905 3.6845 3.0751
3 5.5487 6.9116 | 10.2254 17.3543 2.1347 11.0191 | 16.2830 4.1474 3.5842
4 0.1705 0.0939 5.5579 0.1589 0.0280 38.1997 6.0497 103.8943 21.3744
5 0.3767 0.0812 2.7235 0.1283 0.0178 3.1146 5.6721 1.1907 4.2616
6 0.0333 0.0804 0.5365 0.0247 0.0001 22.6459 9.3826 1.1717 19.8270
7 - 0.0707 0.0194 0.0560 0.0106 0.4857 0.2956 0.0347 0.1675
8 - | 2.40x107° | 0.0260 | 1.40x107° - 0.0006 | 0.0001 | 1.20x1075 0.0004
9 - - - - - | 1.00x1075 - - | 1.70x1075
tot. 36.473 25.654 58.582 52.653 30.373 80.266 51.804 116.654 54.200

Figure 1: Workload parallelism characterization on Intel-4 using a single core. These measurements refer to
the wall-time (in second) spent by each benchmark when a specific number of threads were active. The total

time refers to the wall-time computed from the profiles.

sented in Figure 1 using the model described in Section 3.
Figure 2 also presents the relative error of each prediction.

Despite of our model’s simplicity, the average of the ab-
solute relative errors is only 4.11% for k2 = 2, 6.39% for
ko = 3, and 6.43% for k2 = 4, which can be sufficiently ac-
curate for use in practice. Note that exact reproducibility
of measurement results is typically impossible in such com-
plex systems with many sources of non-determinism [7, 11].
Hence, also subsequent measurements usually yield different
execution times.

To some extent, the prediction errors can be attributed
to the perturbations introduced by our profiler. Interest-
ingly, the wall-time prediction is particularly inaccurate for
h2 (with an absolute relative error of 15.64% for ko2 = 4),
for which also the profiling overhead (7.98%) is four times
higher than for all other benchmarks.

214

In general, prediction errors can be attributed to many
factors that are not captured by our simple model. Our
model does not consider contention (e.g., on the memory
bus) that may occur when executing the application threads
on a machine with more cores (i.e., k2 > ki1). Furthermore,
due to contention on shared data structures, compare-and-
swap instructions may fail more often if more active threads
execute in parallel. In addition, if active threads are spin-
ning, executing them in parallel on additonal cores does not
reduce application execution time, as it would be computed
by our model.

There are several essential preconditions for the use of our
prediction model. First, the application must not change
its threading behavior according to the available number of
CPU cores. The number of threads created by the applica-
tion must be the same on the profiling machine and on the

1 core 115.6116.7
100
4 50
0
batik h2 jython luindex lusearch sunflow
error 1.79% 7.95% 3.95% 0.39% -0.81% 0.95%
60 2 cores
= 40
E
20
0]
batik luindex lusearch sunflow
error 3.06% 4.13% 0.67% -7.60% -1.18%
3 cores
40
g 20
0]
batik jython luindex lusearch pmd sunflow xalan
error 2.89% 9.33% 0.98% 5.49% -9.48% -8.01% 5.37%
4 cores
40
& 20
0
batik h2 jython luindex lusearch pmd sunflow xalan
error 3.02% 4.23% -15.6% 9.87% 0.68% -2.50% -9.94% -8.43% 4.57%

Figure 2:

Performance measurement (E]) and prediction (B) on Intel-4 running DaCapo benchmarks on

1-4 cores. Error denotes the relative error of the predicted wall-time.

target machine for prediction. In fact, both the HotSpot VM
and some DaCapo benchmark adapt the number of created
threads to the number of CPU cores. Hence, in our eval-
uation we had to ensure that Intel-4 was always seen as a
quad-core machine, and we resorted to scheduler constraints
to keep certain cores idle for k2 € {1,...3}. Second, the pro-
filing machine and the target machine for prediction must
be equivalent apart from the number of CPU cores, and the
cores must operate at a constant clock speed independently
of the number of active threads executed in parallel. Our
measurement machine was configured to meet these con-
straints.

215

S. RELATED WORK

In this section we discuss relevant related work in the field
of profiling and parallel performance prediction.

Wong et al. developed PAS2P to predict parallel ap-
plication performance with an accuracy of 97% in [14].
Their approach is based on signatures created by monitoring
message-passing activities, while we rely on a more generic
observation of the parallelism levels and per-thread execu-
tion times.

Cook et al. used a complex statistical approach to model
and predict performance of various modern architectures
in [5], providing good approximations but requiring a sig-
nificant effort for model calibration.

Kismet [10] is a tool that predicts parallel performance of
serial (unparallelized) programs. Like our approach, Kismet
does not require any modification at the program level and
is based on empirical measurements, thus quickly providing
results without additional efforts. Our profiler deals with
multi-threaded applications, by analyizing the parallelism
level of any concurrent program.

There is a significant body of research [4, 1, 6, 13, 15]
addressing the performance analysis of multi-threaded ap-
plications on multicore systems, especially from the single
resource’s perspective, such as cache. Dey et al. [6] propose
a general methodology to characterize any multi-threaded
application for its last-level cache contention and private
cache contention. Chen et al. [4, 1] applied queueing net-
work models to predict application response times, relying
on a profiling approach on measure resource demands, that
is, required execution time on CPU and disk. Tallent and
Mellor-Crummey [13] focus on Cilk programs and built a
runtime performance analysis, which aims at pinpointing
and quantifying serialization, using attributing work, paral-
lel idleness, and parallel overhead to logical calling contexts.
Yang et al. [15] presented a simple performance model of
on-chip interconnect and intra-core bandwidth contention,
for single- and multi-threaded Gaussian 03 computational
chemistry code.

Our performance model is applicable to predict the over-
all wall-time of generic applications, instead of performance
measures for single resources. Moreover, our model relies on
a small set of parameters, which is readily provided by our
profiling tools with moderate overheads.

Amdahl’s Law [8] is widely used to predict the perfor-
mance of parallel programs, ranging from the field of high
performance computing to the multicore era. Hill and
Marty [9] took a hardware perspective and developed a speed
model for a multicore chip, applying the concept of Amdahl’s
Law. However, the parallelism of software aspects, that is,
multi-threaded applications, is not considered.

6. CONCLUSIONS

In this short paper we presented a new profiler for charac-
terizing the parallelism level within applications. Our pro-
filer generates traces based on kernel scheduler events related
to thread state changes. We present a prediction model us-
ing these traces that can forecast the wall-time for execut-
ing multi-threaded applications, given their parallelism pro-
file and a target number of cores. However, the parallelism
profile and the resulting wall-time predictions are platform-
specific.

Using our profiler, we determined the parallelism profiles
of a selection of CPU-bound DaCapo benchmarks and pre-
dicted their wall-time using a varying number of cores. Our
predictions show a relative error in the range of 4.11% to
6.43% on average.

As future work, we plan to take additional factors into ac-
count, such as dynamic frequency scaling and simultaneous
multi-threading to allow our model to perform predictions
on hardware platforms featuring such technologies.

7. ACKNOWLEDGMENTS

The research presented in this paper has been sup-
ported by the Swiss National Science Foundation (Sinergia
project CRSI22_127386 and project 200021_141002) and by

216

the European Commission (Seventh Framework Programme
grant 287746).

8.
[1]

REFERENCES

D. Ansaloni, L. Y. Chen, E. Smirni, and W. Binder.
Model-driven consolidation of Java workloads on
multicores. In Proc. of DSN, pages 229-234, 2012.

W. Binder, J. Hulaas, P. Moret, and A. Villazén.
Platform-independent profiling in a virtual execution
environment. Softw., Pract. Exper., 39(1):47-79, 20009.
S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan,

D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,

A. Hosking, M. Jump, H. Lee, J. E. B. Moss,

A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and
analysis. SIGPLAN Not., 41(10):169-190, Oct. 2006.
L. Y. Chen, D. Ansaloni, E. Smirni, A. Yokokawa, and
W. Binder. Achieving application-centric performance
targets via consolidation on multicores: Myth or
reality? In Proc. of HPDC, pages 229-234, 2012.

J. Cook, J. Cook, and W. Alkohlani. A statistical
performance model of the Opteron processor.
SIGMETRICS Perform. Eval. Rev., 38(4):75-80, Mar.
2011.

T. Dey, W. Wang, J. Davidson, and M. Soffa.
Characterizing multi-threaded applications based on
shared-resource contention. In Proc. of ISPASS, pages
76-86, 2011.

A. Georges, D. Buytaert, and L. Eeckhout.
Statistically rigorous Java performance evaluation.
SIGPLAN Not., 42(10):57-76, Oct. 2007.

A. Grama, G. Karypis, V. Kumar, and A. Gupta.
Introduction to Parallel Computing. Pearson
Education, 2003.

M. D. Hill and M. R. Marty. Amdahl’s law in the
multicore era. IEEE COMPUTER, 2008.

D. Jeon, S. Garcia, C. Louie, and M. B. Taylor.
Kismet: parallel speedup estimates for serial
programs. SIGPLAN Not., 46(10):519-536, Oct. 2011.
T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing
anything obviously wrong! SIGPLAN Not.,
44(3):265-276, Mar. 2009.

A. Peternier, D. Bonetta, W. Binder, and C. Pautasso.
Overseer: Low-level hardware monitoring and
management for Java. In Proc. of PPPJ, pages
143-146, Denmark, 2011.

N. Tallent and J. Mellor-Crummey. Effective
performance measurement and analysis of
multithreaded applications. In Proc. of PPoPP, pages
229-240, 2009.

A. Wong, D. Rexachs, and E. Luque. Pas2p tool,
parallel application signature for performance
prediction. In Proc. of PARA, pages 293-302, 2012.
R. Yang, J. Antony, and A. P. Rendell. A simple
performance model for multithreaded applications
executing on non-uniform memory access computers.
In Proc. of HPCC, pages 79-86, 2009.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

