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ABSTRACT
With object storage systems being increasingly recognized
as a preferred way to expose one’s storage infrastructure to
the web, the past few years have witnessed an explosion in
the acceptance of these systems. Unfortunately, the prolifer-
ation of available solutions and the complexity of each indi-
vidual one, coupled with a lack of dedicated workload, makes
it very challenging for one to evaluate and tune the perfor-
mance of different systems. To help address this problem, we
present the Cloud Object Storage Benchmark (COSBench).
It is a benchmark tool that we have developed at Intel with
the goal of facilitating both performance comparison and
system optimization of these systems. In this paper, we de-
scribe the design and implementation of this tool, focusing
on its extensibility and scalability. In addition, we discuss
how people can use this tool to perform system characteri-
zation and how the latter can facilitate system comparison
and optimization. To demonstrate the value of our tool, we
report the results of our experiments conducted on two Swift
setups we built in our lab. We also share some of our experi-
ences in turning our setups to achieve higher performance.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation

Keywords
Object Storage, Benchmark Tool

1. INTRODUCTION
With our world being increasingly connected and enriched

by newly emerged computing technologies, the data pro-
duced is gigantic [31]. To combat such data tsunami, object
storage has been introduced to fulfill the common need of
a scale-out storage infrastructure, with acceptance of these
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systems growing every year [1]. However, the proliferation of
object storage systems and the complexity of each individual
one makes it very difficult for one to choose the best system.
In order to better understand existing options, careful per-
formance characterization of each system is typically needed,
so one can quantitatively compare different candidates and
then pick out a system that can best accommodate its spe-
cific requirements. For example, people dealing with large
objects may confidently steer their attention away from a
system that only excels in handling small objects.

Tuning systems to achieve maximum performance is also
challenging. It entails not only choosing the optimal values
in a variety of software configurations, but also assigning
the correct hardware to different components constituting
the system. In order to approach the best combination,
numerous experiments have to be conducted across the large
spectrums of possibilities at different dimensions, which can
be quite time-consuming.

To alleviate these problems, we present the Cloud Object
Storage Benchmark (COSBench). It is a benchmark tool
that we have developed to help people better compare dif-
ferent hardware and software stacks as well as better identify
bottlenecks to drive system tuning and optimization. Capa-
ble of generating workloads that mimic diverse applications,
this tool allows people to characterize systems under their
own usage patterns. In addition, a lot of attention has been
paid to ensuring the tool’s scalability and extensibility, so
that people can easily simulate a large number of concur-
rent clients and adapts these clients to a myriad of storage
systems. In order also to secure ease-of-use, we have de-
signed our tool to be operated with either web browsers or
command-line utilities, making it friendly not only to human
users, but automation tools as well.

Although file systems and block storage can also be em-
ployed to manage data, we focus on object storage systems
with the following reasons. Firstly, there are many existing
tools [26, 17, 25, 16] available for measuring other types of
storage systems. Besides, recent years have seen a trend in
building file systems and relational databases upon object
storage infrastructures [19, 27, 28, 29], which compels our
attention to the performance of these underlying services.
Finally, the lack of a nontrivial workload for novel object
storage systems best warrants our development of the tool.

In this paper, we describe the design and implementa-
tion of the COSBench, with discussions on how people can
use it to perform system characterization and how the lat-
ter can facilitate system comparison and optimization. We
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Figure 1: Object storage interface

also share the results of our experiments conducted on two
different Swift setups we deployed in our lab.
The rest of this paper is organized as follows. Section 2

gives an overview of object storage systems while Section
3 discusses system characterization. Section 4 introduces
the workload model used in the COSBench with details of
the tool itself covered in Section 5. Section 6 and 7 share
the results and the experiences we have obtained from our
experiments, followed by Section 8 which reports the related
works. The paper is concluded in Section 9 where future
works are also described.

2. OBJECT STORAGE OVERVIEW
In this section we present an overview of the object stor-

age by discussing the common motivation, storage interface,
and system architecture shared among different implemen-
tations.

2.1 Motivation
Object storage is largely motivated by the gap between

file systems and block storage. On one hand, many applica-
tions nowadays find themselves less dependent on traditional
POSIX file systems. For instance, applications dealing with
images can sit comfortably upon a file system that only sup-
ports a flat namespace and weak consistency. Content shar-
ing applications can also painlessly devise their own ways
to handle concurrent modifications without resorting to file
system locks. On the other hand, although a reduction of
file system features frequently fuels scalability, developers
still need storage services to free them from the burden of
managing blocks and various other storage metadata. To
this end, object storage systems are often implemented with
eclectic designs: they are less sophisticated than file systems
but still more intelligent than block devices.
The rise of cloud computing has also assisted the emer-

gence of object storage. Object storage echoes the very spirit
of cloud computing. It provides people with an unlimited
and on-demand data depository accessible from anywhere
in the world, and it helps to achieve data consolidation and
economy of scale, both facilitating cost-effectiveness. With
cloud computing getting increasingly adopted, so are object
storage systems.

2.2 Storage Interface
A careful design of the storage interface is essential for

object storage to become a building block in web comput-
ing: (i) the interface should ensure ubiquitous access on the
part of millions of applications running all over the Internet;
(ii) appropriate security mechanisms have to be properly in-
corporated into the interface to facilitate user authentica-
tion and data encryption; (iii) it is also necessary to keep
the interface stateless as session management notoriously
hinders the scalability of systems; (iv) object storage must
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Figure 2: Architecture of object storage systems

eschew binding its interface to any specific programming lan-
guages in favor of a more interoperable approach. With all
above criteria honored, object storage systems are designed
as RESTful web services and are accessed via HTTP re-
quests, as is exemplified in Figure 1.

To use object storage systems, people create containers
and put objects into these containers for storage. Objects
are just like files in regular file systems, though they cannot
be locked or updated partially. Containers are identical to
directories except that they cannot be nested. Both objects
and containers are identified by unique names distinguish-
ing one from each other. Notwithstanding the resemblance
among the interfaces of various object storage systems, de-
tails do differ. While efforts [3] have been made towards a
standard protocol, time is yet needed before an extensive
acceptance is eventually reached.

2.3 Architecture
The techniques related with implementing object storage

systems can be stratified into three distinct layers: storage
layer, replication layer, and access layer, as illustrated in
Figure 2. The storage layer is responsible for storing objects
to physical devices. The key issue the storage layer has to
deal with is performance: it has its own discretion in opti-
mizing either for the read performance or the write. As most
storage layers use file systems to handle their workloads, it
is then important to choose the correct file system and to
mount it with the proper options. A benchmark tool can
help people compare different file systems and options, and
tune the storage layer to its best capacity.

The replication layer sitting upon the storage layer holds
all the secrets of transforming a pool of storage devices to a
web-scale data serving platform. As a first step, the replica-
tion layer should keep an eye on the durability of each object
stored in the system. After all, hardware faults inevitably
occur and high quality devices often incur prohibitive ex-
penses. To this regard, some systems create multiple copies
to offset disk failures, others employ erasure codes [24] to
break each object into redundant fragments. However, in
both cases, it follows that the replication layer should start
to take care of the consistency of the copies or fragments as-
sociated with each object. This is often resolved by rebuild-
ing missing copies and quarantining corrupted ones. One key
issue here is to shorten the inconsistency window as much
as possible while also averting impact on the main activities
of the system. With a benchmark tool in hand, people can
better evaluate and study these impacts, obtaining insights
to guide system optimization.

Flexibility and scalability are also addressed in the replica-
tion layer, with this layer bearing the responsibility of scat-
tering the incoming workload to all storage servers. Load
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(a) a system exhibiting poor predictability but lower
average response time.

(b) a system exhibiting great predictability though
higher average response time.

Figure 3: Characterizing the performance

balance in fact also encompasses assigning part of the work-
load to newly joined servers and revoking from overloaded
or faulty ones. More judicious algorithms may also take
hot spots into consideration by adaptively rebalancing the
workload accordingly. However, the key issue here is to keep
the system efficient, available, and manageable. To achieve
these targets, a benchmark tool can be employed to drive
and verify better system designs.
Finally, the access layer on top of the system serves as the

interface to external applications. One crucial duty of the
access layer is to deal with all kinds of failures, thus to en-
sure high availability. In most cases, it is important to keep
a system both writable and readable in spite of the presence
of errors. The access layer is also regarded as the last resort
for achieving high performance. For example, some people
may employ concurrent reads to reduce latency at the ex-
pense of throughput; others may introduce asynchronization
to boost write performance with both durability and con-
sistency compromised. One important requirement of the
access layer is to delicately prioritize and balance different
system properties, with the goal of best satisfying the need
of their applications. To this regard, a benchmark tool capa-
ble of generating customizable workloads will be extremely
valuable to people exploring these tradeoffs.

3. SYSTEM CHARACTERIZATION
In this paper, we focus on system characterization. As

will be discussed in this section, data obtained from charac-
terization can be quite useful in many possible ways: (i) it
provides tangible insights for one to compare different ob-
ject storage offerings; (ii) it brings knowledge and experience
on better system deployment that are important for tuning
performance; (iii) it establishes a baseline performance by
which further research or engineering efforts can be envis-
aged and channelled; and finally, (iv) the profiling data ac-
quired during system characterization can help inspire new
ideas of improvements and drive optimization.
In this section, we introduce three different aspects that

one should bear in mind during system characterization.

3.1 Performance
The first aspect people need to focus on is undoubtedly the

performance. One interesting issue regarding performance
is its involvement of two related but competing properties

1 2 4 8 16 32 64 128 256 512 1024 2048
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Avg-ResTime

(a) an ideal system that keeps scale until its capacity
is reached. The horizontal line represents numbers
of clients.

1 2 3 4 5 6 7 8 9 10 11 12

Throughput

Avg-ResTime

(b) an ideal system that scales in proportion to its
hardware resources. The horizontal line represents
resource units.

Figure 4: Characterizing the scalability

displayed by a system: (i) the efficiency of a system which
is expressed by throughput or average response time, and
(ii) the predictability of a system which is associated with
the distribution of its response times. To achieve both is
difficult; one has to meticulously design the system to recon-
cile the inherent conflict between the above two properties.
Since most SLAs stipulate bounds for latencies, it is then
important to ensure the predictability of a system in order
to conform to these agreements. Ideals of such enforcement
often turn to amortization: the time spent on certain unfore-
seeable and high-latency events is split among all requests,
thus diminishing the variance of their response times. Un-
fortunately, the ensuing extra efforts taken by the system to
perform such actions inevitably dilute resource utilization,
contracting system efficiency with an increased average re-
sponse time and a decreased system throughput.

Examples of such efforts include the concurrent reads and
the asynchronous writes we mentioned in Section 2, which
are also illustrated in Figure 3-a and 3-b. Note that the key
point behind these tradeoffs is that we must take both effi-
ciency and predictability into consideration when perform-
ing system characterization. Therefore, a legitimate bench-
mark tool should be able to measure both properties, facil-
itating unbiased analyses against these systems. A system
with better performance is one that exhibits higher efficiency
while maintaining sufficient predictability. While results of
such an analysis can help people better evaluate and com-
pare different object storage systems, they are equally help-
ful in forming baseline performance for future optimization.
The core ideal here is to decide on an acceptable latency,
and then to maximize the throughput as much as possible.

3.2 Scalability
Different from the previous aspect which focuses on the

balance between efficiency and predictability, scalability seeks
to explore the performance under a dynamic context marked
by either an increasing number of clients or hardware re-
sources, as is shown in Figure 4-a and 4-b. In the first case,
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the hardware is fixed but the number of clients is raised
exponentially. While an ideal system can answer this situa-
tion with a constant average response time and an increasing
throughput proportionate to the growing number of clients,
real systems are often subject to the contentions of various
resources such as CPU, disks, networks, or software locks,
thus cannot exhibit such perfect trends. The core ideal here
is to improve the parallelism of a system to sustain higher
performance on a given hardware configuration.
Unfortunately, every system has its maximum capacity:

once it is saturated, more clients will have to compete with
each other for resources, resulting in unacceptable response
times; the best possible case is shown in Figure 4-a.
Ideally, after a system is saturated, in order to sustain

more clients, only commensurate amount of hardware will
have to be provisioned to stabilize the response time and to
keep the throughput increasing accordingly, as is shown in
Figure 4-b. However, in real situations, adding hardware re-
sources does not necessarily earn proportionate performance
enhancement, if at all. Many factors can be held culpable
for impeding such improvements: metadata updating, load
imbalance, or hardware limits. The core ideal here is to iden-
tify and eliminate these bottlenecks so as to better harness
the underlying hardware resources, allowing the system to
grow into thousands of nodes or even beyond.
By projecting performance to the dimensions of clients

and resources, scalability plays a significant role in compar-
ing different object storage systems. A better system is one
that can engage more clients with fewer servers. Besides,
results of scalability tests can also be studied to uncover
system bottlenecks, which provides insights to guide system
tuning. Note that it is crucial for a benchmark tool to be
scalable as well, so that a large number of clients can be
simulated to stress these storage systems in the first place.

3.3 Hardware Profiles
Finally, our last aspect of system characterization lies in

the status of various hardware resources including CPU,
memory, disks, and networks. To start with, one can always
use these data to identify pathological resource utilizations
and then take corresponding actions to get rid of them. For
example, high CPU utilization is often associated with inad-
equate CPU power and may be resolved by either switching
to more powerful nodes, or provisioning more nodes to share
workloads. Profiling data can also be used to examine the
balance among different servers or different CPU cores or
disks within a single server. Any blatant imbalance exposed
here is either a potential path for future optimization, or a
symbol suggesting hardware faults. For example, it is not
uncommon for a small group of disks to hold the “hot spot”
data and hence to be more frequently accessed. To tackle
this, an extra layer of cache could be deployed to level off
the exorbitant burden of these disks, thus restoring balance.
Moreover, profiling data can assist people to better invest
money on hardware resources by revealing the resource us-
age patterns of a given system in the face of a certain work-
load. For example, if it is the CPU power that matters to
the overall performance, it might not be that sensible for
one to still spent money on high-end disks.

4. WORKLOAD MODEL
In this section, we present the workload model that un-

derlies the COSBench system. A workload model abstracts

Table 1: Storage Interface
Operation Description

LOGIN retrieve a token representing an identity

READ download an object
WRITE upload a new object
REMOVE delete an existing object

INIT create a new container
DISPOSE delete an empty container

the common patterns shared among a variety of object stor-
age applications; it is crucial to make the model flexible and
representative so that diverse usage patterns can be readily
simulated to yield informative observations.

4.1 Storage Interface
Storage interfaces are protocols defined by object storage

systems to expose service. As there is no widespread stan-
dard available at this moment, different systems assume dif-
ferent protocols. In order for our workload model to work
with most object storage systems, we have defined our stor-
age interface as a small bundle of common operations seen
in various specific protocols. So far, we have six core oper-
ations defined in our interface, as summarized in Table 1.
These operations are sufficient for one to take on tasks such
as bottleneck locating and capacity measuring, making this
benchmark tool quite practical. That said, we are still ac-
tively working on adding more operations, but only in a way
that will keep the tool simple, practical, and universal.

4.2 Usage Patterns
To simulate diverse usage patterns, our workload model

can be flexibly configured in terms of concurrency patterns,
access patterns, and usage constraints. In concurrency pat-
terns, one specifies the number of clients that should be
simulated by the workload generator. This directly enables
people to evaluate the scalability of a system against rising
workloads. In access pattern, one defines a set of operations
that each client should issue to the target system. According
to our design, each operation can be customized in terms of
container path, object path, object size1, and operation ra-
tio. As can been seen, the access pattern lends people a lot
of possibilities for designing their workloads: it can be read-
intensive, write-intensive, or hybrid; it can deal with small
objects, large objects, or both; and these objects can also
be spread among many or only a few containers. It is con-
ceivable that such richness of the workload design space can
benefit not only people who want to evaluate and compare
different object storage systems, but also those who want to
probe specific systems for an in-depth analysis. The last as-
pect of the usage patterns involves various usage constraints.
They can be expressed as total running time of a workload,
total number of operations to be submitted, or total num-
ber of bytes to be transferred. If more than one such limit
is presented, each of them can individually lead to the exit
of a running workload.

4.3 Workload Model
In order to make the workload model even more flexi-

1Note that not every operation requires the size of an object
to be specified, such as read or remove operations.
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Figure 5: Workload modeled as a workflow

ble, we have employed workflow. In our model, a workload
is modeled as a workflow consisting of multiple workstages,
with each workstage representing a step in the workflow and
focusing on a particular activity. For example, a workflow
can have three different workstages: an initial stage, a main
stage, and a cleanup stage. The initial stage can be con-
figured to setup the benchmark environment (e.g., by up-
loading certain objects and creating dedicated containers).
The main stage is responsible for launching the real work-
load. Finally, the cleanup stage removes all the data involved
in this workload, restoring the target system to its original
state. When a workflow is executed, each workstage will be
executed in sequence. A workload is marked finished only
after all its workstages have been completed. Failure of any
workstage in the middle will terminate the overall workload
execution immediately.
In order for a workstage in our model to perform multi-

ple independent tasks simultaneously, a workstage is further
regarded as a group of works, with each work representing
a special job within a workstage. For example, a workstage
can be defined to comprise two different works: one mimics a
web application, frequently issuing read-intensive operations
on small objects, while the other pretends to be an archive
program constantly streaming up large objects. When a
workstage is executed, all of its internal works are executed
at the same time. A workstage is considered completed only
after all its works have been completed. If an error occurs
in any one of these works, the remaining works will be auto-
matically aborted and the overall workstage will be deemed
to have failed.
Works are atomic and are decoupled from each other.

Each work can enjoy its own configuration context includ-
ing its usage patterns, user credentials, and even the target
system. As a result, it is possible for one to simulate multi-
ple users at the same time, as well as to statically perform
load balancing among different system portals. At runtime,
each work is executed by a certain number of workers. A
worker is a logic concept of a client; the number of workers
is derived from the concurrency patterns associated with the
work. The overall workflow model is illustrated in Figure 5.

5. BENCHMARK IMPLEMENTATION
We have developed a tool named COSBench to execute

the workflows described in the previous section. In order to
make sure that our tool can work with various object storage
systems, we have cautiously designed this software so that
people can easily adapt our storage interface to their specific
implementations. Attention has also been paid to ensuring
the scalability of the tool to sustain large numbers of clients.
In this section, we describe the system architecture of our
tool and highlight its extensibility and scalability.

Cloud Object Storage System

driver driverdriverdriver

controller

HTTP HTTP
HTTPHTTP

HTTP

command-line

COSBench

Automation Tool

Administrator

browser

export

response time

throughput

archive

Figure 6: COSBench system overview

5.1 System Architecture
The COSBench is a web based Java application capable of

generating workloads to a given object storage system and
measuring the performance this specific system exhibits. As
is illustrated in figure 6, our tool consists of two kinds of
components: the controller and the driver. The controller
serves as the facade of COSBench: it provides interfaces
through which users can operate and control the benchmark
tool as a whole. When users submit their workloads to the
controller, internally, the controller divides these workloads
into multiple tasks and schedules these tasks to different
driver instances as missions for execution. As such, the con-
troller communicates with drivers through the web interfaces
they expose to assign missions to them or to retrieve exe-
cution status and results from these drivers. At the driver
side, in order to execute a mission, an auth agent is first
created to perform the required user login. After that, a
certain number of worker agents are spawned to stress the
target storage system in three phases: the ramp-up phase,
the transaction phase, and the ramp-down phase. Drivers
are independent from each other as they receive commands
only from the controller, not from any other driver instances.
The controller is responsible for synchronizing the execution
of different missions associated with different drivers, ensur-
ing the integrity of a workload. During the execution of a
workload, the controller constantly polls related drivers to
gather runtime status of its missions. When a workload is
finished, the controller aggregates the performance data re-
trieved from those outsourced missions and archives the final
report into a persistent place.

In order to facilitate comprehensive performance exami-
nations, our final report comprises average, 90th, 95th, 99th,
and 100th response times, throughput, bandwidth, success
ratio, and a detailed latency histogram for each operation in
each stage of a workload. In addition, a time series plot of
the performance readings from ramp-up phase to ramp-down
phase is also provided for each operation in each stage. To
secure ease-of-use, we have made our tool accessible from
both web browsers and command-line utilities, making it
friendly not only to human users, but automation tools as
well. Users can use these interfaces to submit or cancel work-
loads, check runtime status, exam or export final reports.

203



5.2 Extensibility
Several efforts have been made to ensure the extensibility

of our tool. Firstly, we have made user authentication a ded-
icated interface, independent from the storage. According
to our experience, it is possible for an object storage system
to support multiple user authentication protocols (e.g., both
Swauth [14] and Keystone [7] can serve as the authentication
mechanism for Swift). One the other hand, it is also pos-
sible for multiple object storage systems to share the same
authentication protocol (such as OAuth [9] and SAML [13]).
By recognizing separate interfaces for both authentication
and storage, our tool not only supports convenient switch
among different authentication alternatives, but encourages
software reuse as well.
Another effort lies in the workload configuration. In our

tool, a workload is configured in an XML file prepared by
a user when submitting a workflow. Unfortunately, difficul-
ties arise when we try to design the schema of such XML.
Since different object storage systems have varying defini-
tions of their operation parameters, it is therefore impracti-
cal and infeasible for us to accommodate all possibilities in
our workload configuration. As an example, people can spec-
ify certain “policies” when creating containers. In some sys-
tems, people must set a strategy that controls erasure code.
For others, distinct options should be supplied to control
various features provided by the system, such as container-
to-container synchronization, object versioning, and others.
To assure that our configuration can adapt to these mani-
fold parameters, we regard all parameters as key-value pairs
and merge all of these pairs into a single field which we call
config. For example, a write operation might be configured
as follows.

<operation type=“writ”, ratio=“30”,
config=“containers=u(1,100); objects=u(1,100);
sizes=u(64,128)KB; object-expiration=10” />

As can be seen, there are four configuration pairs defined:
containers, objects, sizes, and object-expiration. While
the former three (which define the ranges and sizes of the
containers and objects involved) are core to all implementa-
tions and are thus required by the COSBench, the last one
is of a foreign nature and is forwarded by the COSBench to
the adaptor for further interpretation and handling. With
different adaptors responsible for defining and checking their
own parameters within this unified framework, we success-
fully decoupled our configuration schema from various spe-
cific protocols, therefore achieving not only extensibility but
flexibility as well.
Finally, the modular design of our system also consider-

ably facilitates the overall extensibility of the tool. To be
more specific, the COSBench is built upon Eclipse Equinox
[4], an OSGi [11] implementation that supports dynamic
module management. Layered above this infrastructure, our
system consists of multiple modules known to the infrastruc-
ture as bundles. Bundles can expose services to a central ser-
vice registry or import services from it. At runtime, when
bundles are launched, the service registry will automati-
cally map service providers (bundles that expose services)
to their consumers (bundles that import services), allowing
service consumers to use services without the knowledge of
the providers. To add new storage types into the COSBench,
people create new bundles, implement the storage interface
inside their bundles, and configure their bundles to expose

OSGi Infrastructure

import
OSGi Service Registry

storage serviceauth service

keystone swauth mock s3 swift

driver

import

export export export export export export

COSBench Driver

Figure 7: Modular design of the COSBench

their implementation as services. At runtime, once system
is booted, all exposed storage services will be automatically
bound to the driver. (The driver bundle is configured to im-
port all available storage services). When a mission (Section
5.1) is assigned, the driver will iterate over all storage ser-
vices bound to it to see if any of them is capable of handling
the incoming mission. If such service is found, this service
will be invoked, creating a new adaptor instance, which will
then be attached to this particular mission for execution.
Otherwise, the mission will be rejected. The relationship
among the driver, adaptors, and service registry is depicted
in Figure 7. As adaptors are decoupled from the driver and
are dynamically plugged into the system at runtime, new
adaptors can be independently developed, configured, and
integrated without modifications (or awareness) of the core
system.

5.3 Scalability
One important issue regarding characterizing web-scale

storage systems is that the benchmark tool should be highly
scalability so that a large number of clients can be simulated
to place a substantial pressure on the target system. In our
tool, as workloads are executed at the driver side, the over-
all throughput of the tool is therefore proportional to the
number of driver instances being provisioned: more drivers
instances means more CPU cores and more bandwidth, and
thus more clients the tool is able to sustain. Besides, within
each driver, workers are also carefully kept isolated from one
another. Each worker has a dedicated execution context in-
cluding a connection to the target system, a random number
generator, various counters for performance measurements,
as well as other status variables required. As such, workers
can be executed in a fully parallel manner, which leads to
the high scalability of COSBench.

6. EXPERIMENTS
The latest stable release of the COSBench is 2.0.0-GA.

Internally, we have been using this tool to support our char-
acterization on multiple object storage setups we deployed
in our lab. While some of these systems are built with open
source technologies, others are obtained directly from the
commercial worlds. So far, we have found it quite smooth
for us to write adaptors for different object storage sys-
tems. Besides our internal uses, the COSBench is also shared
among different parties with various backgrounds both in-
side and outside Intel: some are object storage engineers
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Table 2: Workloads used in our experiments
Workload Read/Write Pattern Object Size

Workload A Read 128 KB
Workload B Write 128 KB
Workload C Read 10 MB
Workload D Write 10 MB

who employ workloads to better verify their system designs;
some are decision makers who are responsible for gauging
and weighing different object storage offerings; and some are
cloud builders who need data to promote their solutions. Of
course, there are also pure researchers just like us.
In this section, we report the results of the experiments

we have performed on two Swift setups under four distinct
workloads. As our intention is to obtain a deep understand-
ing of different object storage systems and insights to guide
optimization as well, more have to be conducted before we
can be rewarded with such knowledge. For this, we are still
actively performing various experiments in order to reach
our targets. We plan to share our further findings in a sep-
arate report where more data will be collected and more
systems compared.

6.1 Workloads
We pay attention to the performance, scalability, and re-

source usage patterns exhibited by different systems under
distinct read-write patterns and object sizes. The workloads
are illustrated in Table 2. Although in the real world no ap-
plication ever displays such simple and naive patterns, these
workloads in fact suffice to serve as the starting points to-
wards understanding a storage system. Besides, the baseline
performance revealed under these workloads can help chan-
nel our future research efforts to the most compelling parts.
As our ultimate goal is to disclose various factors throttling
the performance of a system and to propose ideals for resolv-
ing such bottlenecks, simple and pure workloads can actually
better help us to achieve this specific goal.
In our experiments, for read-only workloads, the target

system were prepared with 1 user account, 100 containers,
and 10,000 objects. For write-only ones, the systems were
prepared similarly except that no objects are pre-inserted.
To examine scalability, we varied the worker number from
5, 10, 20 ... to 2,560 (increased exponentially). We repeated
each test case with three separate runs (each consisted of a
300s ramp-up phase and a 300s transaction phase) and took
the average as the final result2.
Besides the results reported by the COSBench, we also

collected various hardware status monitored by utilities such
as iostat, vmstat, and sar. This was performed by an au-
tomation tool we had separated developed with which the
COSBench was integrated. The integration in fact took triv-
ial efforts, thanks to the command-line interface exposed by
the COSBench (Section 5.1).

6.2 Experimental Setup
For our experiments, we built two independent Swift se-

tups on 22 server-class machines with each cluster enjoying
five client nodes, five storage nodes and one proxy node.

2In the beginning, it was five runs and 500s for both phases.
However, we later found that three runs and 300s were fine
for both setups (saving us 64% of the total execution time).
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Figure 8: Hardware configurations

The client nodes ran the COSBench, with each running a
driver instance and a special one running an additional
controller instance. The storage nodes and the proxy
node were all used to run Swift, with the proxy node serv-
ing as a front-end controller forwarding requests to back-
end storage nodes where specific operations were carried
out. As such, we ran a certain number of proxy-server in-
stances on the proxy node, and a certain number of object-
server, container-server, and account-server instances
on each storage node. Although in production environ-
ments other services, such as object-replicator, object-
updater, object-auditor, to list just a few, should also
be launched on storage nodes to keep data consistent and
durable, we turned these services off to render less variance
to system’s performance3. When our experiments were per-
formed, the latest release of Swift was 1.4.8. As Swift is
still under heady development, increases or changes are both
likely to be seen in the performance of its future releases.
However, as we share our data mainly to demonstrate the
value of our tool in facilitating performance comparison and
system optimization, our data are not that meaningless.

As can been seen from Figure 8, there were a few dif-
ferences between the above two setups: Setup-SATA pos-
sessed a more powerful proxy node whereas Setup-SAS was
attached with more sophisticated disks. We will review the
impacts of such hardware discrepancies when we discuss the
results of our experiments. Note that in both setups, the ag-
gregate bandwidth from client nodes to the proxy node was
made equal to that from the proxy node to storage nodes,
suggesting that our clients were able to consume as much
throughput as the storage system could produce. We also
allocated separate disks to run operating systems and a sepa-
rate network for system control, protecting our environment
from unintended noises.

For both setups, we tried our best to tune our systems to
reach maximum performance. Since our setups were built
upon different hardware infrastructures, each setup required
different configurations to achieve its optimal performance.
We share some of our efforts in Section 7.

3According to our experience, these ”background” services
will produce haphazard impacts on the overall system, re-
sulting in as much as 18% of variance of performance among
multiple runs.
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Figure 9: Results of workload A. In Setup-SATA, the performance peaked at 320 workers (5,266 op/s in throughput,
110 ms in 95% latency); in Setup-SAS, 320 workers (5,019 op/s in throughput, 106 ms in 95% latency).
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Figure 10: Results of workload B. In Setup-SATA, the performance peaked at 320 workers (540 op/s in throughput,
2,810 ms in 95% latency); in Setup-SAS, 320 workers (1,769 op/s in throughput, 370 ms in 95% latency).

6.3 Workload A: Small Object Reads
The results of workload A are illustrated in Figure 9,

which shows the throughput, average, and 95% response
time observed under mounting number of workers. For both
setups, with more workers stressing the system, response
time increased as throughput increased. Besides, both se-
tups exhibited good predictability in their response times.
As can be seen from Figure 9-c, most requests were com-
pleted somewhere between 35 ms and 75 ms in Setup-SAS,
suggesting that the variance among different requests was
quite low.
Although Setup-SATA ran on slower disks, it actually ex-

hibited 5% more throughput than Setup-SAS, which led us
to conjecture that it was the CPU at the proxy node that
mattered most to the performance of these systems under
this workload. This was later ascertained by the exorbitant
CPU utilization found in both setups in particular under
their peak performance. After all, sustaining over 5,000 re-
quests per seconds does require a nontrivial amount of com-
putation power.
To further investigate scalability, we varied the number of

storage nodes from one to five in Setup-SAS and obtained
the throughput versus worker curve for each different set-
ting. The results are showed in Figure 11. Note that when
one single storage node was provisioned, we configured Swift
to maintain only one copy for each object uploaded. If there
were two storage nodes, the number of copies maintained
was increased to two. Otherwise, the number was set to
three, the default one. Note also that in normal cases Swift
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Figure 11: Results of the scalability test in Setup-
SAS under workload A.

only takes one copy to serve a read request (more copies will
be consulted only if all previous attempts have failed). As
can be seen from the results, the throughput increased as
the number of storage nodes increased until the proxy node
became the bottleneck and prevented the system from gain-
ing any further capacity. This could have be alleviated by
provisioning more proxy nodes to lend more CPU power to
the proxy tier. In our specific case, it is quite clear that ev-
ery three storage nodes should be matched with one proxy
node, which indicates that we should have provisioned two
proxy nodes rather than a single one.
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Figure 12: Results of the scalability test in Setup-
SAS under workload B.

6.4 Workload B: Small Object Writes
Workload B shows a different picture from workload A by

focusing on the write performance instead. The results are
provided in Figure 10. This time, Setup-SATA presented a
much worse performance than Setup-SAS in that the 95%
response time curve in the former was noticeably steeper
and that the throughput of it was also terribly lower. As
Setup-SATA was not so fortunate to be blessed with such
nice disks as the ones given to Setup-SAS, it followed that
the poor performance exhibited by Setup-SATA was due to
its limited disk power. This is within one’s expectation since
each object uploaded to Swift will cause three copies of data
to be created and three replicas of container metadata to
be updated as well. As a consequence, there are more works
left for disks than for the CPU. To convince ourselves, we re-
placed all storage disks used in Setup-SATA with SSD disks.
Results showed that the throughput increased significantly
from, for example, the original 550 op/s to 1,800 op/s under
2,048 workers, which confirmed our above presumption that
the root cause of the poor performance in Setup-SATA was
its slow disks.
As can be seen from Figure 10-c, Setup-SAS achieved a

slightly lower predictability in its response times than it did
in workload A, with most requests completed in 85 ms to
175 ms under its peak performance this time. After all, each
write operation has to undergo six internal round trips with
three for storing object copies and the other three for updat-
ing container, which inescapably introduces more variance
to the overall latency.
A similar scalability test for Setup-SAS was performed,

with the results plotted in Figure 12. The throughput ini-
tially went down slightly as the number of storage nodes rose
from one to three. This however was understandable since
the number of copies that must be created for each object
uploaded increased as well. As the number of storage nodes
kept rising from three to five, a proportionate increase of the
throughput was observed, indicating that the workload was
well balanced among the backend storage nodes.

6.5 Workload C: Large Object Reads
Workload C intends to evaluate the ability of a system to

send out large objects. The results are illustrated in Figure
14. Sadly, neither setup exhibited as good predictability in
response times as they had achieved in previous workloads.
Figure 14-c shows that individual response times observed in
Setup-SAS under its peak performance spanned a long range
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Figure 13: Results of the scalability test in Setup-
SAS under workload C.

from 650 ms to 1,900 ms, indicating that the bandwidth
witnessed by different workers varied a lof from one request
to another.

Since the performance of our two setups was similar to
each other in this workload, we assumed that the bottle-
neck should be neither the disk nor the CPU. After a careful
scrutiny, we realized that the key to further optimization ac-
tually resided in the client network. Although our aggregate
bandwidth between storage nodes and client nodes should be
as large as 1,250 MB/s (10Gb/s) in theory, we only got 700
MB/s at most in practice. We later found that this was due
to the overhead incurred by bonding network links together.
In our case, after two 1Gb links were bonded on each storage
node and client node, the new link can only receive data at
a low speed of 140 MB/s (56% of the theoretical maximum).
As a consequence, our five client nodes could only read data
at a maximum speed of 700 MB/s, thus rendering through-
put an upper bound of 70 op/s. To resolve this issue, two
different approaches were taken. In the first one, we provi-
sioned five more client nodes to the setup with each node
adding 140 MB/s more bandwidth to the aggregate band-
width. In the second one, we set up four virtual machines
on each client node using SR-IOV instead of bonding (with
each VM assigned a 1Gb SR-IOV NIC). The results showed
that both approaches were able to improve network band-
width to its theoretical capacity; the throughput increased
from 700 MB/s to over 1,100 MB/s.

Figure 13 shows the results of the scalability test under
this workload in Setup-SAS. The throughput increased as
the number of storage nodes increased, until the network
became the bottleneck. If the network issue had been re-
solved, we would have seen further increases in throughput
proportionate to the number of storage nodes beyond three.
Another thing worth mentioning here is that our proxy node
was capable of sustaining more storage nodes (at least five
nodes) in this workload than it was in workload A (three
nodes at most), which constitutes a concrete example of how
workload characteristics affect system configuration and per-
formance tuning.

6.6 Workload D: Large Object Writes
Finally, the results of workload D are illustrated in Fig-

ure 15. Unfortunately, both setups exhibited very poor pre-
dictability in their response times. As can been seen from
Figure 15-c, which shows the latency histogram of Setup-
SAS under its peak performance, the response times almost
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Figure 14: Results of workload C. In Setup-SATA, the performance peaked at 160 workers (71 op/s in throughput, 3,060
ms in 95% latency); in Setup-SAS, 80 workers (67 op/s in throughput, 1,636 ms in 95% latency).
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Figure 15: Results of workload D. In Setup-SATA, the performance peaked at 80 workers (23 op/s in throughput, 5,100
ms in 95% latency); in Setup-SAS, 20 workers (20 op/s in throughput, 1,569 ms in 95% latency).

evenly distributed all over the time line from 500 ms to 1,600
ms.
Since the throughput exhibited by both setups in this

workload happened to be a third of the throughput they
exhibited in the previous one, this led us to believe that
the key performance issue for this workload was still at the
network layer, and that the high contention of the network
bandwidth should take the blame for the high variance in
the response times we observed. Note that in this workload,
the data actually flew from the clients to the storage nodes,
so it was the storage nodes that were reading the data and
thus suffering from the poor receiving performance caused
by network bonding. As such, it was legitimate to say that
the throughput would be improved if more storage nodes
had been provisioned, and worsen if less. In fact, the scala-
bility test we performed later yielded evidences which could
support our above assumption. As can be seen from Fig-
ure 16, the throughput increased linearly to the number of
storage nodes as the latter rose from three to five. We actu-
ally also checked the status of both the CPU and the disks
on storage nodes; however, no symptom of bottleneck had
been found in these hardware resources. As a result, it is
safe to take the storage network as the culprit for inhibiting
scalability.

7. EXPERIENCES
As we mentioned early, we tried our best to tune both our

setups to achieve their maximum performance. Since our
two setups were associated with different hardware config-

urations, each of them had to be considered and optimized
individually. For example, compared with Setup-SAS, we
found that more server instances (proxy-server, object-
server, and the like) have to be launched in Setup-SATA
in order to match and compensate its slow disks. However,
attempting to launch an equal number of instances in Setup-
SAS as in Setup-SATA would only do a disservice to the per-
formance of the former. As a lot of efforts have been taken
to better configure our systems, in this section, we share
some of our experiences by discussing two factors that, we
think, people should take into consideration when tuning
their systems.

Firstly, one should make sure that the hardware has been
appropriately configured. Ideally, each element of the sys-
tem should be kept balance with the rest to preclude any
explicit bottleneck. For example, in our early experiments,
the proxy node in Setup-SATA only had one single 10Gb
NIC port configured, which was connected both to the client
network and the storage network. We later realized that the
system was ill balanced since this specific port turned out
to be a bottleneck. Once a separate port was enabled, the
performance immediately improved from 3,893 op/s to 4,726
op/s in the case of workload A. Besides watching the hard-
ware, it is also important to be familiar with the internal
logic of a system. We find that this kind of knowledge can
help people better understand the behavior of a system and
better read test results as well. For example, in our exper-
iments, we initially configured all our workloads to use just
one single container. The performance we observed in work-
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Figure 16: Results of the scalability test in Setup-
SAS under workload D.

load B under this setting was only 197 op/s for Setup-SATA.
Such low performance happened to remind us of one impor-
tant detail we had learned from the source code: when each
object is uploaded, besides creating three copies, Swift will
additionally update the corresponding container to register
this newly inserted object. Since the status of each container
is persisted in a dedicated sqlite DB file with three replicas,
the poor performance was very likely to be caused by the
lock contention often associated with concurrent database
modifications. To resolve this issue, we tuned our systems
as follows: (i) we configured our workloads to use 100 con-
tainers instead of a single one to alleviate lock contention;
then (ii) we increased the number of container-server in-
stances launched in both setups to improve responsiveness;
and (iii) we allocated dedicated SSD disks to hold all con-
tainer DB files so as to work around the limitation of the
HDD disks (this was for Setup-SATA only). Results showed
that each of these actions was able to individually enhance
performance. They collectively achieved a 280% increase in
throughput in the case of workload B for Setup-SATA, from
the previous 197 op/s to what we listed in Section 6.4.

8. RELATED WORK
Object storage systems are no longer strangers to develop-

ers, with the proliferation of these systems observed during
recent years. Some object storage systems (such as Walrus in
Eucalyptus [5] and Cumulus in Nimbus [8]) are implemented
as immediate adaptor over traditional storage technologies.
Some (such as Swift in Openstack [10]) are designed from
bottom up with efforts devoted to ensure scalability, dura-
bility, and cost-effectiveness. Besides, there are also ones
(such as RADOS [30] and HYDRAstor [23]) that are in-
tended mainly to support file systems, and ones (such as
Windows Azure Storage [20] and Yahoo! Walnut [21]) that
are built with the goal of creating a unified enterprise storage
infrastructure which can sustain better flexibility, manage-
ability and application performance. Last but not least, one
can also adopt object storage by using cloud services offered
by Amazon [2], Rackspace [12] or Google [6].
The ideal of creating a benchmark tool to evaluate the per-

formance of a system is not unusual. Efforts of implement-
ing such a tool have already been seen in the newly-emerged
area of object storage. For example, there is a benchmark
utility included in the distribution of Swift, which is called
SwiftBench [15]. Our tool is similar to it as both can be

used to characterize Swift setups. However, while the for-
mer is dedicated for Swift to facilitate its system develop-
ment, our tool is designed to be a general benchmark tool
and is intended for a variety of purposes including system
comparison, tuning, and optimization. Another example of
such efforts is Haystress [18], which is provided to support
the performance testing of Haystack, which is in turn a dis-
tributed photo repository used exclusively inside Facebook.
Our tool is similar to Haystress since both can simulate dif-
ferent kinds of object storage applications. However, our
tool is built with a more sophisticated workload model and
is therefore capable of generating more diverse usage pat-
terns. Besides these serious programs, scripts written by
perl or curl have also been witnessed in the characteriza-
tion of object storage systems. Although scripts are easier
to implement and are not bound to pre-designed workload
models, they lack the extensibility to work with different
systems and various features to ensure ease-of-use. To this
regard, we have designed our tool with attention paid on
both issues, thus allowing our users to focus more on their
innovation rather than benchmark details. Besides, our work
also resembles YCSB [22] though we focus on object storage
systems while they ”nosql” data stores.

One prototype version of our tool was presented in a pre-
vious short report [32]. Compared with this release, our
current version has been fully revised with a stronger sys-
tem architecture which gives birth to the high extensibil-
ity and scalability of the tool. In addition, the workload
model as well as the user-interface accompanying the tool
has also been considerably improved in our current distri-
bution, making the tool more practical and easier to use.

9. CONCLUSION
We have presented a benchmark tool we named Cloud

Object Storage Benchmark. This tool is developed with the
main intention of helping people better evaluate and com-
pare different object storage systems. It is also designed to
facilitate system tuning and optimization. To demonstrate
the effectiveness of our tool, we have used it to character-
ize the performance of two Swift setups under four distinct
workloads, and discussed the impacts of different hardware
configurations on system performance. We also showed how
hardware profiling data can be utilized to identify perfor-
mance bottlenecks and guide system optimization. As our
tool can be flexibly adapted to other object storage systems,
people can easily use this tool to characterize their own sys-
tems, either for facilitating performance comparison or for
driving system optimization.

COSBench is still under our active development and is
being enhanced in many aspects. One important part of our
future work is to make the tool open source, so that it will
be easier for people to use this tool and to extend it with
their own storage adaptors. Besides, we are also working on
adding additional features into this software. For example,
one feature that we are implementing can empower people
to detect possible data corruptions: it can be enabled by
configuring the tool to generate and check the MD5 value
of each object it handles. Another track of improvements
concerns ease-of-use. For example, we are implementing a
web interface which enables our users to create workload
configurations directly in their browsers. As a result, this
“online web editor” can free our users from the burden of
expressing their usage patterns in raw XML.
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