
Workload Resampling for Performance Evaluation
of Parallel Job Schedulers

Netanel Zakay Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem
91904 Jerusalem, Israel

ABSTRACT
Evaluating the performance of a computer system is based on us-
ing representative workloads. Common practice is to either use
real workload traces to drive simulations, or else to use statistical
workload models that are based on such traces. Such models al-
low various workload attributes to be manipulated, thus providing
desirable flexibility, but may lose details of the workload’s internal
structure. To overcome this, we suggest to combine the benefits
of real traces and flexible modeling. Focusing on the problem of
evaluating the performance of parallel job schedulers, we partition
each trace into independent subtraces representing different users,
and then re-combine them in various ways, while maintaining fea-
tures like the daily and weekly cycles of activity. This facilitates the
creation of longer workload traces that enable longer simulations,
the creation of multiple statistically similar workloads that can be
used to gauge confidence intervals, and the creation of workloads
with different load levels.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Design studies; I.6.5
[SIMULATION AND MODELING]: Model Development; D.4.8
[OPERATING SYSTEMS]: Performance—Simulation; D.4.1 [O-
PERATING SYSTEMS]: Process Management—Scheduling

General Terms
Performance

Keywords
Workload trace; Resampling; Simulation

1. INTRODUCTION
The performance of a computer system is affected by the work-

load it handles. Reliable performance evaluations therefore require
the use of representative workloads. This means that the evaluation
workload should not only have the same marginal distributions as
the workloads that the system will have to handle in production

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

use, but also the same correlations and internal structure. As a re-
sult, traces of real workloads are often used to drive simulations of
new system designs, because such traces obviously contain all the
structure found in real workloads.

Replaying a trace only provides a single data point of perfor-
mance for one workload. But in many evaluations, several re-
lated workloads are needed. For example, in order to compute
confidence intervals, one needs multiple instances of the same ba-
sic workload. The common way to satisfy this need is to create
multiple synthetic workloads based on statistical workload models
(which, in turn, are based on the traced data) [13, 2, 20, 24, 28].
While models provide the required variability and flexibility for
evaluations, they also suffer from not necessarily including all the
important features of the real workload [1] — in fact, they include
only those of which the modeler was aware.

To improve the representativeness of evaluation workloads we
propose to combine the realism of real traces with the flexibility of
models. This will be done by modeling only the part of the work-
load that needs to be manipulated, and resampling from the real
data to fill in the remaining details. Technically this is done by
partitioning workload traces into their basic components and re-
grouping them in different ways to achieve the desired effects.

The domain of our work is parallel job scheduling. Parallel sys-
tems are increasingly relevant today, with the advent of multi-core
processors (parallelism on the desktop), clusters and blade servers
(parallelism at the enterprise level), and grids (parallelism across
multiple locations). The jobs that run on parallel systems are com-
posed of multiple processes that need to run on distinct processors
(in large clusters and supercomputers the number of processes and
processors can be in the thousands). When a job is submitted the
user specifies how many processors are needed, and often also for
how much time. The scheduler then determines the order in which
jobs will be executed, and which processors will be allocated to
each one. Accounting logs from large-scale systems are available
in the Parallel Workloads Archive [11], and provide data about the
workloads they served. (The logs we use in this work are listed
in Table 1.) In particular, logs typically contain information about
the submit time of each job, it’s runtime and number of processes,
the user who submitted it, and more. These logs can therefore be
used to simulate the behavior of new scheduler designs and com-
pare them with each other.

In this context, we suggest that the resampling be done at the
level of users. We first partition the workload into individual sub-
traces for the different users, including all the jobs submitted by
each user throughout the tracing period. We then sample from this
pool of users to create a new workload trace. Using such resam-
pling, we can achieve the following:

149

Log File Period PEs Users Jobs
LANL CM5 LANL-CM5-1994-3.1-cln 10/94–09/96 1024 213 201,387
CTC-SP2 CTC-SP2-1996-2.1-cln 06/96–05/97 338 679 77,222
KTH-SP2 KTH-SP2-1996-2 09/96–08/97 100 214 28,489
SDSC-SP2 SDSC-SP2-1998-3.1-cln 04/98–04/00 128 437 59,725
OSC-clust OSC-Clust-2000-3.1-cln 01/00–11/01 178 253 36,097
SDSC-BLUE SDSC-BLUE-2000-3.1-cln 04/00–01/03 1152 468 243,314
HPC2N HPC2N-2002-1.1-cln 07/02–01/06 240 257 202,876
SDSC-DS SDSC-DS-2004-1 03/04–04/05 1664 460 96,089
Intrepid ANL-Intrepid-2009-1 01/09–09/09 163,840 236 68,936

Table 1: Logs from the Parallel Workloads Archive (www.cs.huji.ac.il/labs/parallel/workload/) that were used in this study.

• Create a much longer trace than the original, and use it to
ensure convergence of evaluation results.

• Create multiple similar workloads, and use them to compute
confidence intervals.

• Create workloads with higher or lower average loads, by us-
ing more or less concurrently active users, and use them to
investigate how load affects system performance.

Importantly, while the resampled workloads differ from the origi-
nal in length, statistical variation, or load, they nevertheless retain
important elements of the internal structure such as sessions and
the relationship between the sessions and the daily work cycle.

Workload manipulations are an important tool in the performance
analyst’s toolbox, that has not received its due attention in terms
of methodological research. As a result, inappropriate manipula-
tions are sometimes used, which in turn has led to some controversy
regarding whether any manipulations of real workloads are legiti-
mate. By increasing our understanding of resampling-based manip-
ulations we hope to bolster the use of this important tool, allowing
new types of manipulations to be applied to workload traces, and
enabling researchers to achieve better control over their properties,
as needed for different evaluation scenarios.

In the rest of this paper we describe this promising approach to
using workload traces and demonstrate its effectiveness. The next
section further explains the motivation for using resampling. In
Section 3 we consider different resampling granularities, and jus-
tify the decision to do so at the level of all the activity of each
user. Section 4 explains how the resampling is done in consider-
able detail, including the proposed distinction between long-term
and temporary users. Section 5 then demonstrates the use of re-
sampling to achieve the objectives listed above, and also suggests
some additional potential uses. We conclude in Section 6.

2. WHY USE RESAMPLING
The Parallel Workloads Archive includes more than 20 work-

load traces from different systems, but this may not always suffice.
Some of the traces may not be appropriate for certain system types
(for example, throughput-oriented systems often allow only serial
jobs). Some traces are dated and may not represent present prac-
tices. Evaluations may require certain attributes that are not avail-
able in the archive, e.g. a series of workloads whose loads differ by
5%. Even if one has access to a real system one cannot force the
workload on it to conform to a desired configuration.

Resampling is a powerful technique for statistical reasoning in
such situations, when not enough empirical data is available [6, 7].
The idea is to use the available data sample as an approximation
of the underlying population, and resample from it. This enables
multiple, quasi-independent samples to be created, which are then

used to compute confidence intervals or other metrics of interest
that depend on the unknown underlying distribution.

Our ideas for workload manipulation are analogous to this. We
have a workload trace at our disposal. The problem is that this pro-
vides a single data point, whereas our evaluation requires the use
of several (maybe many) workloads with certain variations. The
proposed solution is to partition the given workload into its con-
stituents, and re-group them in different ways to create new work-
loads. The simplest approach is to partition the workload into its
most basic components (e.g. jobs), and resample at random. This
is similar to just using the empirical distribution as a model. Our
proposal is to extend this in two ways:

1. We consider different definitions of what constitutes the ba-
sic elements of the workload. For example, they could be
individual jobs, batches of related jobs, complete user ses-
sions, or even the sequence of all the sessions by each user.

2. Resampling may not be random, but guided by some specific
manipulation that we want to apply to the workload, and also
subject to constraints such as maintaining system stability.

The notion that this is a useful device is our working hypothesis;
examples and evidence supporting this notion are given below.

We note that while we believe such resampling to be relatively
novel in the context of computer workloads and performance eval-
uation, analogies from other fields of computer science do exist.
One analogy comes from computer graphics, where texture map-
ping is often done by replicating a small patch of texture, with
certain variations to give an impression of perspective, conform to
lighting conditions, and avoid an obvious tiling effect [17]. More
relevant to our work on workloads, such replication, modification,
and patching together has also been done for temporal signals, such
as movement specification [15] and sound [4]. Another analogy
comes from the joint time-space analysis of video. Here the idea
is to partition a video into patches, and then replace certain patches
with others, e.g. to reconstruct missing frames or add or remove ob-
jects [30]. This technique can also be used for anomaly detection:
if a piece of a new video cannot be reconstructed from snippets that
exist in the system’s database, then it is anomalous [3].

To the best of our knowledge resampling-based workload manip-
ulations as we propose here have been used only in a very limited
manner. The closest related work we know of is the Tmix tool, used
for the generation of networking traffic. This tool extracts com-
munication vectors describing different connections from a traffic
log (sequences of 〈req_bytes, resp_bytes, think_time〉) and then re-
plays them subject to feedback from the simulated system’s perfor-
mance [29]. A subsequent paper also mentions the possibility of
resampling traces to create diverse load conditions [12], but their
approach is simpler than ours as they do not use the concept of
sessions nor retain phenomena like the daily cycle. A similar con-

150

struction was proposed by Krishnamurthy et al. in the context of
evaluating e-commerce systems [16]. In this case they reuse se-
quences of user operations in order to ensure that illegal sequences
are not generated by mistake by the workload modeling procedure.
In the domain of parallel job scheduling, Ernemann et al. resize and
replicate jobs in order to make a trace suitable for simulations with
a larger machine [8]. Our goal, in contrast, is to use the resam-
pled traces to perform better and more comprehensive evaluations.
Kamath et al. have suggested to merge several traces and simulate
a queueing mechanism in order to increase load [14]. However,
this is limited to load values that are the sums of loads from ex-
isting traces. Ebling and Satyanarayanan created micro-models of
application file behaviors based on a trace, and then combined them
stochastically to create test workloads [5]. Again this is similar in
concept, except that we prefer to use real data directly at the bottom
layer rather than to risk models that may miss important details.

3. GRANULARITY OF RESAMPLING
Resampling can be done at different levels. In many cases, the

coarsest level is the activity of a user, which may be partitioned
into sessions. The constituents of a session depend on what sort
of work we are looking at. It can be the submittal of parallel jobs,
downloads from web servers that are composed of packets being
sent over the Internet, or individual accesses to file data.

Resampling at the job level is similar to resampling in statistics,
e.g. as applied in the bootstrap method [6], which is similar to us-
ing the empirical distribution as a model. Note, however, that by
resampling complete jobs we retain the correlations between job
attributes (e.g. job size and runtime), which would be lost if we
resampled from each marginal distribution independently.

Resampling is all about restructuring the workload. But at the
same time, we wish to retain at least some of the local structure.
Specifically, we typically want to retain the locality properties ex-
hibited by normal work practices. Also, it may be important to
retain the structure of batches of related jobs or sessions. For ex-
ample, this is necessary for the evaluation of adaptive systems that
learn about their workload and adapt to changing workload con-
ditions [25, 9]; without locality and structure, such systems don’t
have what to exploit.

To motivate the use of resampling at the user level, we studied
the correlation between each user’s jobs. First we divided the work
of each user into sessions [31]. Then we compared the jobs in
one session with each other and with the jobs in subsequent ses-
sions, using three attributes: the number of processors used, the
jobs’ runtimes, and their estimated runtimes. The metric for com-
parison was the ratio of the smaller value as part of the larger one:
r = min{j1.att, j2.att}/max{j1.att, j2.att}. This is by defi-
nition in the range [0, 1], with 0 indicating a large difference and 1
indicating identity.

Fig. 1 shows a sample of the results, using logs available from
the Parallel Workloads Archive [21]. The X axis is the distance
in sessions between the compared jobs, and the Y axis shows the
average or median of the level of similarity. Obviously jobs in the
same session tend to be more similar to each other, and the degree
of similarity is reduced with distance. In effect, this testifies to the
existence of locality in these workloads, which we want to retain.

To validate this result, we used bootstrapping to compare the re-
sults shown above with results that would be obtained if we sample
jobs independently. To do so we retain the structure of sessions
for each user, but mix the jobs randomly among the sessions. This
is repeated 1000 times, and each time the degrees of similarity be-
tween jobs in the same session are computed as above. Fig. 2 shows
a sample of the results. Obviously, the similarity among jobs that

1 2 3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

distance between sessions

ex
pe

ct
at

io
n

of
 C

P
U

 n
um

be
r

si
m

ila
rit

y

KTH

SDSC−SP2

SDSC−DS

BLUE

1 2 3
0.2

0.4

0.6

0.8

1

distance between sessions

m
ed

ia
n

of
 r

un
ni

ng
 ti

m
e

si
m

ila
rit

y

KTH

SDSC−SP2

SDSC−DS

BLUE

Figure 1: Similarity between jobs as a function of the distance
between them in sessions.

0.55 0.6 0.65 0.7 0.75 0.8
0

100

200

300

Similarity Value of running time

ex
pe

rim
en

ts
 n

um
be

r

0.7 0.75 0.8 0.85 0.9 0.95
0

100

200

300

Similarity Value of maximum running time

ex
pe

rim
en

ts
 n

um
be

r

0.65 0.7 0.75 0.8 0.85 0.9
0

50

100

150

200

Similarity Value of CPU number

ex
pe

rim
en

ts
 n

um
be

r

Figure 2: Comparison of the similarity between jobs in the same
session as computed from the SDSC-SP2 log (vertical line), and
the distribution of similarity levels that are seen when the jobs are
randomized.

151

��������������
����

original trace

generated trace

user pools

4 wk 4 wk

long term temporary

?

?

2

1

2

2 2

3

3

3

3

4

4

4

4

5

5

5 5

6

6

6

6

3

7

7

8

9 10

11

12

13

8

9

9

9

10

10

10

11

11

11

7

8

8

8

Figure 3: Conceptual framework of dividing users into long-term and temporary, and reusing them in a generated trace.

appear together in the original log is much higher than the similar-
ity that would be obtained if jobs are randomized, as would happen
if we resample individual jobs.

An implicit assumption in our resampling procedure is that users
are independent. This is not strictly valid because users affect each
other: if one user overloads the system, others may feel this and re-
duce their own activity. However, a large part of such interactions is
due to all users operating on the same daily cycle, and we take care
to retain this correlation between the resampled users. Moreover,
resampling at the user level rather than at the session level allows
for more sophisticated user behavior models. Specifically, we can
introduce feedback effects whereby a user may decide to termi-
nate a session because system performance is poor, and submit his
subsequent jobs in a later session. Our work on incorporating such
feedback effects will be reported separately; for now the main point
is that if we resample at the session granularity such effects will be
effectively excluded.

Based on the above considerations, we decided to perform our
resampling at the user level, in order to retain the locality in the
modified workloads that we produce and allow for the inclusion of
feedback effects.

4. MECHANICS OF RESAMPLING
Creating a new workload by resampling users means that we dis-

sect the given trace into sub-traces representing different users, and
then recombine these sub-traces in different ways. Note that we do
not manipulate each user’s sub-trace. Thus the sequence of jobs
representing each user will be the same as in the original trace, and
the intervals between them will also be the same. This guarantees
the same locality properties as in the original trace, as noted above.
We also take care to synchronize the resampled users using a com-
mon timeframe, so that jobs always start on the same day of the
week and the same time of the day as in the original trace. This
ensures that the daily cycle of activity is retained in the produced
workload, which may be important [32, 10].

An important issue in dissecting a trace into separate users is
how to handle end effects. After all, there is no reason to assume
that the beginning or end of the tracing period is synchronized in
any way with the beginning or end of the activity of any particular
user. We approach this problem by making a distinction between
temporary users and long-term users (see Fig. 3).

long-term temporary
Log users jobs users jobs
CTC-SP2 314 63,287 236 10,625
KTH-SP2 102 25,202 66 2,349
SDSC-SP2 173 44,251 206 8,790
SDSC-BLUE 426 221,745 31 1,435
HPC2N 178 194,429 66 7,949
SDSC-DS 230 74,764 192 9,012

Table 2: Results of classifying users in the different logs.

Temporary users are all the users that interact with the system for
a limited time, for example while conducting a project. These users
arrive to the system at a certain point, interact with it for a short
while, and are expected to leave shortly after that and never return.
Long-term users, in contradistinction, are the users that routinely
use the system all the time. These users may be expected to have
been active before logging started, and to send more jobs also after
the end of the recording period.

In analyzing the log, we distinguish between temporary users
and long-term users according to the interval between their first job
and their last job in the log. If the interval is long enough (above
12 weeks in our implementation), the user is classified as long-
term. Otherwise the classification is temporary. The threshold of 12
weeks is chosen based on observation of the distribution of periods
of activity by different users. We found that for most users their
period of activity was up to about 12 weeks; these are the temporary
users. For the rest there was a uniform distribution from 12 weeks
to the full length of the log. This is interpreted as representing
long-term users whose activity was arbitrarily intersected with the
logging period. The numbers of temporary and long-term users
found in different logs, and the jobs that they submitted, are shown
in Table 2. There tend to be somewhat more long-term users than
temporary ones, but as may be expected, the long-term users submit
the vast majority of the jobs.

Data about the different users is kept in separate user pools, one
for temporary users and the other for long-term users. However,
temporary users whose full period of activity falls within a short
time (4 weeks) from the beginning or the end of the logging pe-
riod are discarded. The reason for doing so is that there is a high
probability that the activity of these users was truncated, but we

152

0 500 1000
0

1000

2000

3000

4000

User

Jo
bs

 N
um

be
r

original log
our results

0 500 1000
0

200

400

600

User

S
es

si
on

s
N

um
be

r

original log
our results

0 500 1000
0

5000

10000

15000

User

A
ve

ra
ge

 S
es

si
on

 L
en

gt
h

(in

 s
ec

on
ds

)

original log
our results

0 500 1000
0

5

10

15x 10
8

User

W
or

k
A

m
ou

nt

original log
our results

0 500 1000
0

1

2

3x 10
7

User

A
rr

iv
al

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 500 1000
0

1

2

3x 10
7

User

E
nd

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 500 1000
0

1

2

3x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

original log
our results

0 100 200
0

500

1000

1500

Hour In Week

Jo
bs

 N
um

be
r

original log
our results

Figure 4: Comparison between the original CTC SP2 log and 8 generated logs based on it. The last plot includes marks every 6 hours and a
longer one at midnight.

cannot know for sure. The threshold of 4 weeks is chosen because
when plotting the cumulative number of users observed as a func-
tion of the number of weeks into the log, in the first few weeks the
graph climbs at a higher rate. This is interpreted as being influenced
by first observations of users that have already been active before.
Then, when the increase settles on a lower and relatively constant
average rate, this is interpreted as predominantly representing the
arrivals of new users.

Given the pools of temporary and long-term users, the resam-
pling and generation of a new trace is done as follows:

• Initialization: We initialize the trace with some temporary
users and some long-term users. The numbers of users to use
are parameters of the trace generation, and can be used to
change the load or the ratio of temporary to long-term users
(the defaults are the numbers of long-term users in the orig-
inal log, and the average number of temporary users present
in a single week of the original log). The probability to select
each temporary user is proportional to the number of weeks
during which the user was active in the log. Users are not
started with their first job in the trace. Rather, each user is
started in some arbitrary week of his traced activity. How-
ever, care is taken that jobs start on the same day of the week
and time of the day in the simulation as in the original trace.

• Temporary users: In each new week of the simulation, a
certain number of new temporary users are added. The exact
number is randomized around the target number, which is a
parameter of the trace generation (the default is the average
rate at which temporary users arrived in the original trace).
The randomization uses a binomial distribution, with a prob-
ability p equal to the fraction of temporary users expected to
start every week. The selected users are started from their
first traced jobs. A user can be selected from the pool multi-
ple times, but care is taken not to select the same user twice
in the same week.

• Long-term users: The population of long-term users is con-
stant and consists of those chosen in the initialization. When
the traced activity of a long-term user is finished, it is simply
regenerated after a certain interval. While such repetitions
are not very realistic, they allow us to extend the work of the

long-term users as needed. We also note that repetitions only
occur after rather long intervals, because logs are typically
at least a year long. The interval between the regenerations
corresponds to the sum of the intervals between the user’s
period of activity and the full logging period. Naturally the
regenerations are also synchronized correctly with the time
and day.

Note that this process can go on indefinitely, and indeed one of the
applications of workload resampling that we describe in the next
section is to extend traces and allow for longer simulations.

The exact number of users in the initialization, the week of ac-
tivity from which they start, the number of temporary users added
each week, and the identity of the selected users are all random-
ized. Therefore our simulation creates a different workload in each
run. But all these workloads are based on the same sub-sequences
of jobs, and are therefore all statistically similar to each other and
to the original trace.

In order to perform resampling and implement the applications
described in the next section it is enough to just create a new work-
load trace that is composed of the jobs of the different users as
described above. However, we actually perform a full simulation
of also scheduling these jobs. This enables us to directly use the
generated workloads to evaluate various parallel job schedulers. In
subsequent work we also consider adding feedback, whereby the
system performance influences user behavior and may affect when
subsequent jobs are submitted [23]. In any case, the simulation also
creates a log file which contains the new workload. Comparing this
generated workload with the original one allows us to validate the
resampling process.

To validate this procedure we compare the generated workload to
the original one. An example is shown in Fig. 4 based on the CTC
SP2 log. The different panels show the following distributions:

• Number of jobs submitted by different users

• Number of sessions performed by users

• Average session length for different users

• Total amount of CPU time (work) used by users in all their
jobs

• The users’ first arrival times

153

7.5 8 8.5 9 9.5
x 10

4

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r
SDSC−DS

2.18 2.2 2.22 2.24 2.26
x 10

5

0

50

100

150

jobs number

ex
pe

rim
en

ts
 n

um
be

r

7 7.5 8 8.5 9
x 10

4

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

CTC

1.95 2 2.05 2.1 2.15
x 10

5

0

50

100

jobs number

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

0.55 0.6 0.65 0.7 0.75
0

20

40

60

80

100

utilization

ex
pe

rim
en

ts
 n

um
be

r

SDSC−DS

0.7 0.72 0.74 0.76 0.78
0

50

100

150

200

utilization

ex
pe

rim
en

ts
 n

um
be

r

0.65 0.7 0.75 0.8
0

20

40

60

80

100

utilization

ex
pe

rim
en

ts
 n

um
be

r

CTC

0.58 0.6 0.62 0.64
0

50

100

150

utilization

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

Figure 5: Histograms of the throughput and utilization in a thousand simulations with resampled workloads compared to using the original
workload (vertical red line).

• The users’ final departure times

• The users’ periods of activity

• The distribution of job arrivals across days of the week, for
all users

In all but the last of these, the users are first sorted according to the
metric, and then the distribution is plotted. The X axis specifies
the users’ serial numbers after this sorting. Note that the number
of users participating in each workload may be slightly different,
due to the random selection of how many new users arrive each
week. As we can see, all the distributions are very similar to the
original one. This is attributed to the fact that despite the random
mixing due to the resampling, the sequence of jobs for each user is
retained.

5. APPLICATIONS OF RESAMPLING
The use of resampling is expected to lead to more reliable perfor-

mance evaluations, due to being based more closely on real work-
load traces, and incorporating all the complexities of real workloads
— including those that are unknown to the analyst. In the following
we discuss some examples.

5.1 Verification of Performance Results
As noted above, one of the problems with using a workload trace

directly is that it provides a single data point. This has the obvious
deficiency that it is impossible to calculate any kind of confidence
intervals. But with resampling we can create many resampled ran-
domized versions of the workload, and evaluate the performance
of the system with all of them, thus obtaining multiple data points
that all adhere to the same underlying statistics. The distribution of
these data points can then be used to compute confidence intervals
for performance metrics. This is essentially an application of the
well-known technique of bootstrapping used in statistical analysis
[7].

Given the resampling mechanism described above, implement-
ing this idea is trivial: simply create a large number of workloads,
say 1000, based on the original log, run the scheduler simulation on
all of them, and tabulate the results. But to check this we need to
also examine the basic characteristics of the produced workloads,

and convince ourselves that they remain representative. To do so
we indeed generated 1000 resampled variants of each log, calcu-
lated various metrics on each of these 1000 variants, and created
a histogram of these metric values. We also included the original
values for comparison.

We performed the checks on eight different logs from the Parallel
Workloads Archive, and results for four of them are shown in Fig.
5. The top row shows that the throughput (that is, average number
of jobs per unit time) was typically distributed around the origi-
nal value. the result for the BLUE log was the largest deviation
observed; with this log 92% of the variants had a lower through-
put than the original log, but the difference between the median
throughput and the original was only 0.45%. For utilization (bot-
tom row) the results were more diverse, and varied between distri-
butions around the original value — as for CTC — and distributions
that are generally below the original value — as for DS, which was
the most extreme. This may indicate some systematic bias which
we do not understand yet. But note that the four logs that were
checked and are not shown were all less extreme than BLUE or
HPC2N.

Accepting the generated workload distributions as reasonable,
we turn to check the results of evaluations of the EASY scheduler,
which is probably the most commonly used backfilling scheduler
[18]. The results for waiting time and slowdown are shown in Fig.
6 (results for response time exhibit similar behavior to wait time).
The slowdown results are the most varied. In five of the eight logs
we checked, the distribution was more or less around the value ob-
tained using the original log. This is exemplified by the BLUE and
CTC logs in the figure. But in other cases the original result was at
the very end of the distribution, either higher or lower than nearly
all the others (as in DS or HPC2N, respectively, which were the
two most extreme cases). The results for slowdown were more one-
sided, being distributed either around the original values (as for DS
and CTC) or largely above them (as for BLUE and HPC2N). The
explanation appears to be that in some logs there are more sparse
days, in which very few jobs arrive and therefore all wait times
are short or nil. Our resampling tends to distribute users and jobs
somewhat more evenly.

For both metrics, these results underscore the importance of us-
ing the resampling methodology to identify cases where the result

154

1.4 1.6 1.8 2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r
SDSC−DS

1.4 1.6 1.8 2 2.2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

1.3 1.4 1.5 1.6
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

CTC

1.4 1.6 1.8 2
0

50

100

150

slowdown

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

0 2 4 6
x 10

4

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

SDSC−DS

0 0.5 1 1.5 2
x 10

5

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

0 1 2 3
x 10

4

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

CTC

0 1 2 3 4
x 10

5

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

HPC2N

Figure 6: Histograms of the average slowdown and waiting time in a thousand simulations of EASY on resampled workloads, compared to
a simulation using the original logs (vertical red line).

using the original log may not be truly representative. Importantly,
the spread of the results indicates that the resampling indeed pro-
duces workloads that are different from each other, even though
they are derived from the same source and exhibit the same statis-
tics. On the other hand, we never saw results that were completely
separated from the original result, meaning that in all cases at least
some of our 1000 repetitions produced results like the original log.
Also, in most cases the most extreme differences were not more
than 10–20%.

Note that this application of bootstrapping serves only to provide
confidence intervals for evaluations based on a single log. We con-
sider the possibility of extending this by mixing data from multiple
logs in Section 5.4.1. Such mixing will provide confidence inter-
vals for more general evaluations that are based on all the available
data.

5.2 Extending a Trace
Another simple use of workload resampling is in order to extend

a trace. While some of our workload traces are pretty long, with
hundreds of thousands of jobs submitted over 2 years or more, oth-
ers are shorter. In addition, a significant part of the trace may be
needed as a “warmup period” to ensure that the simulated system
achieves its steady state [22]. Given only the raw traces, the length
of the simulation may therefore be quite limited.

But with resampling we can extend the simulation to arbitrary
lengths. As indicated above, this is achieved by regenerating long-
term users, and randomly sampling new temporary users every week.
In principle this can be continued indefinitely.

To check the resulting extended workloads, we studied three rep-
etitions of extending given traces to five times their original length.
For example, given a trace that represented one year’s worth of ac-
tivity, we used it to create three traces that are each five years long.
We then compared the original trace with the first year, the third
year, and the fifth year of each repetition. The results for the BLUE
log are shown in Fig. 7, using the same distributions as in Fig. 4.

As one can see, the distributions for all three repetitions and the
three periods of the extended trace all agree with each other and
with the original trace data to a high degree. Note that we treat each
of the three periods as a separate log, and do not carry over users
that were identified in one period to another period. This causes

the distributions of arrival times and end times to be separated into
three, corresponding to the different periods. Remarkably, in each
of these we see the same end effects as in the original shorter trace.

5.3 Changing the Load
An important aspect of systems performance evaluation is often

to check the system’s performance under different load conditions,
and in particular, how performance degrades with increased load.
Given a single trace, crude manipulations are typically used in or-
der to change the load. These are

• Multiplying all arrival times by a constant, thus causing jobs
to arrive at a faster rate and increasing the load, or causing
them to arrive at a slower rate and decreasing the load. How-
ever, this also changes the daily cycle, for example causing
jobs that were supposed to terminate during the night to ex-
tend into the next day. An alternative approach that has a
similar effect is to multiply all runtimes by a constant. This
has the deficiency of creating an artificial correlation between
load and response time.

• Multiplying all job sizes (here meaning the number of pro-
cessors they use) by a constant, and rounding to the nearest
integer. This has two deficiencies. First, many jobs and ma-
chine sizes are powers of two. After multiplying by some
constant in order to change the load, they will not be powers
of two, which may have a strong effect on how they pack,
and thus on the observed fragmentation. This effect can be
much stronger than the performance effects we are trying to
measure [19]. Second, small jobs cannot be changed with
suitable fidelity as the sizes must always be integers. An al-
ternative approach that has essentially the same effect is to
modify the machine size. This at least avoids the problem
presented by the small jobs.

With resampling, however, manipulating the load is relatively
easy: One can simply increase or reduce the average number of ac-
tive users. This changes the load while retaining all other attributes
of the workload and avoiding the introduction of any artifacts. In
particular, some logs have a very low utilization, in the range of
10–30%, which makes them uninteresting in terms of evaluating

155

0 200 400 600
0

0.5

1

1.5

2x 10
4

User

Jo
bs

 N
um

be
r

0 200 400 600
0

500

1000

1500

2000

User

S
es

si
on

s
N

um
be

r

0 500 1000
0

2000

4000

6000

8000

User

A
ve

ra
ge

 S
es

si
on

 L
en

gt
h

(in

 s
ec

on
ds

)

0 200 400 600
0

1

2

3

4x 10
9

User

W
or

k
A

m
ou

nt

0 200 400 600
0

2

4

6x 10
8

User

A
rr

iv
al

 T
im

e
(in

 s
ec

on
ds

)

0 200 400 600
0

2

4

6x 10
8

User

E
nd

 T
im

e
(in

 s
ec

on
ds

)

0 200 400 600
0

5

10x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

0 100 200
0

1000

2000

3000

4000

Hour in week

Jo
bs

 N
um

be
r

Figure 7: Comparison between the original BLUE log to the first, third, and fifth parts of an extended resampled log that is 5 times longer.

0 0.5 1
0

1000

2000

3000

User

Jo
bs

 N
um

be
r

original log
our results

0 0.5 1
0

200

400

600

User

S
es

si
on

s
N

um
be

r

original log
our results

0 0.5 1
0

5000

10000

15000

User

A
ve

ra
ge

 S
es

si
on

 L
en

gt
h

(in

 s
ec

on
ds

)

original log
our results

0 0.5 1
0

1

2

3x 10
8

User

W
or

k
A

m
ou

nt

original log
our results

0 0.5 1
0

2

4

6x 10
7

User

A
rr

iv
al

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 0.5 1
0

2

4

6x 10
7

User

E
nd

 T
im

e
(in

 s
ec

on
ds

)

original log
our results

0 0.5 1
0

2

4

6x 10
7

User

A
ct

iv
ity

 L
en

gt
h

 (
in

 s
ec

on
ds

)

original log
our results

0 50 100 150 200
0

1000

2000

3000

4000

5000

Hour In Week

Jo
bs

 N
um

be
r

original log
our results

Figure 8: Comparison between the original OSC-Cluster log to resampled workloads where the load is increased by a factor of 6.

schedulers for parallel machines (because there are seldom enough
concurrent jobs for the scheduler to have to make any decisions).
Using resampling we can increase the load significantly and make
these logs usable.

To implement this, three minor changes need to be made in the
mechanism described above. The first is to change the number of
long-term users in the initialization. Additional long-term users
will be started as needed based on a random selection, taking care
to use all existing long-term users before replicating one that was
selected already, and also taking care that replicas of the same user
will have a large difference in their start times. Likewise, we need
to change the number of temporary users in the initialization. Fi-
nally, we need to change the rate at which additional temporary
users arrive each week.

When users (and load) are added, the simulated system may sat-
urate. We identify such conditions and ignore the saturated sim-
ulation results with a warning. Identifying saturation is based on
noticing that the number of outstanding jobs (jobs that have arrived
but not terminated yet) tends to grow. This is done as follows.

1. Tabulate the number of outstanding jobs at the beginning of
each week of the simulation.

2. If the number of outstanding jobs grows due to a load fluc-
tuation, but then decreases again, this does not indicate satu-
ration. Therefore we replace each weekly count by the mini-
mum count from that week to the end of the simulation, lead-
ing to a non-decreasing sequence of counts.

3. Delete the last 20% of the values, to avoid false positives
based on fluctuations that occur towards the end of the simu-
lation.

4. Use linear regression to fit a straight line to the remaining
counts. If the slope is lower than 1 (meaning that on average
the number of outstanding jobs grows by no more than one
job per week) the simulation is declared stable. If it is higher,
the simulated system is saturated.

Verifying that resampling with a modified number of users leads
to reasonable workloads shows that indeed all the distributions are
similar to those of the original traces (but taking into account that

156

0 0.25 0.5 0.75 1
1

2

3

4

utilization

sl
ow

do
w

n

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2x 10
5

utilization

re
sp

on
se

 ti
m

e

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2x 10
5

utilization

w
ai

t t
im

e

0.5 0.75 1 1.25 1.5
2

4

6

8

10

load values

su
ce

ss
s

nu
m

be
r

0 0.25 0.5 0.75 1
0

2

4

6

8

utilization

sl
ow

do
w

n

0 0.25 0.5 0.75 1
0

2

4

6x 10
5

utilization

re
sp

on
se

 ti
m

e

0 0.25 0.5 0.75 1
0

2

4

6x 10
5

utilization

w
ai

t t
im

e

0.5 0.75 1 1.25 1.5
0

5

10

load values

su
ce

ss
s

nu
m

be
r

0 0.25 0.5 0.75 1
0

5

10

15

utilization

sl
ow

do
w

n

0 0.25 0.5 0.75 1
0

2

4

6x 10
5

utilization

re
sp

on
se

 ti
m

e

0 0.25 0.5 0.75 1
0

2

4

6x 10
5

utilization

w
ai

t t
im

e

0 5 10
0

5

10

load values

su
ce

ss
s

nu
m

be
r

Figure 9: The performance of EASY under different load conditions for different logs: SDSC-DS, BLUE, and OSC-Cluster respectively
from top to bottom. Recall that the original OSC cluster log has very low load, so the load had to multiplied by higher factors to reach the
range of interest.

the number of users is different). Fig. 8 shows the results for one
extreme case, based on the OSC cluster log. The average utiliza-
tion of this log is only 12.8%, making it unusable for evaluations of
parallel job schedulers. We therefore increased the number of users
by a factor of 6, targeting an average utilization of approximately
76.8%. In the graphs, the user numbers on the X axis are nor-
malized to the range [0, 1] to enable comparison with the original
log that has much fewer users. It is easy to see that the high-load
simulations produce distributions that are very similar to the orig-
inal log. The main difference is in the arrival time and end time
distributions, which are smoother, because in our simulations users
arrive at a constant average rate. Also, in the last graph portraying
the weekly cycle of activity, one can see the big difference in the
number of jobs that are being used.

The goal of all these workload manipulations is to enable the
evaluation of parallel job schedulers, and in particular, their per-
formance under different load conditions. To check this we again
used simulations of the EASY backfilling scheduler [18]. For each
log, we multiplied the number of users by various factors in the
range 0.8 to 1.5, and performed 10 independent simulations (with
different randomized resampling) for each load value. For the OSC
cluster log, the range was from 1 to 9, because the original utiliza-
tion of this log is very low as noted above. A sample of the results
in terms of slowdown, response time, and waiting time are shown
in Fig. 9.

The last panel for each log shows the fraction of simulations at
each load level that were successful, meaning that our automated
procedure did not conclude that the system is becoming saturated.
Note that the loading factor, namely the factor by which we multi-

ply the number of users, does not translate directly and determin-
istically into a commensurate change in the utilization. Due to the
random selection of users there may be fluctuations in the load.
Therefore we find that when the loading factor grows beyond 1,
which represents the original load, the number of successful sim-
ulations begins to drop. Consequently there are fewer results for
the higher loads, but all the valid results indicate a utilization of no
more than 100%.

As the results in Fig. 9 show, the performance profiles are ex-
actly as one might expect from queueing analysis. At low loads
performance is good, and increasing the load has little effect. But
as the system approaches saturation, the performance deteriorates
precipitously. Interestingly, different systems (as represented by
the logs of their workloads) have different saturation points. SDSC-
DS seems to saturate at less than 90% utilization, whereas BLUE
and OSC come close to 100%. This reflects the ability of the sched-
uler to pack jobs together and reduce fragmentation, and depends
both on the scheduler and on the workload statistics.

5.4 Additional Applications
In addition to the above, we note the following ideas for us-

ing workload resampling. These have not been tested yet and are
presently left for future work.

5.4.1 Mixing Traces
In many cases we have more than one trace at our disposal, typ-

ically coming from different locations or different times. To obtain
generally applicable results, data from all these traces should be
used. This can be done either by performing evaluations based on
each trace individually, or by mixing the traces, that is by resam-

157

pling from a number of traces rather than from only one trace. This
mechanism has been used in the past in order to reduce the depen-
dence of analysis results on a single trace [32], or to increase the
load [14]. It was also suggested for Tmix [29].

Resampling from several traces is based on the assumption that
this is the better way to achieve general results that are independent
of the peculiarities of any individual trace. An interesting research
question is whether this is indeed the case. And could it be that
mixing and evaluations are actually transitive, and equivalent re-
sults are obtainable by averaging of results from multiple traces
that are resampled independently? We intend to study this question
by using both approaches and comparing the results.

5.4.2 Improving Stationarity
A special case is using resampling to create a stationary work-

load trace. Many of the original traces seem to be non-stationary,
with different parts having different statistical properties. As a con-
sequence performance results are then some sort of weighted av-
erage of the results under somewhat different conditions, but we
don’t know the details of these conditions or the weights. Resam-
pling can be used to mix the different conditions and create a more
uniform trace.

Alternatively, when examined more closely the workloads are
sometimes found to be piecewise stationary, meaning that they are
relatively stationary for some time and then change. It is therefore
better to perform several stationary evaluations and combine the
results, rather than using a single non-stationary model that might
lose important locality properties. Resampling can then be used
to create stationary segments that are long enough to be simulated
reliably.

5.4.3 Improved Shaking to Reduce Sensitivity
Simulations of system performance are sometimes very sensitive

to the exact value of some input parameter. For example, we have
found a specific case where changing the runtime of one job from
18 hours and 30 seconds to exactly 18 hours caused the average
bounded slowdown of all the jobs in the trace to change by about
8% [26]. We developed “shaking” as a general methodology to
overcome such mishaps [27].

The idea of shaking is to cause small random perturbations to the
workload and re-run the evaluation. This is repeated many times,
leading to a distribution of results. This distribution is then used
as the outcome of the evaluation, rather than the single point de-
rived from the original trace. The claim is that the distribution (or
its mean) more faithfully characterizes the results that would be
obtained by this workload and similar ones. Our results indicate
that shaking does indeed reduce instability considerably in several
different cases.

The original formulation of shaking operated at the job level.
Each job was moved slightly independently of the others. This
could potentially cause problems if say one job was delayed and a
subsequent job was moved forward and ended up before the first
job. We therefore intend to now try to perform shaking at a higher
level, e.g. by slightly shifting whole sessions, or even the sub-traces
belonging to different users. The effect will be evaluated by com-
paring the original results with our current shaking results and the
new shaking results. Shaking will also be compared with resam-
pling to allow for statistical analysis as described above.

5.4.4 Selective Manipulation of the Workload
Another reason to manipulate workloads is to change their prop-

erties, so as to check the effect of these properties on system per-
formance. In the current work we treat all users as equivalent, but

this is not really so. Some users may run long jobs. Others may
prefer numerous small jobs. Some use run jobs that require a lot of
memory while others run more compute-intensive jobs.

The implication is that we can influence the characteristics of the
workload by classifying users according to their behavior (or the
behavior of their applications), and then resample with a selective
bias in favor of a certain class of users. This will enable the creation
of workloads that stress different parts of the system.

5.4.5 Reducing or Enhancing Locality
Finally, a special case of manipulating the workload is changing

its locality properties. Locality can be very meaningful for adaptive
systems that learn about their workload and adjust accordingly [9].

The mechanism for changing the locality is to introduce local-
ity into the sampling process. Locality is typically present in user
sessions (as we showed in Section 3). Therefore, to reduce locality
the resampling must be done at the job level, not the session level.
Regrettably, simple randomization does not work, as it violates the
workload’s stability properties. We will therefore need to develop a
mechanism for resampling jobs subject to stability constraints. The
question is how to do so and still get good randomization.

Enhancing locality can be done by introducing repetitions, i.e.
specifically selecting the same jobs over and over again [9]. How-
ever, this also needs to be done subject to stability constraints, and
subject to the overall statistical properties of the workload.

6. CONCLUSIONS
Workload resampling is proposed as a mechanism which allows

the performance analyst to marry the realism of workload traces
with the flexibility of workload models. Moreover, it combines the
following attributes:

• Retaining the complex internal structure of the original trace,
including features that we do not know about, and

• Allowing for manipulations that affect specific properties that
we know about and want to change as part of the evaluation.

The idea is to partition a given workload trace into independent sub-
traces, representing the activity of individual users. These subtraces
can then be re-combined in different ways in order to create new
workload traces with desired attributes: they can be longer than the
original, have a higher or lower load than the original, or just be
different from the original so as to provide an additional data point.

A major concern in this work was how to do the resampling cor-
rectly, meaning that the created workloads will be as similar as pos-
sible to the original workload. One aspect of this was the decision
to perform the resampling at the level of users, and not, say, at
the level of individual sessions. This maintains the correlations be-
tween successive sessions of the same user. Another aspect was
the decision to retain the time of day and day of week when each
user starts (and hence also when each job starts). This leads to
workloads that retain the correlations among users who all operate
according to a common daily and weekly cycle.

One concern that was not handled here is the issue of work-
load stability constraints. Real workloads exhibit a throttling ef-
fect whereby less additional work is submitted when the system
is highly loaded. Given that we use each user’s sequence of jobs
as-is, our generated workload traces will not display such effects.
To be more realistic we therefore need to model the feedback from
system performance to user behavior. Such models turn out to be
rather complicated, and this work will be reported separately.

The above description focused on parallel system workloads,
which are useful for evaluating the performance of parallel job

158

schedulers. However, we believe that workload resampling has far
wider applicability. Specifically, workload resampling is clearly
applicable to any context in which the composition of the workload
can be described as a hierarchical structure. Examples include net-
working, web servers, file systems, and architectural workloads.
For example, it would be interesting to try to replace the large
benchmark suites used in computer architecture evaluations with
workload mixes based on resampling from the different applica-
tions in the suite. If successful, this may lead to an innovative fast
approach for evaluating new designs.

7. REFERENCES
[1] J. Aikat, S. Hasan, K. Jeffay, and F. D. Smith, “Towards

traffic benchmarks for empirical networking research: The
role of connection structure in traffic workload modeling”. In
20th Modeling, Anal. & Simulation of Comput. & Telecomm.
Syst., pp. 78–86, Aug 2012.

[2] P. Barford and M. Crovella, “Generating representative web
workloads for network and server performance evaluation”.
In SIGMETRICS Conf. Measurement & Modeling of
Comput. Syst., pp. 151–160, Jun 1998.

[3] O. Boiman and M. Irani, “Detecting irregularities in images
and in video”. In 10th IEEE Intl. Conf. Comput. Vision,
vol. 1, pp. 462–469, Oct 2005.

[4] S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and
M. Werman, “Synthesizing sound textures through wavelet
tree learning”. IEEE Comput. Graphics & Applications
22(4), pp. 38–48, Jul 2002.

[5] M. R. Ebling and M. Satyanarayanan, “SynRGen: An
extensible file reference generator”. In SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 108–117,
May 1994.

[6] B. Efron, “Bootstrap methods: Another look at the
jackknife”. Ann. Statist. 7(1), pp. 1–26, Jan 1979.

[7] B. Efron and G. Gong, “A leisurely look at the bootstrap, the
jackknife, and cross-validation”. The American Statistician
37(1), pp. 36–48, Feb 1983.

[8] C. Ernemann, B. Song, and R. Yahyapour, “Scaling of
workload traces”. In Job Scheduling Strategies for Parallel
Processing, pp. 166–182, Springer Verlag, 2003. Lect. Notes
Comput. Sci. vol. 2862.

[9] D. G. Feitelson, “Locality of sampling and diversity in
parallel system workloads”. In 21st Intl. Conf.
Supercomputing, pp. 53–63, Jun 2007.

[10] D. G. Feitelson and E. Shmueli, “A case for conservative
workload modeling: Parallel job scheduling with daily cycles
of activity”. In 17th Modeling, Anal. & Simulation of
Comput. & Telecomm. Syst., Sep 2009.

[11] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with
the parallel workloads archive”, 2012. (In preparation).

[12] F. Hernández-Campos, K. Jeffay, and F. D. Smith, “Modeling
and generating TCP application workloads”. In 4th
Broadband Comm., Netw. & Syst., pp. 280–289, Sep 2007.

[13] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and
J. Riodan, “Modeling of workload in MPPs”. In Job
Scheduling Strategies for Parallel Processing, pp. 95–116,
Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[14] P. Kamath, K.-c. Lan, J. Heidemann, J. Bannister, and
J. Touch, “Generation of high bandwidth network traffic
traces”. In 10th Modeling, Anal. & Simulation of Comput. &
Telecomm. Syst., pp. 401–412, Oct 2002.

[15] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs”. ACM
Trans. Graph. 21(3), pp. 473–482, Jul 2002.

[16] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A
synthetic workload generation technique for stress testing
session-based systems”. IEEE Trans. Softw. Eng. 32(11), pp.
868–882, Nov 2006.

[17] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick,
“Graphcut textures: Image and video synthesis using graph
cuts”. ACM Trans. Graph. 22(3), pp. 277–286, Jul 2003.

[18] D. Lifka, “The ANL/IBM SP scheduling system”. In Job
Scheduling Strategies for Parallel Processing, pp. 295–303,
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[19] V. Lo, J. Mache, and K. Windisch, “A comparative study of
real workload traces and synthetic workload models for
parallel job scheduling”. In Job Scheduling Strategies for
Parallel Processing, pp. 25–46, Springer Verlag, 1998. Lect.
Notes Comput. Sci. vol. 1459.

[20] U. Lublin and D. G. Feitelson, “The workload on parallel
supercomputers: Modeling the characteristics of rigid jobs”.
J. Parallel & Distributed Comput. 63(11), pp. 1105–1122,
Nov 2003.

[21] “Parallel workloads archive”. URL
http://www.cs.huji.ac.il/labs/parallel/workload/.

[22] K. Pawlikowski, “Steady-state simulation of queueing
processes: A survey of problems and solutions”. ACM
Comput. Surv. 22(2), pp. 123–170, Jun 1990.

[23] E. Shmueli and D. G. Feitelson, “Using site-level modeling
to evaluate the performance of parallel system schedulers”.
In 14th Modeling, Anal. & Simulation of Comput. &
Telecomm. Syst., pp. 167–176, Sep 2006.

[24] J. Sommers and P. Barford, “Self-configuring network traffic
generation”. In 4th Internet Measurement Conf., pp. 68–81,
Oct 2004.

[25] D. Talby and D. G. Feitelson, “Improving and stabilizing
parallel computer performance using adaptive backfilling”.
In 19th Intl. Parallel & Distrib. Processing Symp., Apr 2005.

[26] D. Tsafrir and D. G. Feitelson, “Instability in parallel job
scheduling simulation: The role of workload flurries”. In
20th Intl. Parallel & Distrib. Processing Symp., Apr 2006.

[27] D. Tsafrir, K. Ouaknine, and D. G. Feitelson, “Reducing
performance evaluation sensitivity and variability by input
shaking”. In 15th Modeling, Anal. & Simulation of Comput.
& Telecomm. Syst., pp. 231–237, Oct 2007.

[28] K. V. Vishwanath and A. Vahdat, “Realistic and responsive
network traffic generation”. In ACM SIGCOMM Conf., pp.
111–122, Sep 2006.

[29] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay,
and F. D. Smith, “Tmix: A tool for generating realistic TCP
application workloads in ns-2”. Comput. Commun. Rev.
36(3), pp. 67–76, Jul 2006.

[30] Y. Wexler, E. Schechtman, and M. Irani, “Space-time video
completion”. In Conf. Comput. Vision & Pattern Recog.,
vol. 1, pp. 120–127, Jun 2004.

[31] N. Zakay and D. G. Feitelson, “On identifying user session
boundaries in parallel workload logs”. In Job Scheduling
Strategies for Parallel Processing, pp. 216–234,
Springer-Verlag, 2012. Lect. Notes Comput. Sci. vol. 7698.

[32] J. Zilber, O. Amit, and D. Talby, “What is worth learning
from parallel workloads? a user and session based analysis”.
In 19th Intl. Conf. Supercomputing, pp. 377–386, Jun 2005.

159

