
Scalability Testing of MS Lync Services:
Towards Optimal Provisioning of Virtualised Hardware

Knut Helge Rygg
IDI, NTNU

Trondheim, Norway
khsrygg@gmail.com

Gunnar Brataas
SINTEF ICT and IDI, NTNU

Trondheim, Norway
Gunnar.Brataas@sintef.no

Geir Millstein
Telenor GID

Fornebu, Oslo, Norway
Geir.Millstein@telenor.com

Terje Molle
Telenor GID

Fornebu, Oslo, Norway
Terje.Molle@telenor.com

ABSTRACT
A method for scalability testing of the Microsoft Lync 2010
communication system is presented, exploring the relation
between system size and system load. The method can
be used for optimal provisioning, balancing user Quality of
Experience (QoE) with equipment volume and energy con-
sumption. Observing a standard edition of Lync, on a vir-
tualised platform using the VMware hypervisor, the method
indicated linear scalability. QoE was mainly limited by the
Mean Opinion Score (MOS). This MOS limit corresponded
to a Lync front end server utilisation of about 60%.

Categories and Subject Descriptors
K.6.2 [Computing Milieux]: Performance and Usage Man-
agement; H.1.0 [Information Systems]: Models and Prin-
ciples, General

Keywords
Scalability, testing, virtualisation, provisioning, energy effi-
ciency, MS Lync, workload, performance, data centres, tele-
com industry

1. INTRODUCTION
The objective of this paper is to describe a method for scal-
ability testing of the Microsoft Lync 2010 communication
system. In this context, scalability describes the relation
between system load and required system resources. When
we know the required system load, our method can find the
required amount of system resources. Although the word
”scalability” is often used, it still has no formal definition [8].
Therefore, methods for scalability testing have not received
much attention.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

Scalability testing may be used as part of optimising pro-
visioning processes. With optimal provisioning, we strike a
balance between under- and over-provisioning of computer
resources:

• With resource under-provisioning, Quality of Experi-
ence (QoE) will degrade, or we may even have outages.

• Over-provisioning gives low utilisation as well as high
equipment, operational and energy costs.

In the ideal case, energy consumption should be propor-
tional to the computer system utilisation [6], but until we
reach this ideal, optimal provisioning is important. Even in
a virtualised environment, it is beneficial to have provision-
ing guidance, which helps buying the right type and amount
of hardware, by the right time.

This work was performed for Telenor Norway, the largest
Norwegian telecom operator and part of the Telenor interna-
tional operations. Microsoft Lync can be configured in var-
ious setups with different services and user scenarios. This
paper focuses on hosted Lync as it is provided by Telenor.
This means that Telenor hosts Lync servers on behalf of cus-
tomers who do not have the resources to manage their own
deployment. Telenor’s requirements should also be repre-
sentative for industry requirements in general.

We have studied the operation of Lync in a virtualised
environment, using the VMware hypervisor. As a workload
generator, we used the Lync Server 2010 Stress and Perfor-
mance Tool [3].

This work was performed as a master’s thesis [16], which
imposed limitations in terms of time and available equip-
ment. These limitations are also typical in industry.

This paper describes related work in Section 2. The scal-
ability baseline is outlined in Section 3. Our method is de-
scribed in Section 4 and applied to Lync in Section 5. In
Section 6, we offer conclusions and outline further work.

2. RELATED WORK
In this description of related work we focus on the issue
of Lync provisioning. The Lync Planning Guide by Mi-
crosoft [13] is based on physical servers and is crude for
virtualisation. The scenario-based capacity planning spread-
sheet [15] (also from Microsoft) is a more fine-grained analy-
sis of Lync capacity requirements. The system designer can

125

specify both the number of users and a custom user model
by varying a number of different parameters. The output
is a recommendation on the number of servers to use and
their respective CPU utilisation, memory usage, etc. The
calculations are still based on the same standard configura-
tion hardware described in the capacity planning guide and
the percentage of external users is hard coded to 30%. This
does not fit with Telenor’s hosted scenario where all users
are external. The resource demand on the edge server will
be higher than the calculator falsely indicates. Even though
the capacity calculator allows more flexibility, it is not suf-
ficient to provide good estimates for Telenor’s deployments.

Although provisioning of Microsoft Lync is described in
books explaining Microsoft Lync deployment [20, 11], they
only reference Microsoft’s own capacity planning guidelines.
Therefore, there is little help for those planning to use cus-
tom hardware or specialised scenarios.

Bandwidth usage in Microsoft Office Communication Ser-
ver (OCS) is described in [17]. OCS is a predecessor of
Microsoft Lync with much of the same functionality, except
for telephone integration. The overall server load in terms
of network traffic can be estimated from the connected user
endpoints and their respective traffic patterns. Peak net-
work utilisation can be quite different from the average, so
using mean values may be inaccurate for bandwidth pro-
visioning. Network usage is proportional to the number of
users. However, the report gives little information on pro-
visioning other hardware resources like CPU, memory, or
storage.

A sizing study of Microsoft Lync [18] describes a test
environment built by Dell PowerEdge R720 servers using
LyncPerfTool. The report finds that the number of users
scales linearly to the system size in the range of 3,000 to
12,000 users. Compared with the Telenor deployment stud-
ied in this report, the differences are:

1. Dell’s sizing study uses the enterprise edition of Lync,
which allows several servers to be assigned to the same
pool. The number of front end server virtual machines
are 1, 2, and 4. For each configuration, the maximum
number of users are found. Our paper uses the stan-
dard edition of Lync which does not support pools.

2. Dell’s sizing study uses virtual machines for the front
end servers, while the remaining servers are installed
on physical machines. In this paper, all Lync servers
and databases are virtualised.

3. Dell’s sizing study has only internal users. Internal
users do not require edge or reverse proxy servers.
However, this paper is based on a hosted Lync sce-
nario which has only external users. The edge server
and reverse proxy server roles are therefore included in
this paper.

3. SCALABILITY BASELINE
This section describes basic scalability concepts which are
prerequisites for the method described in Section 4. We
build on the scalability framework outlined by Brataas &
Hughes et al. [7]. We first describe workload. Then we de-
scribe performance and finally scalability.

3.1 Workload = Work + Load
In our framework, we separate workload into work and load.
Work is about what is done and is determined by the type
and nature of the invoked services. A system consists of con-
nected components. Each component in the system has one
or more services, which are different types of work it offers
to other components. Load describes how often the services
are performed, and is measured in terms of throughput, i.e.,
the number of finished tasks/jobs during a given time inter-
val, but can also be the number of users in a closed system.
Work and load together constitute workload.

3.2 Performance
The performance of a system may describe the system qual-
ity as a function of system load as depicted in Figure 1.
With higher load the quality degrade. Implicitly in this fig-
ure, work is kept constant. A common measure of system
quality is response time. With increasing load, response
times typically increase too. The capacity of the system is
the load when a defined operating point is reached. This
operating point may also be termed service level agreement
(SLA) or quality limit.

Load

Q
ua

lit
y

D
eg

ra
da

tio
n

Operating
Point

Capacity

Figure 1: Performance of a system.

3.3 Scalability
System size is normally constant when measuring the perfor-
mance of a system, but not when we describe the scalability
of a system. Scalability is a relation between system size
and system capacity, given fixed system quality and work,
as described in Figure 2. If system capacity is proportional
to system size and the quality of the system is constant,
then we have linear scaling. This is not the case in Fig-
ure 2, where we clearly see that system capacity reach an
upper limit. Further increase in system size actually leads
to decreasing capacity.

The concept of range is also important. A system may be
linearly scalable within a certain system size range. For ex-
ample, there may be approaches with large scalability prob-
lems which do not matter if these problems only occur in
ranges not used.

In our framework, system size has three dimensions, pro-
cessing speed, storage amount, and connectivity, but in this
work, we focus only on processing speed. System size is also
hierarchic, and we can typically define the system level, the

126

System size

Capacity
Scalability

Figure 2: Scalability of a system.

subsystem level, and the device level. On all of these levels,
size can be increased by replication. Replication at the sub-
system level (adding more servers for each server role like the
front end server) is typically called scale out, while scale up
refers to replication at the device level (adding more CPUs,
disks, etc.)

4. METHOD
The empirical scalability testing method for finding opti-
mal provisioning builds on the scalability concepts in Sec-
tion 3. The objective of the empirical tests is to determine
the maximum number of users for each system size and user
workload scenario. A number of quality metrics are used to
assure that the quality degradation of the Lync services are
within acceptable limits. The maximum number of users
can be found by methods of systematic trial and error and
adjusting the number of users for each run. The number of
users is increased if quality metrics are within limits, and
decreased if the limits are exceeded.

One way of reducing the search space is to use binary
search. For each iteration of the binary search, the search
space is halved. Interpolation on quality metrics could also
be considered, but since there are no guarantees on linearity
in the metrics, a binary search is a more robust alternative.
The binary search can theoretically continue until the search
space has only one remaining user. However, searching with
such fine granularity would probably not produce stable re-
sults because of the random errors in all measures. Such
errors are more dominant in fine granularity tests. Running
many iterations also requires more time for testing. In these
tests 4 - 6 iterations were used for all system sizes until an
acceptable value was found.

The following numbering refers to Section 5, where the
method is applied to the Lync test case.

5.1: Understand environment The method relies on a
test bed, enabling the use and validation of the method,
as well as introducing some limitations and constraints.
The test bed has three parts: We start on the bottom
with hardware and continue with software and load
generation:

5.1.1: (Test bed) hardware where we also outline
the virtualisation platform.

5.1.2: (Test bed) software which in our case de-
scribes the Lync server roles used.

5.1.3: (Test bed) load generation used to gener-
ate test bed workload.

5.2: Identify requirements for scalability testing. There
are several types of requirements concerning system
size scaling path, work, and quality metrics:

5.2.1: System size scaling path Explore the system
size scaling options available and select an enu-
merated set of these options. Questions to be
answered include: Where can we add resources
in our configuration so that we can increase the
size of the system? What are the practical re-
source ranges/limits? Which discrete set of re-
source quantities should be selected for further
investigations?

5.2.2: Determine work Which types of services are
relevant? Work is further described in Section 3.1.

5.2.3: Explore the quality metrics most applica-
ble for our purposes. In our case, there are many,
such as MOS (Mean Opinion Score), CPU utilisa-
tion, RTT (Round Trip Time), jitter, and packet
loss. The task here is simply to get an overview
of all of them.

5.3: Run tests to find the capacity for each system size as
outlined in Section 3.2 and Section 3.3. In our case
this step involves:

5.3.1: Tune configuration e.g., allocate appropriate
number of vCPUs to each of the Lync server roles.

5.3.2: Determine run length For how long do we
need to run each experiment?

5.3.3: Run experiments using binary search for ea-
ch system size.

5.3.4: Decide on quality metric determining if a
given load (capacity) is within our quality limits.

5.3.5: Find capacity for each system size

5.4: Analyse results consisting of the following steps:

5.4.1: Find bottleneck resource This gives insight
into the system by finding the bottleneck resource,
which is useful when we are upgrading the hard-
ware. Monitoring the bottleneck resource is a
good way to keep an eye on QoE.

5.4.2: Analyse the scalability i.e., the relation bet-
ween capacity and system size. Is it linear? In
detail, this step involves finding the capacity for
each system size using the same operating point.
We use binary search to find the capacity for each
system size.

5.4.3: Extrapolation Is it possible to extrapolate be-
yond measured system size range?

Although this method appears to be linear (where we follow
the steps in natural order), some degree of iteration (back-
tracking) will be required. For example, to determine the
run length in step 5.3.2, we needed to know the number of
IM (Instant Messaging) conference users, which was deter-
mined by the next step 5.3.3, running the experiments. In
step 5.3.1, we first tried using the default value of 40 GB
disk for the SQL server, but then the disk ran full in step
5.3.3, and we had to adjust the disk size to 100 GB.

127

5. APPLYING THE METHOD
In this section, we apply the method from Section 4 and
describe the challenges and results for each step. In Sec-
tion 5.5, we comment on the amount of human time required
to perform these steps.

5.1 Understand Environment
This step focuses on understanding the test bed, which con-
sists of virtualised hardware, Lync software, and a load gen-
erator.

5.1.1 Hardware & Virtualisation
In this section, the platform is described on a detailed level.
Many of the details will not be essential for the upper layers
of the test bed and the further steps of the method.

The hosted Lync deployment is built using components
from Cisco Unified Computing System [5] (UCS) architec-
ture. The architecture consists of blade servers that are con-
nected to a Cisco UCS 5108 blade server chassis. A blade
server has 96 GB RAM, two Intel Xeon E5650 CPUs, each
with 6 cores and hyper-threading, and two 15k rpm SAS
disk drives. Each blade server chassis is connected to a 10
Gbps fabric interconnect using a Cisco UCS 2104xp fabric
extender. A Cisco UCS 6140 fabric interconnect can be con-
nected to a SAN to provide increased storage for the blade
servers. The architecture supports up to 40 blade server
chassis on the same fabric interconnect. Each blade server
chassis can take up to 8 blade servers. This allows for 320
blade servers in the same infrastructure. A central RAID60
SAN is connected to the fabric interconnect. The SAN is
divided into disk groups consisting of 20 disks.

Intel Xeon has 9 discrete power states that can be se-
lected in order to lower processor speed and power usage.
The VMware ESXi hypervisor 5.0 has four different host
power management policies to choose from. We used a high
performance policy where the processor always runs in the
highest processor state.

The VMware hypervisor is used as a virtualisation plat-
form. Each blade server (also called host) is running sep-
arate instances of ESXi 5.0. VMware vCenter is used to
manage all ESXi hosts. Several hosts can be organised into
resource pools containing one or more virtual machines for
each host. VMs can move from host to host within the re-
source pool and automatic monitoring can be enabled to
maintain resource balancing among hosts. VMs are then
automatically migrated from a saturated host to a new host
with enough available resources. Virtualisation can there-
fore provide flexibility along with better hardware utilisa-
tion.

Virtualisation has some advantages compared to bare ma-
chine performance. VMware ESXi provides a proprietary
transparent page-sharing technique that detects identical
memory pages used by several VMs. This proves useful
when several VMs use the same OS, shared libraries, etc.
Pages containing shared libraries and static OS components
are normally locked to read-only mode and several VMs can
therefore safely access them and avoid keeping their local
copy. This allows for memory overcommitment where mem-
ory entitlement is larger than available memory.

However, virtualisation can also lead to performance degra-
dation:

1. Even if hardware-assisted CPU virtualisation offers a
guest mode, the processor must still exit guest mode

and enter root mode, for example when updating page
tables.

2. The VMkernel as well as the VMconsole requires CPU
processing time.

3. When VMs use physical memory, a double lookup is
needed. The OS has its own virtual memory which
is mapped to (what the VM thinks is) physical mem-
ory. This must again be mapped to the actual machine
memory. A shadow lookup table can be used to de-
crease lookup wait time, but at the cost of maintain-
ing more lookup tables, which consumes RAM. Our
Intel Xeon E5650 supports hardware-assisted memory
virtualisation where two layers of page tables are sup-
ported. Still, the TLB miss latency is higher.

4. Both the VMkernel and the VMconsole, as well as each
VM, need to allocate and use memory.

5. Most hypervisors allow virtual network components
(hubs, switches, routers, etc.). These are emulated
in software and require resources to run. The Cisco
UCS [5] technology provides some virtual networking
functionality that reduces the need for software emu-
lation.

For more information on the performance impact of virtual-
isation, consult [9].

Even though this paper focuses on scalability in Microsoft
Lync, studying the scalability of virtualised servers can prove
useful in a broader perspective because the interest and us-
age of virtualisation is increasing.

5.1.2 Lync Server Roles
This section describes which server roles we focused on and
why. In our experiments, a total of seven Lync servers were
used, and together constitute what is called the central site.

• The reverse proxy allows external users to download
content.

• The edge server allows external users to connect to
internal servers.

• The (standard edition) front end server contains the
back end server and the A/V (audio / video) server
role.

• The domain controller is an active directory (AD) do-
main controller and Kerberos key distribution centre
and authentication server (KDC/AS).

• The monitoring server collects data to monitor QoE.

• The SQL server is a database for the monitoring server.

• The mediation server enables telephone integration via
a PSTN gateway.

In a hosted Lync deployment a service provider (like Telenor
in this case) provides Lync functionality to customers who
connect remotely. All servers are administered at a central
site and the customers only need to install client software.
This is a huge benefit for the customer and many small and
mid-sized companies choose this solution when they start
using Lync. Lync can be configured in a variety of ways,
including other server roles and both internal and external

128

Load generators

Hosted Lync - central siteExternal firewall Internal firewall

Mediation
server

Domain
controller

Front end
server

LyncPerfTool
PSTN gateway

simulator

Montoring
server

SQL
server

Reverse
proxy

Edge
server

LyncPerfTool
external user

simulators

Figure 3: Reference architecture for hosted Lync deployment.

users, but the setup and workload in this test environment
is typical for a hosted Lync deployment.

All of these seven servers are shown in Figure 3. The green
arrows between the servers indicate which servers commu-
nicate with each other in order to process the workload im-
posed by users. The domain controller is not directly related
to Lync, but more to Microsoft active directory. It commu-
nicates with all servers except the reverse proxy. The Ker-
beros part of the domain controller is essential for encrypted
communication between servers, but the utilisation of the
domain controller is hardly affected by the Lync workload
(the total utilisation never exceeds 2%). Details on server-
to-server communication can be found in [16].

All Lync servers are setup as VMs running on a blade
server (Cisco UCS M200). The user simulators and the
PSTN gateway simulator are running on two identical servers,
but separate from the Lync server roles to avoid interfering
with performance measures.

All VMs are provisioned with (more than) enough memory
so it should be possible to keep a complete working copy of
the VM image in-memory and occasionally write the changes
back to the SAN. The local hard drives on each ESXi host
contain swap memory which is used whenever the ESXi host
runs out of memory. Esxtop [1] is a performance measure-
ment tool that runs on each ESXi host. Results from this
tool showed that swapping never occurred. Communica-
tion between the Lync servers is handled using a dedicated
VLAN on the link to the fabric interconnect. The fabric
interconnect uses 10.0 Gbit/s links and the latency is negli-
gible. All Lync servers shared the same Microsoft Windows
Server 2008 R2 operating system.

Other Lync roles like director and archiving were not used

in our configuration. The director is an optional server role
created to offload the internal servers by authenticating ex-
ternal user requests before sending them to other servers.
This would give better performance if the director had ded-
icated hardware, but as long as the director and front end
server share the same resources, there is no performance
gain. The archiving server archives IM (Instant Messaging)
content, but should only be used by companies that have
legal compliance concerns.

In this test setup, user simulators, the PSTN gateway
simulator, and the Lync server roles are all connected to
the same LAN. In a real configuration, external users would
be connected to the edge server and reverse proxy by an
IPT connection (WAN). The telephone users would be con-
nected by another IPT connection and a PSTN gateway.
The PSTN gateway simulator used fewer resources than
both of the two LyncPerfTool Clients, and was therefore
put on the same physical server as one of them. As a result,
we used three physical servers: one for all of the seven Lync
servers, and the remaining two for the LyncPerfTool Client
(with the PSTN gateway on one of the latter two servers).
Firewalls are used to separate the internal Lync servers from
the remaining network. External users can only access the
edge server or reverse proxy server.

Our Cisco UCS platform used during measurement is sim-
ilar to a production Cisco UCS platform with one small ex-
ception: The blade servers have a single network link to one
fabric interconnect. In production, each blade server would
have two links, each going to a different fabric interconnect
for better redundancy. A single link in the test setup allowed
a single point of monitoring, which was used for controlling
the traffic among servers.

129

5.1.3 Load Generation
This section describes the load generation. Ideally, we would
like to test each Lync service on its own and we would also
like to characterise each Lync component individually to
have a clear view of scalability. However, this would require
developing a new load generator for Lync. It quickly became
clear that this was not possible within the limited project
resources. We therefore had to rely on the Lync Server 2010
Stress and Performance Tools [3] (LyncPerfTool).

The tests described in this paper used two Cisco UCS
M200 blade servers for running the LyncPerfTool clients.
The configuration is shown in Figure 3. There are three
drawbacks with the test setup that may create bias in the
performance measurements:

1. In a real deployment both clients and the PSTN gate-
way would be connected by an IPT connection, not by
a LAN.

2. In a real deployment, users at a customer site may
use wireless networks. Both IPT and a wireless net-
work will introduce significantly more network delay
and packet losses compared to a LAN.

3. In a real deployment, all of the network traffic can be
(and normally is) encrypted. LyncPerfTool does not
support encrypted protocols so in the test environment
the traffic to and from the PSTN gateway simulator is
unencrypted.

LyncPerfTool can simulate all of the main user workload
types, except for these three: (1) group chat (2) video work-
load for peer-to-peer calls or conferencing, and (3) web con-
ferencing. The group chat functionality enables multiple
users to participate in conversations in which they post and
access content about specific topics. Each session can be
persistent. Enabling group chat requires installation of spe-
cial group chat communications software and a back end
database on separate servers. The group chat functional-
ity is not a part of Telenor’s standard hosted configura-
tion. Therefore, the lack of support for this workload type
in LyncPerfTool will not affect the measurements.

For handling video conferencing, there are three alterna-
tives:

1. Direct address between the two Lync clients, which is
the shortest and fastest option, if allowed by firewalls.

2. Connecting using NAT routers.

3. Relaying the video session through the edge server ex-
ternal network interface.

With only external users, the lack of video simulation in
LyncPerfTool will only create a performance bias as long as
we either use alternative 1 or 2, and not involve the edge
server in alternative 3. In a hosted Lync environment, alter-
native 1 or 2 will be used. LyncPerfTool only supports web
conferencing using the web access client, which does not al-
low voice or video in the conferences. However, both audio
and video is simulated in dedicated audio/video conferences.

5.2 Identify Requirements
This section describes the requirements for the scalability
testing. The requirements involve the system size scaling
path, the work, and also the quality metrics.

Table 1: Scaling hardware resources
Size CPU Network Memory Storage
4/4 4/4 4/4 4/4 4/4
2/4 2/4 4/4 4/4 4/4
1/4 1/4* 4/4 4/4 4/4

* The level 3 shared cache is scaled 2/4

5.2.1 System Size Scaling Path
We now have to consider where we can increase the system
size. Since we studied a Lync deployment installed with a
standard edition license, it is not meaningful to add more
than one physical server for the edge server role (normally
termed scale out). However, it is possible to add more re-
sources to the physical server (normally termed scale up).
The maximum system size was limited by the resources
available. In this test setup, only three Cisco UCS 200 M2
blade servers were available for running the virtual Lync
servers and load generators.

The load generators required twice the hardware resources
of the Lync servers, so only one blade server was used for
virtual Lync servers. The system size was therefore scaled
by reducing the resources available on the blade server. The
CPU resources can be scaled by disabling processors or pro-
cessor cores. As mentioned in Section 5.1.1 the blade servers
use two Intel Xeon E5650 with 6 cores and hyper-threading
support. This gives a total of 24 virtual cores that are all
enumerated by the hypervisor.

By using CPU affinity setting in VMware vSphere client,
it is possible to decide which virtual cores can be used to
schedule each vCPU of a VM. For the 2/4 system size, the
affinity setting for all VMs was set to 0-11. This effectively
disabled one of the two processors. For the 1/4 system size,
the affinity was set to 0-5, so that only half of the cores of
one processor could be used.

However, while the number of cores is constrained, the
processor caches are still widely available. The level 1 and 2
caches are separate for each core, so these scale according to
the number of cores, but the level 3 cache is shared among
all 6 cores of one processor. This means that for the 1/4
system size, the number of cores is correctly scaled, but the
level 3 cache is scaled 2/4, so it is twice as big as it should
be. This gives a bias towards better performance estimates
because more instructions and data can be stored in the level
3 cache instead of being fetched from main memory, which
has a larger access time.

Network resources were not scaled in this test setup. Each
virtual machine has access to the 10.0 Gbit/s network inter-
face of the blade server. Still, most of the communication
between VMs is internal to the server. Only the edge server,
reverse proxy, and mediation server need to use the network
interface.

Memory resources or storage resources were not scaled.
Table 1 summarises the hardware scaling.

5.2.2 Determine Work
As described in Section 5.1.3, Lync has several types of ser-
vices or work, but as also described in this section, we had
to use the LyncPerfTool load generator. However, LyncPerf-
Tool allows both light and heavy work, reflecting different
user types. We therefore used both types of work to make
our results more robust.

130

5.2.3 Explore Quality Metrics
Quality metrics were collected from two distinct sources, the
monitoring server and the LyncPerfTool clients. The limits
in Table 2 are found in Microsoft’s recommendations [4] and
the Lync sizing study [18]. The SIP limits are LyncPerfTool
counters and the rest is monitoring server statistics.

Table 2: Quality metric limits [4, 18]
Metric Limit
Round trip time (RTT) 100 ms
Jitter 20 ms
Packet loss 0.1 per sec.
MOS degradation 0.5
SIP 503 messages/sec ≈ 0
SIP 504 messages/sec ≈ 0

The front end server and mediation server automatically
sample all ongoing sessions and send CDRs to the moni-
toring server. The monitoring server produces statistics on
audio quality using several metrics. Round trip time de-
scribes the time it takes from when a request is sent to
when the answer is received. A high round trip time can
be noticed by the user as a speech delay. Buffering enables
acceptable speech quality even with a high round trip time.
Jitter measures the variance in round trip time. A high jit-
ter value makes buffering and processing hard because the
packets arrive at highly variable times. Packet loss denotes
the number of packets that are lost in transmission per sec-
ond. The real time network protocols used in Lync have
several built-in mechanisms for reconstructing the speech
with acceptable quality despite some lost packets. However,
when the packet loss exceeds 0.1, the packet loss affects call
quality.

Mean opinion score (MOS) is a compound metric used to
measure end user service quality of experience. MOS is a
technically synthesised counterpart to the mean subjective
rating of call quality on a scale from one (bad) to five (ex-
cellent) [10]. MOS is calculated using both transport layer
parameters such as packet loss, jitter, and delay, as well as
payload parameters such as audio codec, noise-level, echo,
gain, and talk-over effects [12]. Each codec that is used in
Lync has a maximum MOS value [2]. The monitoring server
records the degradation of MOS value, i.e., the difference be-
tween the maximum MOS and measured MOS. The MOS
degradation should not exceed the 0.5 limit. There are ac-
tually three MOS values, one for conference calls, another
for peer-to-peer calls, and then a final one for PSTN calls.
We are interested in the maximum degradation, and will
therefore use the highest MOS degradation value.

SIP 503 is a reply message indicating that the Lync server
is too busy to handle the request. A SIP 504 message is a
server timeout message. LyncPerfTool counts the average
number of such messages per second. Having some messages
is acceptable, but over a longer period of time, the number
should be close to zero.

A number of quality metrics could also have been collected
from the front end -, edge - or mediation servers. This instru-
mentation would, however, affect the performance measures
and are not included in the tests. The monitoring server
reports were collected after each test run and will not affect
performance. The metrics collected on the LyncPerfTool
clients also did not create any measurement bias.

Table 3: VM resource allocation
vCPU/syst. size

VM Disk RAM 1/4 2/4 4/4
Front end 40 GB 32 GB 4 7 14
Edge 40 GB 16 GB 2 4 7
SQL 100 GB 32 GB 1 2 3
Mediation 40 GB 16 GB 1 1 2
Monitoring 40 GB 16 GB 1 1 1
Reverse proxy 40 GB 16 GB 1 1 1
Domain contr. 40 GB 16 GB 1 1 1
SUM 340 GB 144 GB 11 17 29

5.3 Run Tests
The overall aim of this step was to find the capacity for each
system size in the scaling path. This step consists of several
sub-steps described in detail below.

5.3.1 Tuning Virtual Resources
When deploying virtual machines (VMs), it is important to
make sure each virtual machine has the resources it needs
to operate well. An overview of resource allocations for each
virtual machine (VM) is shown in Table 3. The disk drive
size of most virtual machines is 40 GB, which is the default
allocation size for Microsoft Server 2008 R2 installations.
For the SQL server, 100 GB was required to handle all of
the call detail records generated for each ongoing audio ses-
sion. Memory is provisioned to each virtual machine based
on the hardware requirements for similar physical machine
configuration recommendations from Microsoft [14].

There are several allocation options for provisioning CPU
resources. The VMs in the test setup were provisioned us-
ing allocation shares, in contrast to allocation reservation or
allocation limit, because shares are more flexible, allowing
the VMs to share unused resources. Moreover, using allo-
cation shares was also the preferred allocation option in the
production environment in Telenor. Using allocation shares,
each VM had a normal allocation setting with 1000 shares
per vCPU (in contrast to the high value of 2000 shares or the
low value of 500 shares), so the actual CPU allocation was
defined by the number of vCPUs allocated to each VM. It
is worth noting that all of the VMs had the same allocation
priority. Therefore, the priority of each VM was determined
by the number of vCPUs only. The number of vCPUs that
were allocated for each VM was calculated based on the
utilisation of each VM, UVM, and the number of available
virtual processors Utotal:

vCPUVM = d UVM

Utotal
×Nlogproce

As shown in the previous section, the number of available
logical processors, Nlogproc, is 6 for 1/4 system size, 12 for
2/4 and 24 for 4/4. The d and e delimiters in the formula
simply mean rounding up to the next whole integer. Each
server is provisioned with its relative share of available vC-
PUs. The rounding up makes sure that no server gets less
than its relative share, but this means that the total num-
ber of allocated vCPUs will be a bit larger than the available
logical processors.

Theoretically, each VM could have allocated the maxi-
mum number of vCPUs. However, over-provisioning CPU
resources may degrade performance. The VMware CPU

131

scheduler uses an algorithm called relaxed co-scheduling [19].
Co-scheduling means that all vCPUs belonging to the same
VM should be treated as a group. Therefore, the hypervisor
tries to schedule all vCPUs in a group at the same time.
Non-continuous scheduling of vCPUs of the VMs would cre-
ate a different processor experience than on a physical pro-
cessor. SMP programs that use several threads to complete
a compute-intensive task may rely on synchronisation among
threads. If some threads are halted because a vCPU is not
scheduled, all other threads (and their respective vCPUs)
will suffer a delay. The VMware hypervisor therefore imple-
ments a co-scheduling algorithm that tries to assign equal
time intervals to each vCPU. If a certain vCPU has received
more processing time than the other vCPUs in the same
group, it is put into a waiting state called CO-WAIT. Re-
laxed co-scheduling means that a vCPU must succeed be-
fore a certain time limit in order to be put in the CO-WAIT
state. More vCPUs per group increases the chances of one
or more vCPUs being put into the CO-WAIT state. Spend-
ing time in the CO-WAIT state decreases performance. The
vCPU calculation method described above will reduce the
CO-WAIT overhead. This method is not limited to this
deployment, but can prove useful in other multi-VM envi-
ronments.

5.3.2 Determine Run Length
LyncPerfTool first signs in all users at a rate of 1 user per
second. The different workload types are run as separate
processes, so several users are signed in in parallel. The IM
(Instant Messaging) conferencing workload process had the
most users, with 1,587 IM users with light work out of a
total of 4,800 users. All IM users are signed in after 26 min
and 27 seconds. A transient interval of 30 min was there-
fore selected. Some of the tests could have used a shorter
transient time, but standardised transient times made log
parsing easier. We used a steady-state measurement period
of 60 min, so that each test run took 90 minutes. The esx-
tool tool measured the performance of each VM in isolation
from the hypervisor overhead.

5.3.3 Run Experiments
Experiments were run using the binary search protocol out-
lined in the Section 4. As described in Section 5.2.1, we
decided to explore the system sizes 1/4, 2/4 and 4/4. Fur-
thermore, we decided to explore both heavy and light work
as described in Section 5.2.2. The complete results, which
cover several pages, are presented in [16]. An overview of all
the test runs is shown in Table 4 and in Table 5, for heavy
and light work, respectively. In these tables, each test run
has one row. The first column is the system size and the
second column is the number of users. The third column
is the % utilisation of the front end server divided by the
allocated number of vCPUs, and the fourth column is the
same for the edge server. We focus on the front end and
edge server since they had the highest utilisation. The fifth
column is the maximum MOS degradation.

The monitoring server measures MOS for (1) conferences,
(2) peer-to-peer calls, and (3) PSTN calls. They all have the
same limit of 0.5 MOS degradation. Therefore, we are only
interested in the maximum of the three. From Table 4 and
Table 5, we also see how MOS behaves with both lower and
higher load than what gives the optimal MOS degradation.

We have only run four test runs for system size 1/4 with

Table 4: Test runs for heavy work.
Size # Users Ufront Uedge MOS

1/4

200 34 28 0.10
300 48 43 0.28
350 58 52 0.50
400 74 62 0.63

2/4

400 37 32 0.06
600 53 44 0.13
650 59 50 0.45
700 65 56 0.64
800 84 69 0.78

4/4

800 42 35 0.08
1200 56 49 0.30
1250 59 52 0.44
1300 64 54 0.55
1400 75 62 0.78
1600 97 85 0.82

Table 5: Test runs for light work.
Size # Users Ufront Uedge MOS

1/4

800 48 42 0.21
1000 59 52 0.43
1100 67 57 0.52
1200 79 65 0.59
1600 99 90 0.69

2/4

1200 39 32 0.07
1800 53 46 0.24
2000 59 51 0.47
2200 68 56 0.59
2400 80 63 0.78

4/4

2400 37 33 0.09
3600 55 49 0.26
3900 60 53 0.47
4050 63 55 0.52
4200 69 60 0.69
4800 85 74 0.76

heavy work. Considering the MOS for 350 users we see that
this value is exactly the limit of 0.50, and more runs are
therefore not necessary.

5.3.4 Decide on Quality Metric
All quality metrics have different limits and units. In Fig-
ure 4, all parameters from the monitoring server are nor-
malised by dividing the measured value by the limit. This
means that when the curve crosses the horizontal bold line,
the limit is reached. The results come from the 4/4 system
size with heavy work, but the shape of the metrics curve is
representative for all scenarios and system sizes.

The figure shows that the MOS metric is the first metric
that crosses the limit. System administrators that monitor
the system to detect and mitigate any performance issues
want to have an early warning on system saturation. For
this purpose, the MOS value is the best candidate to be
monitored. The other metrics could also be monitored, but
they would give a later warning.

Figure 4 does not include the performance counters from
the LyncPerfTool clients. These counters were always 0
when the highest possible number of users were reached.
Small deviations of up to 0.04 SIP error responses/sec were

132

0	

1	

800	 1000	 1200	 1400	 1600	

N
or
m
al
ise

d	
Q
oE

	 p
ar
am

tr
es
	

Number	 of	 users	

MOS	

Packet	
loss	

Round	
trip	 Ame	

JiCer	

Figure 4: Normalised QoE parameters, for 4/4 sys-
tem size with heavy work.

observed when the system was highly over-utilised. The SIP
error messages are not considered a good metric for monitor-
ing system saturation. The monitoring server metrics con-
sider the real-time performance of ongoing voice sessions,
etc. Real-time traffic is especially vulnerable to system con-
tention and this may be the reason why the quality metrics
gave an earlier warning compared to SIP error messages.

5.3.5 Find Capacity per System Size
In our case, this is already done since we know that MOS
degradation is the limiting system quality, and since we then
have this information from Table 4 and Table 5. We will
analyse the resulting scalability more closely in Section 5.4.

5.4 Analyse Results
We are now in a position to analyse the results of the tests.
We will first find the bottleneck resource and will then ex-
plore the scalability before we finally try to use the results
for extrapolation.

5.4.1 Find Bottlenecks
Four resource types were considered in this study. Which of
them was the bottleneck resource?

Memory All servers were provisioned with memory resources
according to Microsoft’s server recommendations. If
any of the servers had too little memory, they would
need to start swapping memory to disk, but memory
swapping was always 0. Therefore, memory was not a
bottleneck.

Network All servers had access to a 10.0 Gbit/s network
interface. However, only the mediation server, edge
server, and reverse proxy server used this interface.
The highest network utilisation of all servers combined
where 267 Mbit/s (for light work on the 4/4 system
size). Not including hypervisor overhead, this gives a
total utilisation of 2.67%, far below the utilisation of
the processors. Network resources were therefore not
a bottleneck in this Lync deployment.

0	

60	

800	 1000	 1200	 1400	 1600	

U
)l
isa

to
n	

Number	 of	 users	

Front	 end	

Edge	

SQL	

Media)on	

Monitor	

Reverse	 proxy	

DC	

Figure 5: Normalised utilisation of all servers, for
4/4 system size with heavy work.

Disk The disk utilisation was evaluated by observing the
time required to complete disk operations. As long as
this time is kept below 15 ms, there is no contention on
disk resources [18]. The highest observed disk service
demand was 5.903 ms. This indicates that there was
not a high enough utilisation of disk resources to create
contention, and as a result disk resources were not a
bottleneck.

CPU The utilisation of CPU resources closely correlates to
system performance. Table 4 and Table 5 show that
the utilisation of the front end server ranges between
58 − 60% for all maximum users measures. The pro-
cessor is the highest utilised and should therefore be
considered the bottleneck in this Lync deployment.

A closer look at the utilisation of each VM may give more
insight into how the system behaves under different CPU
loads. Figure 5 shows the normalised CPU utilisation values
for all servers in the 4/4 system size with heavy work. From
the figure, it is possible to observe a breakpoint in the front
end server utilisation curve when the maximum number of
users is met. Similar break points are also observable in
other servers, such as the edge server. However, on the edge
server, the break point comes after the maximum number of
users is reached.

Looking at Table 4 and Table 5, we see that the utili-
sation of the front end server is always below 60% for all
measurements where the quality metrics are within limits.
For all other measurements, the utilisation is above 60%. It
is therefore reasonable to say that monitoring the utilisation
of the front end server would be a good indicator of system
health. This measure could be used by system administra-
tors. They could even set an alert at 50% utilisation just
to get an early warning on possible performance issues and
therefore have the time to mitigate the consequences.

5.4.2 Explore Scalability
Summarising the results from Table 4 and Table 5, gives
two scalability curves for heavy and light work shown in
Figure 6. From the table, we extract and plot the samples
which approach the MOS degradation limit of 0.5 as close
as possible without exceeding it.

133

0	

1000	

2000	

3900	

0	
350	 650	

1250	

0	

1000	

2000	

3000	

4000	

5000	

0	 0,25	 0,5	 0,75	 1	

N
um

be
r	 o

f	 u
se
rs
	

System	 size	

Low	 load	

High	 load	

Figure 6: Measured scalability in Microsoft Lync

The results show a close-to-linear scalability. There are,
however, some inaccuracies when measuring the maximum
number of users:

• The binary search stops at a given number of itera-
tions. This means that the unexplored search space
may still be significant. Finding the “correct” value
would require even more iterations, but was not feasi-
ble because of time constraints.

• Random measurement errors affect each test. This ef-
fect could be reduced by performing the same exper-
iment several times and averaging the results. This
would, however, require more time.

• Only the CPU resources are scaled, while memory, net-
work, and storage remain the same for all system sizes.
Even though the CPU has proved to be the bottleneck
device, the improper scaling of other resources could
create a bias towards higher number of users for 1/4
and 2/4 system size.

• The L3 cache in the 1/4 system size is scaled to 1/2
instead of 1/4. This may give a bias towards higher
number of users because the processor can serve a rela-
tively higher workload before experiencing contention
because of the increased cache size. This is especially
relevant since the processor is shown to be the bottle-
neck device of this Lync deployment.

The first inaccuracy in the above list can be reduced by
using interpolation techniques. Section 4 describes why a
binary search is preferred before an interpolation method
when finding the maximum number of users. The quality
parameters do not guarantee linearity. It is, however, safer
to assume linearity over a smaller range, like the remaining
search space after using the binary search for several itera-
tions. This technique gives a more precise estimate for the
maximum number of users. However, it is important to note
that the MOS score is given in two digits only, so the round
off error must be considered. The interpolation technique
for finding the interpolated number of users (N0.5) as well
as lower and upper round off counters (N−

0.5, N+
0.5) is shown

below

0	

1078	

2050	

3990	

0	
350	 663	

1277	

0	

1000	

2000	

3000	

4000	

5000	

0	 0,25	 0,5	 0,75	 1	

N
um

be
r	 o

f	 u
se
rs
	

System	 size	

Low	 load	

High	 load	

Figure 7: Interpolated scalability values

N0.5 = Nb + (Na −Nb)
(0.5−MOSb)

(MOSa −MOSb)

N−
0.5 = Nb + (Na −Nb)

(0.5−MOSb − 0.005)

(MOSa −MOSb + 0.01)

N+
0.5 = Nb + (Na −Nb)

(0.5−MOSb + 0.005)

(MOSa −MOSb − 0.01)

Nb and MOSb denote the values measured below the MOS
limit. Na and MOSa are above the limit. N0.5 denotes the
maximum number of users when the MOS value is interpo-
lated to the limit value of 0.5.

The interpolation results are summarised in Table 6 and
also shown in Figure 7. The figure shows the N0.5 values
only. The error bars (N−

0.5 and N+
0.5) are not included in the

figure because they were too small to view.
The interpolated values for number of users still show

close-to-linear scalability. There is, however, a slightly sub-
linear tendency in the results. This tendency still exists
when the round off error is considered. The improper scaling
of resources (as explained in point 3 and 4 in Section5.4.2)
should both give a systematic bias towards higher number
of users for both 1/4 and 2/4 system size. However, it is
hard to determine whether this bias alone accounts for the
sub-linearity or whether the system really has a sub-linear
scaling. Answering this question would require a different
test setup where the bias was reduced or removed. An alter-
native test setup would be to run multiple identical Lync in-

Table 6: Scalability results with linear interpolation

Work Heavy Light
Size 1/4 2/4 4/4 1/4 2/4 4/4
Nb 350 650 1250 1000 2000 3900
Na 400 700 1300 1100 2200 4050
MOSb 0.5 0.45 0.44 0.43 0.47 0.47
MOSa 0.59 0.64 0.55 0.52 0.59 0.52

N−
0.5 348 661 1273 1065 2038 3963

N0.5 350 663 1277 1078 2050 3990

N+
0.5 353 665 1283 1094 2064 4031

134

stances on the ESXi host instead of trying to scale down the
system resources. This means that for the 1/4 system size
scenario, a total of 4 identical Lync instances with the same
workload would run at the same time. Then the available
resources for each Lync instance would be 1/4. However,
there would be more contention on resources. This kind of
test setup with multiple Lync instances could not be tested
because installing Lync instances was outsourced from Te-
lenor. New Lync instances would have to be ordered and
the resulting delay would postpone the master thesis work.

For practical concerns, such as when new Lync deploy-
ments are provisioned, the scalability in the 1/4 - 4/4 system
size range can be considered linear. The sub-linear tendency
that may exist in this system size range is too low to make
an impact. This does not, however, prove that there are no
scalability problems in Lync. It only shows that we have not
found it in our system size range.

As shown in Table 1, the 1/4 system size was not cor-
rectly scaled. The amount of network, memory, and storage
resources are not scaled at all. In addition, the level 3 cache
is the same as in the 2/4 system size. A larger L3 cache will
allow more instructions and data to be cached and increases
performance on CPU intensive operations. As explained in
Section 5.2.3, there are actually three MOS values, where the
conference MOS value is highest in most scenarios, but not
for some measurements for the 1/4 system size. Conferenc-
ing is a CPU intensive task (with considerable audio codec
processing, in contrast to packet forwarding for peer-to-peer
calls and PSTN calls). However, when the L3 cache is twice
as big (compared to a ”correct” scaling) the audio process-
ing is better and other MOS values becomes the dominating
factor.

5.4.3 Extrapolation Beyond Size Range?
Scalability testing can only be reliable within the system size
range that was actually measured. In this paper the range
is 1/4 - 4/4 physical servers. Using the Cisco UCS platform
makes it quite straightforward to increase the number of
blade servers and include them in the same virtual resource
pool. For example, this would allow the system size to scale
to 16/4 by including 4 blade servers. However, our standard
edition license does not allow this.

To set up several servers in a pool, an enterprise edition
license is needed. With the given constraint, the best config-
uration to achieve high performance is to put the front end
server VM on a single physical server and allocate 24 vCPUs
for it. Then the remaining VMs can be put on the other
blade servers. However, the front end server VM requires
more compute resources than the other VMs all together.
Therefore, using more than two physical servers would not
give significantly better performance, because the front end
VM would have a much higher utilisation and become a bot-
tleneck.

The Lync sizing study [18] shows that Lync scales lin-
early when the system size is varied from one to four phys-
ical front end servers. This sizing study uses the enterprise
edition license and has a different user scenario than this
report. However, the linear scalability conclusion from the
sizing study supports the belief that the sub-linear scaling
tendency observed in this report is actually caused by mea-
surement bias alone, as discussed in section 5.4.2. Also the
edge servers can be replicated on several servers.

Table 7: Approx. time per binary search iteration
Time Task
5 min Create user profile configuration file
5 min Prepare parameter capture scripts on hosts
5 min Copy configuration file to all 3 LyncPerfTool

clients and start the LyncPerfTool clients
90 min Run test (30 min transient + 60 min meas.)
10 min Copy csv log file from hosts to home computer
5 min Read QoE parameters from the monitoring

server
10 min Parse the results from the csv file
5 min Compare parameters to limits and determine

the correct direction for the next iteration of
the binary search

5.5 Human Time Consumption
Considerable human time was required to set up the test sys-
tem, tune the Lync configuration to work with LyncPerfTool,
resolve issues with the performance measure tools, etc. This
work would require less time for a person experienced with
the specific technology who had direct access to the equip-
ment instead of working remotely (as in our case). However,
the time required to perform the actual tests would not have
been affected by such concerns. The binary searches in this
report were carried out in a total of 12 days. The work re-
quired for one iteration of the binary search is outlined in
Table 7.

Table 7 shows that one iteration can be carried out in
≈ 2 hours 15 min. Configuring the tests and interpreting
the results takes ≈ 45 min, half the time of actually run-
ning the test. Of course, this requires all steps to be carried
out correctly. Since LyncPerfTool clients were situated both
outside and inside the firewall (see Figure 3), an extra net-
work interface was added to give external user simulators
direct access to the internal network. This made file sharing
possible without altering the standard reverse proxy config-
uration. This interface was for pre-test file sharing only. If
the extra network interface was not disabled before the test
was started, all sessions that were set up using ICE would
short-cut the edge server and use the extra network interface
instead. Then the performance results were biased towards
better performance estimates and the whole iteration had
to be run all over again with a disabled network interface.
This happened twice during the test period and affected the
total test time.

Automating the parameter capture could save a lot of
manual work. It is possible to write scripts to start LyncPerf-
Tool and to automate almost all parts of the capture process.
However, there is one major and two minor issues that im-
pede full automation. The major issue is that csv log files
had to be copied from ESXi hosts using a Citrix Reciever
GUI. Seemingly, there were no CLI options available. The
minor issues were (1) creating new configuration files from
UserProfileGenerator without using the GUI and (2) read-
ing monitoring server results from a web interface. These
minor issues could probably be overcome.

A person with experience in Lync setup can configure a
Lync environment in 2 – 3 days. An additional 2 – 3 more
days are required to install the LyncPerfTool and configure
the Lync scenario accordingly. Applying the same method
as described in this report, the results can be reproduced

135

in 16 – 18 days. If a different management setup were used
(excluding remote access through Citrix Receiver), the pa-
rameter capture using the binary search could probably be
automated.

In our tests, we have employed binary searches to find
the optimal QoE for each system size and load. Because we
now know that the scalability was almost linear, we could
have started this binary search algorithm with more optimal
values, and not exploring very low or very high values for
each system size and load. The saved time could have been
used to get a better knowledge of the confidence intervals
for the most important measurements.

6. CONCLUSION AND FURTHER WORK
This paper has studied the scalability of Microsoft Lync 2010
in a virtualised lab environment. The results could help to
optimise the provisioning of computer resources. The lab
servers where deployed on a Cisco UCS platform with one
blade server. We have used both light and heavy work on the
Lync Server 2010 Stress and Performance Tool. The results
show that there is a close-to-linear scaling from 1/4 to 4/4
system size. A new deployment should be scaled according
to the number of simultaneous end users.

When the Lync deployment is installed on a Cisco UCS
platform, the CPU resources become the bottleneck. The
hardware configuration of Cisco UCS is comparable to hard-
ware from other vendors. This means that upgrading CPU
resources is most important for increasing system capacity.

Among several QoE (Quality of Experience) metrics, mean
opinion score (MOS) is the best metric to monitor reduction
of service quality for end users. The results shows that this
metric is the first to exceed limits as the system load in-
creases. Another good performance measure is to monitor
the utilisation on the front end server. When this utilisation
exceeds 60%, service quality is degraded.

From the findings in this paper, there are several interest-
ing problems that need further study:

• Test Lync with more heterogeneous work than what
was possible with the LyncPerfTool, to make the con-
clusions more robust.

• Explore the scalability of Microsoft Lync using an en-
terprise edition deployment which allows several servers
in the same server pool. This would allow more front
end and edge servers (scaling out), instead of just im-
proving one front end and edge server (scaling up), as
shown in this paper.

• We need experience with other scalability testing sce-
narios to further improve and validate the method.

• The utilisation of this scalability method for optimal
provisioning should be described more comprehensively.

7. ACKNOWLEDGEMENTS
This research was supported by Telenor ASA. We thank
Georg Lothe and Alexander Botnen, both in Telenor Nor-
way, for solving many problems during the measurements.

8. REFERENCES
[1] Interpreting esxtop.

http://communities.vmware.com/docs/DOC-9279,
Dec 2008. Last visited: 2013 Feb 5th.

[2] Mean opinion scores and metrics.
http://technet.microsoft.com/en-us/library/

bb894481(v=office.12).aspx, Jul 2010. Last visited:
2012 Jul 8th.

[3] Lync stress and performance tool.
http://www.microsoft.com/download/en/details.

aspx?id=25005, Mar 2011. Last visited: 2012 Jul 8th.

[4] Media quality summary report. http:
//technet.microsoft.com/en-us/library/gg615012,
Jul 2011. Last visited: 2012 Jul 8th.

[5] Unified computing technology. http://www.cisco.
com/en/US/products/ps10265/technology.html, Feb
2012. Last visited: 2012 Jul 8th.

[6] L. A. Barroso and U. Holzle. The Case for
Energy-Proportional Computing. IEEE Computer,
40(12):33 – 37, 2007.

[7] G. Brataas, P. H. Hughes, J.-A. Fagerli, and O. C.
Landmark. Exploring Architectural Scalability.
Software Engineering Notes, 29(1):125 – 129, 2004.

[8] L. Duboc, D. Rosenblum, and T. Wicks. A Framework
for Characterisation and Analysis of Software System
Scalability. In European Software Engineering
Conference, pages 375 – 384. ACM, 2007.

[9] N. Huber and et al. A Method for Experimental
Analysis and Modeling of Virtualization Performance
Overhead. In Cloud Computing and Services Science,
pages 353 – 370. Springer, 2012.

[10] International Telecommunication Union. Methods for
Subjective Determination of Transmission Quality.
Aug 1996.

[11] P. Lewis, Abbate. Microsoft Lync Server 2010
Unleashed. SAMS, 1st edition, 2011.

[12] Microsoft, http://www.microsoft.com/download/en/
confirmation.aspx?id=6412. Quality of Experience,
Oct 2007. Last visited: 2012 Jul 8th.

[13] Microsoft, http://www.microsoft.com/download/en/
details.aspx?id=21646. Microsoft Lync Server 2010
Planning Guide, Aug 2011. Last visited: 2012 Jul 8th.

[14] Microsoft, http:
//technet.microsoft.com/en-us/library/gg398835.
Server Hardware Platforms, Mar 2011. Last visited:
2012 Jul 8th.

[15] Microsoft, http://www.microsoft.com/download/en/
details.aspx?id=12295. Microsoft Lync Server 2010
Capacity Calculator, Feb 2012. Last visited: 2012 Jul
8th.

[16] K. H. Rygg. Scalability Modelling for Optimal
Provisioning of Data Centres in Telenor. Master’s
thesis, NTNU, Trondheim, Norway, July 2012.

[17] P. Seeling. Network Performance Evaluation of
Microsoft Office Communications Server 2007. In
IEEE International conference on Electro/Information
Technology (EIT), 2011, pages 1–6, May 2011.

[18] G. E. Solutions. Sizing Study: Virtualized Microsoft
Lync Server 2010 Deployment. Apr 2012.

[19] VMware, http://www.vmware.com/files/pdf/
perf-vsphere-cpu_scheduler.pdf. VMware vSphere
4: The CPU Scheduler in VMware ESX 4, Des 2010.
Last visited: 2012 Sept 20th.

[20] H. Winters. Mastering Microsoft Lync Server 2010.
Sybex, 1st edition, 2012.

136

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20130225164116
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 12
 11
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20130225164116
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 12
 11
 12

 1

 HistoryList_V1
 qi2base

