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ABSTRACT
Quantitative evaluation of models with stochastic timings can de-
cisively support schedulability analysis and performance engineer-
ing of real-time concurrent systems. These tasks require modeling
formalisms and solution techniques that can encompass stochastic
temporal parameters firmly constrained within a bounded support,
thus breaking the limits of Markovian approaches. The problem is
further exacerbated by the need to represent suspension of timers,
which results from common patterns of real-time programming.
This poses relevant challenges both in the theoretical development
of non-Markovian solution techniques and in their practical inte-
gration within a viable tailoring of industrial processes.

We address both issues by extending a method for transient anal-
ysis of non-Markovian models to encompass suspension of timers.
The solution technique addresses models that include timers with
bounded and deterministic support, which are essential to represent
synchronous task releases, timeouts, offsets, jitters, and computa-
tions constrained by a Best Case Execution Time (BCET) and a
Worst Case Execution Time (WCET). As a notable trait, the theory
of analysis is amenable to the integration within a Model Driven
Development (MDD) approach, providing specific evaluation ca-
pabilities in support of performance engineering without disrupting
the flow of design and documentation of the consolidated practice.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Algorithms

Keywords
Software performance engineering, non-Markovian stochastic anal-
ysis, model driven development, real-time systems.

1. INTRODUCTION
Model Driven Development (MDD) provides a way to incorpo-

rate formal methods in the development process of safety-critical
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real-time systems, so as to support formal verification of design
correctness, automatic compilation of specifications into code skele-
tons and other artifacts, unit and integration testing [40, 32]. This
practice is explicitly encouraged within various regulatory stan-
dards whenever the system exhibits complex behaviors mixing con-
currency and timing [36, 26].

Various approaches and tools have been developed to support
the aim for concurrent systems with non-deterministic temporal
parameters. Notable examples include Uppaal [4] with the exten-
sions TIGA [20] and TRON [29], based on the theory of timed
automata [1]; Giotto [28], a tool-supported programming method-
ology for the validation and synthesis of control software; Charon
[2], a language for modular specification of interacting hybrid sys-
tems, relying on the notions of agent and mode; Simulink [35], a
block diagram environment for simulation and model-based design
of complex control systems.

The Oris tool [10] supports MDD by leveraging the theory of
preemptive Time Petri Nets (pTPNs) [11], an extension of Time
Petri Nets (TPNs) [43] that encompasses priority-driven preemp-
tive scheduling with possible suspension of computations, attaining
an expressive power that compares with stopwatch automata [21]
and Petri nets with hyper-arcs [37]. The MDD approach of [18] in-
tegrates the theory of pTPNs and the Oris tool within a tailoring of
the V-Model life cycle [14], supporting formal verification of SW
design, generation of real-time code, measurement-based profiling
of temporal parameters, and testing. As a relevant trait, the designer
is allowed to create a model through a semi-formal specification,
which captures design choices of the periods and the concurrency
structure of tasks, as well as design assumptions on the duration of
computations, initially guessed by analogy with previous realiza-
tions. During development iterations, the results of formal analy-
sis and execution time profiling are used to refine the specification
and implementation until SW requirements are satisfied. The for-
mal methodology of [18] is extended in [25] to enable a smooth
integration within an industrial process of SW development, sup-
porting the documentation process prescribed by Military Standard
498 (MIL-STD-498) [42] while avoiding to disrupt consolidated
industrial practice.

With the evolution of certification standards for safety-critical
software towards RAMS (Reliability, Availability, Maintainability,
Safety) practices, safety requirements excluding the possibility of
anomalous behaviors are often recast into quantitative values of
guaranteed probability [26, 27]. This motivates the extension of
MDD approaches so as to incorporate quantitative evaluation of
RAM indices into the formal verification process. For this purpose,
modeling and solution techniques should encompass inherent char-
acteristics of real-time software, such as multiple concurrent tem-
poral parameters characterized by general (GEN) distributions over
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bounded or deterministic supports. Computations usually have exe-
cution times firmly constrained within finite intervals; task periods,
offsets, and timeouts are necessarily deterministic temporal param-
eters; jitters and inter-release times of asynchronous tasks are often
lower-bounded. At the same time, the analysis techniques must
be able to deal with suspension in the advancement of timers, as
an effect of preemptive scheduling, which corresponds to the Pre-
emptive Resume (PRs) policy, as opposed to cooperative scheduling
represented by the Preemptive Repeat Different (PRD) policy [7].

In this paper, we present an approximated solution technique for
the transient analysis of non-Markovian preemptive models that in-
clude deterministic and bounded timers. Transient analysis based
on stochastic state classes [30] is extended from a PRD policy
(where all enabled timers advance with the same speed and disabled
timers are re-sampled at newly-enabling) to a PRs policy (where
some enabled timers may be suspended and later resumed). The
addition of suspension has a major impact on the analysis tech-
nique with respect to the PRD policy: in this case, the geometric
shape of the joint support of enabled timers is no more in the form
of a Difference Bounds Matrix zone (DBM zone), but becomes a
linear convex polyhedron, leading to exponential complexity in the
derivation and encoding of the state space. The issue is addresses in
[11] for non-deterministic models by resorting to an overapproxi-
mation of polyhedral supports with DBM zones. For stochastic
models, the problem is exacerbated by the fact that the joint prob-
ability density function (PDF) of enabled timers has a piecewise
form over a partition of the polyhedral support into polyhedral sub-
domains. The computational complexity of such partitioning ex-
cludes the generalization of approaches based on DBM zone parti-
tioning [44], and requires a solution technique based on the approx-
imation of both supports and distributions. The proposed approach
allows to represent deterministic timers that are never suspended,
which allow to represent synchronous task releases and timeouts,
as resulting from common patterns of real-time programming. In
contrast, suspension may occur on stochastic timers, which repre-
sent computation times associated with non-pointlike support, both
to allow a margin of laxity in the implementation and to be robust
with respect to possible changes in the embedding environment.

The rest of the paper is organized as follows: in Sect. 2, we dis-
cuss related work; in Sect. 3, we present a novel solution technique
for the transient analysis of non-Markovian preemptive models in-
cluding temporal parameters with bounded and deterministic sup-
ports; in Sect. 4, we present experimental results; in Sect. 5, we
draw conclusions.

2. RELATED WORK
Quantitative evaluation of real-time systems faces the analysis of

models that encompass both stochastic temporal parameters with
bounded support and priority-driven preemptive scheduling with
suspension and resumption of timers. This mix of requirements is
partially fulfilled by a few discrete time approaches and basically
unsolved in the continuous time perspective.

The numerical approach presented in [31] for the analysis of
Non-Markovian Stochastic Petri Nets (NMSPNs) relies on a time-
discretization algorithm that approximates the firing times of transi-
tions through Discrete Phase-Type (DPH) random variables, map-
ping the evolution of the marking process into an expanded Dis-
crete Time Markov Chain (DTMC). The technique allows any kind
of general distribution, combining together the PRs policy and the
PRD policy [7]. The inherent state-space explosion problem is
alleviated in [39] by using a Kronecker algebra, which avoids an
explicit enumeration of timed states while requiring a finite num-

ber of reachable markings. A similar approach based on DPHs
is proposed in [45] for the model of Discrete Deterministic and
Stochastic Petri Nets (DDSPNs), which encompass race policies
equivalent to PRs and PRD policies. In [12], a discrete-time vari-
ant of time Petri nets [43] supports the representation of preemptive
behavior and associates a stochastic characterization with all non-
deterministic logical and temporal choices. The analysis technique
relies on a maximal step semantics which conveniently separates
the effects of logical concurrency from those of non-Markovian
timed behavior, circumventing the problems of confusion and non-
well-definedness arising in discrete-time models with an interleaved
semantics of concurrency.

As a common trait, discretization approaches suffer a trade-off
between the accuracy attained by the analysis and the computa-
tional complexity, which largely depends on the time scale used to
cover the ranges of variation of temporal parameters. The prob-
lem is further exacerbated in those methods that approximate the
distribution of timers with finite support through DPHs, which may
produce unexpected results when the finiteness of behavior actually
depends on the sequencing constraints induced by timing.

Managing non-Markovian and preemptive behavior is a much
harder challenge in continuous time, where the limits of the anal-
ysis reduce the expressive capabilities of the model. In [23, 8],
GEN timers are approximated by means of Continuous Phase-Type
(CPH) distributions, following an approach that can be regarded as
a continuous-time version of the phase-type expansion technique
of [31]. The symbolic technique of [33] supports efficient compu-
tation and encoding of the reachability graph of the untimed model,
although the dimension of the state space still comprises a limita-
tion in the step of solution and the obtained approximants are not
able to firmly preserve bounded supports. An analytical approach
based on a continuous abstraction of time was proposed in [9] for
Deterministic and Stochastic Petri Nets (DSPNs), which include
exponential and deterministic timers, and extended in [7] to man-
age a combined use of different preemption polices. The approach
leverages Markov Renewal Theory under the so-called enabling
restriction, which rules out concurrent enabling of multiple GEN
transitions. As a major limit, this structurally clashes with the need
to represent sequencing restrictions due to mutual timing.

The case of multiple concurrent GEN timers with possibly over-
lapping activity cycles is managed by the method of stochastic
state classes. Steady state analysis can be performed exactly in
the case that every cyclic behavior that changes the enabling sta-
tus of GEN transitions visits at least one regeneration point [44].
Transient analysis [30] can be performed exactly provided that the
model does not include cycles that must be completed in zero time
(no Zeno behaviors), and it can be always guaranteed to be finite
in probability under the assumption of an approximation thresh-
old ε > 0 on the total error. However, the solution techniques of
[44, 30] address models that do not encompass suspension and re-
sumption of timers. In [15], the method of [44] is extended to sup-
port steady-state analysis of systems that run under static-priority
preemptive scheduling. Nevertheless, this still maintains two ma-
jor limits in the perspective of application to the development of
real-time systems. In fact, the technique is developed under the
restriction that all timers have non-pointlike support, which pre-
cludes deterministic timers and thus prevents the representation of
structural patterns of real-time programming such as timeouts and
periodic task releases. In addition, the approach does not support
transient analysis, which instead turns out to take major relevance
in the verification of most real-time requirements.
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3. MODELING AND EVALUATION OF
STOCHASTIC REAL-TIME SYSTEMS

We first introduce the model of stochastic preemptive Time Petri
Nets, which aims at providing sufficient expressive capabilities for
the representation of realistic patterns of real-time programming
(Sect. 3.1). We then present a novel solution technique that ex-
tends the method of [30] to encompass transient analysis of non-
Markovian preemptive models (Sect. 3.2).

3.1 Modeling task-sets through spTPN
A stochastic preemptive Time Petri Net represents a discrete-

event system whose state is made of a logic condition called mark-
ing and a set of continuous timers called times-to-fire, each associ-
ated with a transition enabled by the marking. Each enabled transi-
tion may request one or more resources according to a static priority
preemptive scheduling: it is called progressing or suspended de-
pending on whether it is assigned each of its requested resources or
not, respectively. The progressing transition with minimum time-
to-fire is selected as the next event and its execution leads to a new
state with different marking and times-to-fire. After the marking
update, transitions can persist or be newly-enabled, disabled, reset.
Times-to-fire of newly-enabled and reset transitions are sampled
according to static distributions; times-to-fire of persistent transi-
tions are decreased by that of the fired transition if they are pro-
gressing, and maintained if they are suspended; times-to-fire of dis-
abled transitions are discarded.

3.1.1 Syntax
A stochastic preemptive Time Petri Net (spTPN) is a tuple 〈P ;T ;

A−;A+; A·;m0;EFT s;LFT s;Res;Req;Prio;F ; C〉.
The first eight elements comprise the model of time Petri nets

[43]. P is a set of places. T is a set of transitions disjoint from
P . A− ⊆ P × T , A+ ⊆ T × P , and A· ⊆ P × T are sets
of precondition, postcondition, and inhibitor arcs. m0 : P → N
is the initial marking associating each place with an initial non-
negative number of tokens. EFT s : T → R+

0 and LFT s : T →
R+

0 × (R+
0 ∪ {∞}) associate each transition with a static Earli-

est Firing Time and a (possibly infinite) static Latest Firing Time
(EFT s(t) ≤ LFT s(t) ∀ t ∈ T ). As usual in Petri Nets, a place p
is said to be an input, an output, or an inhibitor place for a transition
t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·, respectively.
Res, Req, and Prio comprise a mechanism of resource as-

signment in the style of preemptive Time Petri Nets (pTPNs) [11],
which makes the progress of timed transitions dependent on the
availability of a set of preemptable resources. Res is a set of pre-
emptable resources disjoint from P and T . Req : T → 2Res and
Prio : T → N associate each transition with a subset of Res
representing its resource request and with a static priority level,
respectively. We assume that low priority numbers correspond to
high priority levels.

As in stochastic Time Petri Nets (sTPNs) [44, 16],F and C define
a measure of probability for non-deterministic choices. Specifi-
cally, C : T → R+ associates each transition with a positive weight
and F : T → F st associates each transition with a static Cumu-
lative Distribution Function (CDF) supported over its static firing
interval [EFT s(t), LFT s(t)]. As usual in Stochastic Petri Nets, a
transition t is called immediate (IMM) if EFT s(t) = LFT s(t) =
0 and timed otherwise. A timed transition t is called exponential
(EXP) if F st (x) = 1− eλx over [0,∞] for some rate λ ∈ R+

0 and
general (GEN) otherwise. In particular, a GEN transition t with
EFT s(t) = LFT s(t) > 0 is called deterministic (DET). More-
over, for each GEN transition t with EFT s(t) 6= LFT s(t), which
we call distributed transition, we assume that F st is absolutely con-

tinuous and, thus, that there exists a Probability Density Function
(PDF) fst such that F st (x) =

∫ x
0
fst (y)dy.

3.1.2 Semantics
The state of an spTPN is a pair 〈m, τ〉, where m : P → N is a

marking that associates each place with a non-negative number of
tokens and τ : T e(m)→ R+

0 associates each transition enabled by
m with a (dynamic) real-valued time-to-fire, where a transition t is
said to be enabled by m if each of its input places contains at least
one token and none of its inhibitor places contains any token (i.e.,
m(p) ≥ 1 ∀ 〈p, t〉 ∈ A− and m(p) = 0 ∀ 〈p, t〉 ∈ A·).

An enabled transition t is progressing if every resource it re-
quires is not required by any other enabled transition with a higher
level of priority (i.e., Prio(t) ≤ Prio(t′) ∀ t′ ∈ T e(M) such that
Req(t) ∩Req(t′) 6= ∅); otherwise, it is suspended.

A progressing transition t is firable in state s if its time-to-fire
is not higher than that of any other transition that is progressing
in s (i.e., τ(t) ≤ τ(t′) ∀ t′ ∈ Tp(s), where Tp(s) is the set of
transitions that are progressing in s). When multiple transitions are
firable, the choice is resolved by the random switch determined by
C: Prob{t is selected} = C(t)/

∑
ti∈Tf

C(ti).
When a transition t fires, the state 〈m, τ〉 is replaced by a new

state s′ = 〈m′, τ ′〉, which we write as s t→ s′. Marking m′ is de-
rived from m by removing a token from each input place of t (i.e.,
if 〈p, t〉 ∈ A− thenmtmp(p) = m(p)−1, elsemtmp(p) = m(p))
and by adding a token to each output place of t (i.e., if 〈t, p〉 ∈ A+

then m′(p) = mtmp(p) + 1, else m′(p) = mtmp(p)). Transitions
that are enabled both by the intermediate markingmtmp and bym′

are said persistent, while those that are enabled by m′ but not by
mtmp orm are said newly-enabled. If t is still enabled after its own
firing, it is always regarded as newly enabled [5, 43].

For any transition tn newly-enabled after the firing of t, the time-
to-fire takes a random value sampled in the static firing interval ac-
cording to the static probability distribution F stn , i.e.,EFT s(tn) ≤
τ ′(tn) ≤ LFT s(tn) and Prob{τ ′(tn) ≤ x} = F stn(x). For any
transition tp that was progressing in the previous state and is per-
sistent after the firing of t, the time-to-fire is reduced by the time
elapsed in the previous state (which is equal to the time-to-fire of
t measured at the entrance in the previous state), i.e., τ ′(tp) =
τ(tp) − τ(t). For any transition ts that was suspended in the pre-
vious state and is persistent after the firing of t, the time-to-fire
remains unchanged, i.e., τ ′(ts) = τ(ts).

3.1.3 An illustrative example
Fig. 1 shows a periodic real-time task with a semaphore syn-

chronization within a wider (not shown) task-set. A transition with
no input places nor resource requests models a task release, and
fires repeatedly with inter-firing times falling within its firing inter-
val, e.g., t10 models periodic task releases with period of 50 time
units. A time-consuming operation performed on one or more pro-
cessors is represented by a transition associated with a resource
request, a static priority, and a firing interval corresponding to its
range of execution time, e.g., t12 and t13 model two computa-
tions performed on resource cpu with priority level 1 in a time
ranging within [5, 10] and [2, 4] time units, respectively. A binary
semaphore is represented as a place initially marked with one to-
ken, e.g.,mutex. While a wait operation is modeled as a transition
having the semaphore place as an input place, a release operation
is usually represented by a transition that has the semaphore place
as an output place and that also accounts for the completion of a
synchronized computation, e.g., t11 represents a wait operation on
mutex, while t13 models a release operation on mutex as well as
the completion of the second computation of the task.
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Some temporal parameters of a real-time task-set attain a non-
deterministic range of variation (e.g., the execution time of compu-
tations and the inter-release time of asynchronous tasks), and they
are modeled as transitions that, in principle, can be associated with
any kind of distribution (e.g., t11, t12, and t13). Other temporal
parameters are intrinsically deterministic (e.g., timeouts and the
inter-release time of synchronous tasks), and thus their are mod-
eled as IMM or DET transitions, which are associated with a Dirac
delta function (e.g., t10 is associated with a Dirac delta function
fst10(y) = δ(y − 50), centered at y = 50 time units).

Figure 1: A fragment of the spTPN model of a task-set, repre-
senting a periodic real-time task.

In general, the construction of the model of a real-time task-set
can be conveniently cast into a minor extension of the develop-
ment process devised in [18, 25], which was proven viable in the
industrial practice [25] but did not include any probabilistic quan-
tification. To this end, during the early stages of SW Design, the
distributions associated with the execution times of computations
and with the inter-release times of asynchronous tasks are guessed
by analogy with previous or similar implementations. Next, during
the iterations of the development process, they are progressively re-
fined according to the histograms of temporal parameters observed
during the execution of the real-time code, which are obtained as
a by-product of the approach implemented in [18, 25]. In doing
so, the additional effort demanded to the designer to manage prob-
abilities consists in finding GEN distributions in the class of ex-
polynomial functions that fit the shape and support of the measured
histograms.

Note that the spTPN semantics combines the PRD and PRs poli-
cies of [7, 9], also known as enabling memory policy and age policy
[22], respectively. In the formulation of [7, 9], the clock of a transi-
tion disabled by the lack of a token is reset or maintained depend-
ing on whether the transition is associated with PRD or PRs policy,
respectively. Conversely, in our treatment, the progress of times-
to-fire depends both on the presence of tokens into input places and
on the availability of preemptable resources. Specifically, when a
transition is disabled by the lack of a token in some of its input
places, its time-to-fire is reset, following the PRD policy; other-
wise, when a transition is suspended by the lack of some of its re-
quired resources, its time-to-fire is maintained and resumed when
the transition is assigned the resource again, following the PRs pol-
icy. This enables separate modeling of inter-task communication
mechanisms from real-time concurrency on resources, facilitating
the representation of usual patterns of real-time programming [13].
As shown by the example of Fig. 1, while the presence of tokens
into places models logic conditions such as the availability of a
semaphore, preemptable resources of the net are used to account
for processors that are necessary to perform a computation.

3.2 Transient analysis of spTPN
We recall here the salient aspects of the method of transient

stochastic state classes (Sect. 3.2.1), for which we also refer the
reader to [30]. We then develop a novel and substantial extension

of the approach of [30] that encompasses suspension and resump-
tion of timers by relying on a continuous-time approximation in the
state-space (Sects. 3.2.3, 3.2.2, and 3.2.4). We finally discuss how
the complexities arising from the interaction of suspension with
DET transitions can be managed (Sect. 3.2.5).

3.2.1 Transient classes
The state of an spTPN evolves depending on the times-to-fire

sampled by transitions and the resolution of random switches ac-
cording to transitions weights. Within a given time bound, the
method of transient stochastic state classes [30] characterizes the
state of an spTPN after each transition firing and the absolute time
of the firing. Specifically, a transient stochastic state class provides
the joint PDF for the vector of times-to-fire of enabled transitions
augmented with a timer, called τage, which accounts for the time
elapsed since when the class was entered. For convenience, τage
encodes the opposite of the elapsed time, so that it evolves with the
same slope as that of times-to-fire of progressing transitions and it
can be treated as an always-persistent-progressing time-to-fire.

DEFINITION 3.1. A transient stochastic state class (transient
class for short) is a tuple 〈m,New,D, f〈τage,τ〉〉, where: m :
P → N is a marking; 〈τage, τ〉 is a random variable made of the
scalar variable τage and the vector τ = 〈τ0, τ1, ..., τN−1〉 of times-
to-fire of transitions enabled by m; New is the set of transitions
that are newly enabled when the class is entered; and, f〈τage,τ〉 is
the joint PDF of the variable in 〈τage, τ〉 supported over D.

A reachability relation is defined among transient classes:

DEFINITION 3.2. We say that Σ′ = 〈m′, D′, New′, f〈τ ′age,τ
′〉〉

is a successor of Σ = 〈m,New,D, f〈τage,τ〉〉 through the firing

of t0 with probability µ0, which we write Σ
t0,µ0=⇒ Σ′, iff, given that

the marking of the net is m and the time vector 〈τage, τ〉 is a ran-
dom variable with support D and PDF f〈τage,τ〉, then the firing of
t0 occurs with probability µ0 and leads to a new marking m′ and
a new time vector 〈τ ′age, τ ′〉 with support D′, PDF f〈τ ′age,τ

′〉, and
the set New′ of newly-enabled transitions.

In the initial transient class Σ0 = 〈m0, D, f〈τage,τ〉〉, τage is
equal to 0 and all enabled transitions are newly-enabled with times-
to-fire independently distributed according to their PDFs supported
over their firing intervals. According to this:

D = [0, 0]×
∏
ti∈Te(m0)

[EFT s(ti), LFT
s(ti)],

f〈τage,τ〉(xage, x) = δ(xage) ·
∏
ti∈Te(m) fti(xi),

where δ(xage) is the Dirac delta function centered at xage = 0.
Given an initial transient class Σ0, the transitive closure of the
reachability relation among transient classes enumerates a transient
stochastic tree, where vertexes are transient classes and edges are
labeled with a transition t and a probability µ. This enables the
derivation of continuous-time transient probabilities of reachable
markings within any given time bound [30].

3.2.2 Transient classes in partitioned form
When the spTPN model includes IMM and DET transitions, a

class Σ = 〈m,New,D, f〈τage,τ〉〉may have a domainD with null
measure in RN+1, where N is the cardinality of the set T e(m)
of transitions enabled by marking m [44]. To avoid a stochastic
characterization of deterministic and deterministically dependent
timers, we resort to the 〈Q,U, V 〉 partition of [44], where: Q is the
set (of maximal cardinality) of distributed variables, i.e., variables
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that have a non-deterministic value and mutual delay (i.e., τi ∈ Q
iff bi∗ + b∗i 6= 0 ∧ bij + bji 6= 0 ∀ τj ∈ Q with i 6= j);
U is the set of deterministic variables, i.e., variables that have a
deterministic value (i.e., τh ∈ U iff bh∗ + b∗h = 0); and, V
is the set of synchronized variables, i.e., variables that have a de-
terministic delay with respect to some distributed variable (i.e.,
τk ∈ V iff bk∗+ b∗k 6= 0 ∧∃ τιk ∈ Q such that bkιk + bιkk = 0).

According to this, the normal form of D can be rewritten in a
partitioned form that combines the set DQ of constraints limiting
the variables ofQ with a set of equalities expressing all the remain-
ing variables of U and V :

DQ =


τi − τj ≤ bij
τi − τ∗ ≤ bi∗
τ∗ − τi ≤ b∗i
∀ τi, τj ∈ Q

D =


DQ
τh = bh∗ + τ∗
τk = bkιk + τιk
∀ τh ∈ U, ∀ τk ∈ V

(1)

When domainD is represented in partitioned form, the joint PDF
of variables in Q ∪ U ∪ V is completely defined by the joint PDF
of variables in Q. According to this, f〈τage,τ〉 is completely de-
fined by the joint PDF f〈τage,τQ〉 of τage and τQ. According to
this, a transient class 〈m,New,D, f〈τage,τ〉〉 will be represented
as 〈m,New,D, f〈τage,τQ〉〉.

3.2.3 Enumeration of transient classes
In the derivation of successor classes, we use the following no-

tational conventions: i) given a vector x = 〈x0, . . . , xN−1〉 ∈ RN
and a scalar δ ∈ R, x+δ denotes the vector 〈x0+δ, . . . , xN−1+δ〉;
ii) if D ⊆ RN and n ∈ {0, . . . , N − 1}, then D ↓τn denotes the
projection ofD that eliminates τn: D ↓τn= {〈x0, . . . , xn−1, xn+1,
. . . , xN−1〉 ∈ RN−1 | ∃ xn ∈ R . 〈x0, . . . , xn−1, xn, xn+1,
. . . , xN−1〉 ∈ D}; iii) D ↓A1,...,AN denotes the projection of D
that eliminates all variables in A1 ∪ ... ∪ AN ; iv) given a transient
class Σ = 〈m,New, D, f〈τage,τ〉〉, the number of enabled transi-
tions (i.e., the number of times-to-fire) is denoted by M ; the num-
ber of distributed times-to-fire is denoted by N and their vector is
denoted by τQ = 〈τ0, τ1, ..., τN−1〉; the time vector is represented
as 〈τage, τ〉 = 〈τage, τ0, τ1, ..., τN−1, τN , ..., τM−1〉 so as to en-
code τage and distributed times-to-fire in the first N + 1 positions.

Successors detection and calculus of their probability. Ac-
cording to the spTPN semantics, the firing of a transition t0 is a
possible outgoing event from a transient class Σ = 〈m,New,D,
f〈τage,τ〉〉 iff t0 is progressing in Σ and has a time-to-fire not higher
than that of any other progressing transition. This occurs iff the re-
stricted domain D0 = D ∩ {τ0 ≤ τp ∀ tp ∈ T progr(Σ)} is not
empty, where T progr(Σ) denotes the set of transitions that are pro-
gressing in Σ. The probability that t0 fires is derived in a different
manner by distinguishing the following cases:

• If all progressing transitions have deterministic time-to-fire,
then t0 is selected in the random switch with progressing
transitions tp having the same time-to-fire as that of t0 (i.e.,
tp ∈ T progr(Σ) such that bp0 = b0p = 0):

µ0 =
C(t0)

C(t0) +
∑

tn 6= t0 ∈ T progr(Σ)
with bp0 = b0p = 0

C(tp)
.

(2)

• If at least a progressing transition has distributed time-to-
fire and the projection of D0 that eliminates all variables in
U and V has null measure (i.e., ||D0 ↓U,V || = 0), then

µ0 = 0. This occurs iff a time-to-fire exists that was dis-
tributed before the conditioning that yields D0 and becomes
synchronized or deterministic after the conditioning.

• If at least a progressing transition has distributed time-to-fire
and the projection of D0 that eliminates all variables in U
and V has non-null measure (i.e., ||D0 ↓U,V || 6= 0), then
µ0 is the joint probability that the vector of times-to-fire τ
takes a value such that τ0 is not lower than that of any other
progressing transition and t0 is selected in the random switch
among all of the progressing transition that have the same
time-to-fire as that of t0:

µ0 =
C(t0)

C(t0) +
∑

tn 6= t0 ∈ Tprogr(Σ)
with bp0 = b0p = 0

C(tp)

·
∫
D0↓U,V

f〈τage,τQ〉(xage, xQ)dxagedxQ.

(3)

If µ0 > 0, the marking m′ and the set of newly-enabled transi-
tions are derived according to the spTPN semantics. The support
D′ of the time vector 〈τ ′age, τ ′〉 after the firing of t0 and the PDF
f〈τ ′age,τ

′
Q
〉 are derived according to the following steps, regarding

τage as a persistent time-to-fire.

Conditioning. The assumption that t0 is the next transition to
fire conditions 〈τage, τ〉 and yields a new random variable 〈τaage, τa〉
= 〈τage, τ | τ0 ≤ τp ∀ tp ∈ T progr(Σ)〉 ranging withinD0. Thus,
〈τaage, τaQ〉 is distributed over D0 ↓U,V according to:

f〈τaage,τ
a
Q
〉(xage, x) =

f〈τage,τQ〉(xage, x)

µ0
, (4)

where x = 〈x0, x1, ..., xN−1〉. The assumption that µ0 > 0
guarantees that the conditioning leaves the 〈Q,U, V 〉 partition un-
changed so that 〈Qa, Ua, V a〉 = 〈Q,U, V 〉.

Time advancement. At the firing of t0, the age and times-
to-fire of progressing transitions are reduced by the time-to-fire
value of t0 given by τa0 , while those of suspended transitions re-
main unchanged. This yields a new random variable 〈τ bage, τ b〉 =
〈τaage−τa0 , τa1 −τa0 , ..., τaP−1−τa0 , τaP , ..., τaN−1, ...τ

a
M−1〉, where:

τP = 〈τa1 , ..., τaP−1〉 is the vector of distributed times-to-fire that
are progressing; τS = 〈τaP , ..., τaN−1〉 is the vector of distributed
times-to-fire that are suspended; and, τaN , ..., τaM−1 are times-to-
fire that are either deterministic or synchronized. As synchronized
times-to-fire result from multiple progressing deterministic timers
that persist at the firing of a distributed timer, each of them is al-
ways progressing and synchronized with a distributed time-to-fire.

This step is then developed in a different manner depending on
whether τa0 is deterministic, distributed, or synchronized with a dis-
tributed variable.

• If τa0 is deterministic, the 〈Q,U, V 〉 partition does not change.
The support Db is derived from Da through a constant shift
of progressing timers and f〈τbage,τ

b
Q
〉 is expressed as:

f〈τbage,τ
b
Q
〉(xage, x)

= f〈τaage,τ
a
Q
〉(xage + x0, x0, xP + x0, xS)dx0,

(5)

where x = 〈x1, x2, . . . , xN−1〉, xP = 〈x1, x2, . . . , xP−1〉,
and xS = 〈xP , xP+1, . . . , xN−1〉.

• If τa0 is distributed, the 〈Q,U, V 〉 partition may change.
Specifically, distributed times-to-fire remain distributed; pro-
gressing deterministic times-to-fire become distributed but

117



remain synchronized among themselves, thus one is added
toQb while the other ones are added to V b; suspended deter-
ministic times-to-fire remain deterministic; progressing times-
to-fire that are synchronized with τa0 become deterministic;
progressing times-to-fire that are synchronized with a dis-
tributed time-to-fire τah 6= τa0 remain synchronized with it.

The treatment proceeds in a different manner depending on
whether i) all distributed timers are progressing, ii) all dis-
tributed timers are suspended, or iii) some distributed timer
is progressing and some is suspended. In all these cases, the
derivation also distinguishes whether some time-to-fire is de-
terministic or not.

i) If all distributed timers are progressing and no time-to-
fire is deterministic, then f〈τbage,τ

b
Q
〉 is obtained by shifting

all the components by the value of τa0 and by eliminating it
through a projection:

f〈τbage,τ
b〉(xage, x)

=

∫ Max0(xage,x)

Min0(xage,x)

f〈τaage,τ
a〉(xage + x0, x0, xP + x0)dx0

(6)
with x = 〈x1, ..., xP−1〉 and [Min0(xage, x), Max0(xage,
x)] being the support of all possible values of τa0 . As in [16,
15], this may partition Db ↓U,V into a finite set of DBM
subdomains over which f〈τbage,τ

b〉 accepts a piece-wise rep-
resentation.

Otherwise, if all distributed timers are progressing and some
time-to-fire is deterministic, let τaP be the deterministic time-
to-fire that becomes distributed. Then f〈τbageτ

b
Q
〉 has global

analytic representation over DBM domain Db:

f〈τbage,τ
b〉(xage, x) = f〈τaage,τ

a〉(xage − xP −Bp∗,
−xP −Bp∗, x− xP −Bp∗),

(7)
where x = 〈x1, . . . , xP−1〉.
ii) If some distributed timer is progressing and some is sus-
pended, Db takes the form of a linear convex polyhedron.

If no time-to-fire is deterministic, then f〈τbage,τ
b〉 accepts a

piece-wise representation over a partition of Db into a finite
set of polyhedral subdomains. The problem is overcome by
approximating Db through its tightest embedding DBM and
by approximating f〈τbage,τ

b〉 through Bernstein polynomials.

Otherwise, if some time-to-fire is deterministic, then a de-
terministic timer becomes distributed and the other ones be-
come synchronized with it. According to this, f〈τbage,τ

b〉 ac-

cepts a global analytic representation over Db:

f〈τbage,τ
b〉(xage, x) = f〈τaage,τ

a〉(xage − xP ,
−xP +Bp∗, xP − xP +Bp∗, xS),

(8)

where x = 〈x1, . . . , xP−1〉. To resort to a global analytic
representation over a DBM domain, also in this case Db and
f〈τbage,τ

b〉 are approximated as in the previous case.

iii) If all distributed timers are suspended and no time-to-fire
is deterministic, then f〈τbage,τ

b〉 is derived through a projec-
tion that eliminates τa0 :

f〈τbage,τ
b〉(xage, x)

=

∫ Max0(xage,x)

Min0(xage,x)

f〈τaage,τ
a〉(xage, x0, x)dx0,

(9)

where x = 〈xP , . . . , xN−1〉. Also in this case, f〈τbage,τ
b〉 ac-

cepts a piece-wise representation over a partition ofDb ↓U,V
into a finite set of DBM subdomains.
Otherwise, if all distributed timers are suspended and some
time-to-fire is deterministic, then a deterministic timer be-
comes distributed and the other ones become synchronized
with it. Hence, this case can be reduced to the case where
some distributed timer is progressing and some is suspended.

• If τa0 is synchronized with some τ bι0 ∈ Q
b, this case can be

reduced to the previous one by swapping τ b0 and τ bι0 in the
partition of the sets V b and Qb.

Disabling. At the firing of t0, multiple transitions may be dis-
abled and a new time vector is derived by repeatedly eliminating
the time-to-fire of each of them according to the following step.
Let td be a disabled transition and 〈τ cage, τ c〉 be the random vari-
able yielded by the elimination of its time-to-fire τ bd . Three cases
are distinguished depending on whether τ bd is deterministic, or dis-
tributed and synchronized with some element of V b, or distributed
and not synchronized with any element of V b.

• If τ bd is deterministic or synchronized, it can be removed
without changing τ bQ and f〈τbage,τ

b
Q
〉, i.e., τ cQ = τ bQ and

f〈τcage,τ
c
Q
〉 = f〈τbage,τ

b
Q
〉.

• If τ bd is distributed and synchronized with some τ bι1 ∈ V b,
this case can be reduced to the previous one by swapping τ bd
and τ bι1 in the partition of the sets Qb and V b.

• If τ bd is distributed but not synchronized with any element of
V b, then its elimination reduces by one element τ bQ. Let τ bd
occupy the first position in τ bQ, i.e., τ bd = τ b1 . Its elimination
yields a new random variable 〈τ cage, τ c〉 = 〈τ bage, τ b2 , . . . ,
τ bM−1〉 ranging within Dc = Db ↓τ1 and f〈τcage,τ

c
Q
〉 is de-

rived by marginalizing f〈τbage,τ
b
Q
〉 with respect to τ b1 :

f〈τcage,τ
c〉(xage, x)

=

∫ Max1(xage,x)

Min1(xage,x)

f〈τbage,τ
b〉(xage, x1, x)dx1

(10)

where x = 〈x2, . . . , xN−1〉.
As in [16, 15], this step may partition Dc ↓U,V into a fi-
nite set of DBM subdomains over which f〈τcage,τ

c〉 accepts a
piece-wise representation.

Newly enabling. At the firing of t0, multiple transitions may be
newly-enabled and a new time vector is derived by adding the time-
to-fire of each of them according to the following step. Let tN be a
newly-enabled transition with static PDF fN (xN ) supported over
[EFTN , LFTN ]. The time vector is extended with its time-to-fire
τdN , yielding a new random variable 〈τdage, τd〉 = 〈τdage, τd2 , ...,
τdM−1, τ

d
N 〉 ranging over D′ = Dc × [EFTN , LFTN ]. In partic-

ular, if tN has point-like firing interval (i.e., EFTN = LFTN ),
then τdN is added to U ′ without changing τ cQ and f〈τcage,τ

c
Q
〉, i.e.,

τdQ = τ cQ and f〈τdage,τ
d
Q
〉 = f〈τcage,τ

c
Q
〉. Otherwise, if tN has dis-

tributed firing interval (i.e., EFTN 6= LFTN ), then τdN is added
to Q′ and the joint PDF of τage and τdQ is obtained as:

f〈τdage,τ
d
Q
〉(xage, x, xN ) = f〈τcage,τ

c
Q
〉(xage, x) · fN (xN ), (11)

where x = 〈x2, . . . , xN−1〉.
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3.2.4 Approximation of transient classes
If the model does not include transitions that can be suspended,

the support of the time vector 〈τage, τ〉 can be encoded as a Dif-
ferent Bounds Matrix (DBM) zone [43, 5, 24], i.e., the set of solu-
tions of a system of linear inequalities constraining the difference
between the times-to-fire of any two enabled transitions (includ-
ing τage, which is regarded as an always-persistent time-to-fire,
and a fictitious time-to-fire τ∗, which denotes the ground time of
the class): τi − τj ≤ bij ∀ i 6= j ∈ {∗, age, 0, 1, ..., N − 1}
and bij ∈ R ∪ {∞}. For instance, we consider the example of
Fig. 2, where all transitions are assumed to be uniformly distributed
over their supports. In the initial class, transitions t10, t20, t30,

Figure 2: An example with uniformly distributed transitions.

and t40 are newly enabled and thus independently distributed. Ac-
cording to this, in the initial stochastic class Σ0, the marking is
m0 = p10 p30 p40 and the time vector 〈τ10, τ20, τ30, τ40〉 is dis-
tributed according to f1(τ10, τ20, τ30, τ40) = 1 over D0:

D0 =


0 ≤ τ10 − τ? ≤ 1
0 ≤ τ20 − τ? ≤ 1
5 ≤ τ30 − τ? ≤ 6
5 ≤ τ40 − τ? ≤ 6

In the initial class, τage is a deterministic timer (equal to 0) and
thus it is not included in the support D0 which refers to distributed
timers, as it will better emerge in Sect. 3.2.5.

The DBM form is closed with respect to the steps of derivation of
successor classes, enabling their efficient computation and encod-
ing in polynomial timeO((N+1)2) with respect to the cardinality
(N + 1) of the time vector 〈τage, τ〉. Moreover, the joint PDF of
τage and τ accepts a piece-wise representation over a partition of
the support into DBM sub-domains and its symbolic form can be
derived through an efficient closed-form calculus [16] if all tran-
sitions of the model have expolynomial distribution. For instance,
in the example of Fig. 2, after the subsequent firings of t10 and
t11, a stochastic class Σ2 is reached with marking m2 = p30p40.
In Σ2, t30 and t40 are both persistent while t10, t11, and t20 are
all disabled. The time vector τ ′ = 〈τ ′age, τ ′30, τ ′40〉 turns out to be
distributed according to a piece-wise density function f2 over D2:

D2 =



−3 ≤ τ ′age − τ ′∗ ≤ 0
2 ≤ τ ′30 − τ ′∗ ≤ 6
2 ≤ τ ′40 − τ ′∗ ≤ 6
−1 ≤ τ ′30 − τ ′40 ≤ 1
5 ≤ τ ′30 − τ ′age ≤ 6
5 ≤ τ ′40 − τ ′age ≤ 6

f2(τ ′30, τ
′
40, τ

′
age) =

 0.5 if τ ′ ∈ D2
1

−τ ′age − 0.5 (τ ′age)
2 if τ ′ ∈ D2

2

4.5 + 3 τ ′age + 0.5 (τ ′age)
2 if τ ′ ∈ D2

3

with D2
1 = D2 ∩ {−2 ≤ τ ′age ≤ −1, 3 ≤ τ ′30 ≤ 5, 3 ≤ τ ′40 ≤ 5},

D2
2 = D2 ∩ {−1 ≤ τ ′age ≤ −0, 4 ≤ τ ′30 ≤ 6, 4 ≤ τ ′40 ≤ 6}, and,

D2
3 = D2 ∩ {−3 ≤ τ ′age ≤ −2, 2 ≤ τ ′30 ≤ 4, 2 ≤ τ ′40 ≤ 4}. As

an example, Fig. 3 shows the (DBM) projection ofD2 on the space
of timers τ ′30 and τ ′40:

30 ⌧

⌧

30

40

1 2 4 5 6

1

2

3

4

5

6

'

'

Figure 3: The joint support of 〈τ ′30, τ ′40〉 of the model of Fig. 2
after the subsequent firings of t10 and t11.

Conversely, if the model includes transitions that can be sus-
pended, the support of the time vector 〈τage, τ〉 breaks the DBM
structure and takes the form of a linear convex polyhedron [11, 6].
With reference to the example of Fig. 2, we consider the case when
t30 and t40 require a resource res with priority level 1 and 2, re-
spectively. At the firing of t10, transitions t30 is progressing while
transition t40 is suspended, reaching a stochastic class Σ1 with
marking m1 = p11 p30 p40 and time vector 〈τ ′age, τ ′11, τ ′30, τ ′40〉
distributed over the polyhedral support D1:

D1 =



−1 ≤ τ ′age ≤ 0 0 ≤ τ ′20 ≤ 1
4 ≤ τ ′30 ≤ 6 5 ≤ τ ′40 ≤ 6
−6 ≤ τ ′20 − τ ′30 ≤ −4 −7 ≤ τ ′20 − τ ′40 ≤ −4
0 ≤ τ ′20 − τ ′age ≤ 1 −2 ≤ τ ′30 − τ ′40 ≤ 1
5 ≤ τ ′30 − τ ′age ≤ 6 −7 ≤ τ ′age − τ ′40 ≤ −5

−7 ≤ −τ ′40 − τ ′20 ≤ −4 (∗)
−12 ≤ −τ ′40 − τ ′30 ≤ −9 (∗)
−6 ≤ −τ ′40 − τ ′age ≤ −4 (∗)
9 ≤ −τ ′20 + τ ′30 + τ ′40 ≤ 12 (∗)
−1 ≤ τ ′20 − τ ′30 + τ ′40 ≤ 2 (∗)
5 ≤ −τ ′age + τ ′20 + τ ′40 ≤ 7 (∗)
4 ≤ τ ′age − τ ′20 + τ ′40 ≤ 6 (∗)
10 ≤ −τ ′age + τ ′30 + τ ′40 ≤ 12 (∗)
−1 ≤ τ ′age − τ ′30 + τ ′40 ≤ 1 (∗)

Specifically, the constraints denoted by (∗) are not linear inequali-
ties constraining the difference between two timers, but they rather
involve more than two timers or the sum of two timers. This actu-
ally makes D1 break the form of a DBM zone.

In principle, polyhedral domains could be managed through the
Parma Polyhedra Library [3], which is currently used by several ap-
plications in the field of analysis and verification of hardware and
software systems. In the practice, manipulation of polyhedral do-
mains would lead to exponential complexity for derivation and en-
coding of successor classes, impairing efficient enumeration of the
state-space. In [11], in a non-deterministic perspective, the prob-
lem of polyhedral domains is circumvented by resorting to an over-
approximation that replaces supports with their tightest embedding
DBM zones. The analysis technique of [11] also supports the exact
identification of feasible timings of selected paths through an al-
gorithm that cleans up false behaviors produced by the approxima-
tion, enabling efficient verification of reachability properties under
timing constraints and real-time deadlines. Porting the approxi-
mation approach of [11] from a non-deterministic to a stochastic
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perspective comprises a more difficult challenge. In fact, the sup-
port takes the form of a linear convex polyhedron and the joint PDF
of the time vector 〈τage, τ〉 assumes a global analytic form over a
partition of the support into sub-domains that are no longer DBM
zones but rather polyhedra themselves. The presence of polyhedral
constraints also increases the complexity of the analytic form of
PDFs. In fact, in each subdomain, the lower and the upper bound
of a timer can be not only a constant or a monovariate linear func-
tion of a single component of the time vector, but also a bivariate
linear function of two components of the time vector. This takes
relevance in the subsequent integrations performed to enumerate
successor classes.

We address both aspects of the problem by relying on a twofold
approximation of timing domains and density functions. On the
one hand, we replace polyhedral supports with their tightest embed-
ding DBM as in the non-deterministic approach of [11]. This adds
false behaviors but still preserves all timings that would be feasible
for the exact representation of domains. On the other hand, we ap-
proximate piece-wise density functions through multivariate Bern-
stein polynomials [34, 38], extending the approximation technique
that was devised and experimented in [16] for steady-state analysis
of non-preemptive models. Bernstein approximants can be derived
in a straightforward manner by weighting a kernel of multivariate
monomials according to the samples of the approximated density
functions taken over a regular grid. As a matter of fact, replac-
ing piece-wise density functions with global approximants actually
perturbs the distribution of feasible behaviors and also associates
false behaviors with a non-null probability. In positive, the proba-
bility of false behaviors can be reduced by assigning null value to
the samples that belong to the tightest embedding DBM but not to
the polyhedron.

In principle, both the limits deriving from the approximation of
domains and densities could be overcome by working on the com-
plexity of the Bernstein approximant. In fact, as the number of
samples goes to infinity and those samples that belong to the ex-
tended DBM support but not to the exact polyhedron are assigned
zero value, the Bernstein approximant uniformly converges to the
approximated function with an error bounded by a Lipschitz in-
equality [34], provided that the approximated function is contin-
uous (which is the case of our density functions). Of course, the
number of samples used in the approximation is finite. Actually,
Bernstein polynomials turn out to be very good at providing a rough
approximation of density functions with the benefit of simplicity of
derivation, much less in converging to the approximated function
with tight accuracy. Yet, other approximants could be considered.

3.2.5 On the effect of suspension on DET transitions
In stochastic analysis of non-preemptive models [44, 30], multi-

ple timers {τi}i∈I may have a deterministic delay ∆ with respect
to a distributed timer τk and we call them synchronized with τk:
τi = τk + ∆ ∀ i ∈ I , i.e., τi − τk = ∆, ∀ i ∈ I . For
instance, consider the case when a timer τ1 takes values over the
interval [0, 3] and a timer τ2 is bound to have a deterministic delay
∆ = 5 with respect to τ1, thus varying within [5, 8] (for illustration
purposes, the variable τage is not considered in the example). The
domain D12 of the time vector 〈τ1, τ2〉 has the following form:

D12 =

 0 ≤ τ1 − τ∗ ≤ 3
5 ≤ τ2 − τ∗ ≤ 8
5 ≤ τ2 − τ1 ≤ 5

where all constraints are in DBM form. In particular, the con-
straint τ2− τ1 = 5 is expressed by the couple of linear inequalities
τ1 − τ2 ≤ −5 and τ2 − τ1 ≤ 5. Fig. 4 illustrates domain D12,

making evident that it has null measure due to the presence of the
synchronized timer τ2.

8
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30

D12
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1
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Figure 4: A bivariate DBM domain D12 with dimension
||D21|| = 0 as τ2− τ1 is bound to assume a deterministic value.

Synchronized timers arise when a set of DET transitions, enabled
in the same class or in classes with a deterministic distance between
their entering times, persist at the firing of a distributed transition.
In the specific application context addressed in this paper, this oc-
curs for transition accounting for periodic task releases, which are
simultaneously enabled at each hyper-period and enabled within a
deterministic time gap at any other task activation. This condition
is illustrated by the model of Fig. 5, which includes two determinis-
tic transitions t1 and t2 accounting for the periodic releases of two
tasks with period of 5 time units and 10 time units, respectively.
Both t1 and t2 are enabled at each multiple of 10 time units, and
t1 is also enabled 5 time units after each time it is enabled with
t2. The model also includes a distributed t3 with support [2, 5], ac-
counting for the release time of a sporadic task with minimum and
maximum inter-arrival time equal to 2 and 5, respectively.

Figure 5: A trivial model with two deterministic transitions t1
and t2 and a uniformly distributed transition t3.

When multiple DET transitions persist at the firing of a dis-
tributed transition, one of these DET transitions becomes distributed
while the other ones are synchronized with it. This is the case that
occurs in the example of Fig. 5 when the deterministic transitions
t1 and t2 persist at the firing of the distributed transition t3. In
this example, in the initial class, each transition takes values within
its static firing interval and the domain D123 of the time vector
〈τ1, τ2, τ3〉 has the following form:

D123 =

 5 ≤ τ1 − τ∗ ≤ 5
10 ≤ τ2 − τ∗ ≤ 10
2 ≤ τ3 − τ∗ ≤ 5

At the firing of t3, the times-to-fire of t1 and t2 are reduced by the
time-to-fire of t3 while t3 is regarded as newly enabled, leading
to a new class where τ1 is distributed over the support [5, 8], τ2 is
bound to have a deterministic delay equal to 5 with respect to τ1,
and τ3 is distributed over the interval [2, 4]. According to this, the
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time domain of the class reached through the firing of t3 is D′123:

D′123 =


0 ≤ τ1 − τ∗ ≤ 3
5 ≤ τ2 − τ∗ ≤ 8
5 ≤ τ2 − τ1 ≤ 5
2 ≤ τ3 − τ∗ ≤ 5

which is actually equal to domain D12 shown in Fig. 4 plus the
inequalities that constrain τ3 within its static firing interval [0, 2],
i.e., D′123 = D12 ∪ {2 ≤ τ3 − τ∗ ≤ 5}. It is worth noting that,
when a synchronized timer persists at the firing of a distributed
timer, then it either becomes deterministic (if it is synchronized
with the firing transition), or it remains synchronized with the same
distributed transition with the same deterministic delay (otherwise).
This maintains synchronization constraints in DBM form across
subsequent derivations of successor classes.

As shown by the example of Fig. 4, when a class includes DET
timers and/or synchronized timers, its time domain has null mea-
sure. The problem is circumvented by restraining the stochastic
characterization to a minimal set of timers that are sufficient to de-
termine all feasible values for variables of the time domain. This
basically consists in maintaining the joint PDF of distributed timers
and τage, while avoiding a stochastic characterization of determin-
istic and synchronized timers. The solution also reduces the num-
ber of managed variables, limiting the complexity of encoding and
computation of classes.

Unfortunately, when the solution technique encompasses sus-
pension and resumption of timers, the way how deterministically
dependent timers synchronize with each other becomes much more
complicated to manage. In fact, it may be the case that multiple
timers become synchronized according to a constraint that breaks
the limit of a DBM equality and takes the form of a linear con-
vex polyhedral equality. Specifically, the unfavorable case occurs
when multiple DET or synchronized timers persist at the firing of
a distributed timer and at least on of them is i) progressing and
synchronized with a suspended (distributed) timer or ii) suspended
and synchronized with a progressing distributed timer that is not
coincident with the time-to-fire of the firing transition. For in-
stance, consider the model of Fig. 6, which extends the example
of Fig. 5 by chaining transition t3 with a deterministic transition
t4 requiring a resource res with priority level 1 and with a tran-
sition t5 distributed over [0, 3]. Resource res is also required by
transition t2 with (lower) priority level 2. In the initial class, the

Figure 6: A variant of the model of Fig. 5.

enabled transitions are all progressing (as res is requested only
by t2) and the vector 〈τ1, τ2, τ3〉 is supported over D123. When
t3 fires: t1 and t2 are persistent and progressing and their times-
to-fire are reduced by that of t3, which is regarded as newly en-
abled; t4 and t5 are also enabled. According to this, in the ar-
rival class, the time vector 〈τ1, τ2, τ3, τ4, τ5〉 is distributed over
D1234 = D′123 ∪ {1 ≤ τ4 ≤ 1, 0 ≤ τ5 ≤ 3}. Specifically, in

this class: τ1, τ3, and τ5 are progressing distributed timers, τ2 is
a suspended timer synchronized with τ1, and τ4 is a deterministic
progressing timer. At the subsequent firing of t5 (which is disabled
in the class reached through its firing), the values of τ1, τ3, and τ4
are reduced by the value of τ1, while τ2 is not changed, yielding a
new time vector 〈τ ′1, τ ′2, τ ′3, τ4〉 = 〈τ1 − τ5, τ2, τ3 − τ5, τ ′4 − τ5〉.
According to this, τ ′2 remains equal to τ1 + 5. By subsequently
applying the substitutions τ1 = τ ′1 + 5 and τ5 = τ4− τ ′4 = 1− τ ′4,
we obtain that τ ′2 = τ ′1 − τ ′4 + 6, which is not an equality in DBM
form but rather a linear convex polyhedral equality. The deriva-
tion of the exact form of these synchronizations requires exponen-
tial complexity in the number of synchronized timers and would
impair efficient enumeration of the state space. Note that these
polyhedral constraints are additional with respect to those polyhe-
dral constraints that may involve distributed timers, which are well
managed through the approximation of both domains and density
functions as sketched in Sect. 3.2.4.

In the context of a model-driven approach to the development of
real-time SW components, a timer may arise from a timeout, from
the inter-release time of a periodic or a sporadic task, from a de-
terministic offset or a non-deterministic jitter between subsequent
task releases, or from the execution time of a computation. In the
practice, DET timers mainly represent temporal parameters that are
never suspended (i.e., timeouts, task periods, and release offsets),
while distributed timers account both for temporal parameters that
are never suspended (i.e., inter-release times of asynchronous tasks
and release jitters) and for temporal parameters that can be sus-
pended (i.e., the execution time of a computation). Whereas DET
temporal parameters representing the execution time of computa-
tions that can be suspended are often considered in the literature,
they actually correspond to an approximation abstraction that re-
places the actual execution time with its Worst Case Execution
Time (WCET). In fact, in the practice, the code of a chunk com-
putation is usually characterized by multiple execution paths de-
pending on the input values, which results in a non-pointlike spec-
trum of possible execution times. According to this, without loss
of generality, we can safely assume that DET transitions are never
suspended, i.e., DET transitions do not require resources (or require
resources with higher priority level than that of any other transition
requiring at least one of those resources). Thus, DET transitions
are always progressing in every class where they are enabled. As
a direct consequence, any synchronized timer is always progress-
ing and the distributed timer that it is synchronized with is also
progressing. In the theoretical perspective, this rules out the case
of polyhedral constraints among synchronized timers, maintaining
synchronization constraints in the form of DBM equalities which
can be efficiently managed as in [44, 30]. In the applicative per-
spective, this permits to use DET transitions to model timeouts, de-
lays, and synchronous release times, but not computation chunks,
which nevertheless does not reduce the expressive capabilities of
the approach with respect to the models at hand.

Note that the applicability of the proposed solution technique
could be lifted to encompass various other special cases, e.g., a
single possibly suspended DET transition (which mainly accounts
for a preemptable computation with DET execution time), multi-
ple DET transitions that are bound to be all progressing or all sus-
pended in each class (which primarily model concurrent computa-
tions with DET execution time that can undergo preemption only
simultaneously), and multiple DET transitions requiring some re-
sources with higher priority level than that of any other transition
requiring at least one of those resources (such DET transitions can-
not be suspended by construction and represent concurrent compu-
tations with a DET execution time running at maximum priority).
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4. COMPUTATIONAL EXPERIENCE
We illustrate the potentials of the proposed solution technique

in the evaluation of real-time task-sets. The approach supports the
derivation of transient probabilities of reachable states of concur-
rency, which comprise all the possible combinations of task com-
putations that are concurrently ready, running, or blocked. As an
example of probabilistic measures that can be evaluated, we de-
rive the transient probability that a task holds a semaphore and the
transient probability that a task misses a deadline. To this end,
the task-set purposely includes a trivial case of priority inversion,
which causes a job of the high-priority task to be released before
the previous job is completed. Priority inversion could be avoided
through many techniques of program structuring, for instance by
applying a priority ceiling emulation protocol [41]. Accuracy of the
approximated analysis is assessed by comparing analytic transient
probabilities against simulation results. Both analysis and simula-
tion were performed through the Sirio Framework [17, 19] on an
Intel Core i7 laptop processor.

4.1 Three concurrent synchronized tasks
Fig. 7 shows the representation of a non-deterministic task-set

introduced in [11], which is here extended with a stochastic charac-
terization that associates each transition with a distribution (times
are expressed in ms). The task-set includes a high-priority peri-
odic task Tsk1 with period of 50 ms, a mid-priority sporadic task
Tsk2 with an inter-arrival time falling within [100, 300] ms, and a
low-priority periodic task Tsk3 with period of 150 ms. Moreover,
Tsk1 and Tsk3 are synchronized on a binary semaphore named
mutex. To fulfill the assumption that deterministic timers are al-
ways progressing, transitions t11 and t31, which were IMM in the
original model of [11], are here associated with a non-pointlike fir-
ing interval. Note that this change increases not only the complex-
ity of the model, but also its validity, as semaphore operations are
actually time-consuming. With respect to [11], the task-set com-
plexity is also increased by reducing the maximum inter-release
time of Tsk2 from +∞ to 300 ms. Moreover, the support of the
computations (i.e., t12, t21, and t32) is enlarged to increase the
probability of a deadline miss of Tsk1 and observe this behavior
also in simulation, obtaining a ground truth for analytical results.

Figure 7: The model of a task-set with three concurrent tasks
and a binary semaphore.

In the model of Fig 7, t10 and t30, representing periodic task
releases of Tsk1 and Tsk2, are associated with Dirac delta distri-
butions centered at 50 and 150 ms, respectively. We assume that
the remaining transitions have uniform distribution over their firing
intervals, i.e., t20, representing sporadic releases of Tsk2; t12, t21
and t32, accounting for the execution times of computations; t11
and t31, modeling semaphore acquisition operations.

4.2 Experimental results
Transient analysis of the task-set of Fig. 7 is repeated for values

3, 5, and 7 of the maximum polynomial degree of each variable in
the multivariate Bernstein approximation (degree for short), adopt-
ing an error threshold of ε = 0.01 on the total unallocated prob-
ability within the time limit of 300 ms and evaluating transient
probabilities at multiples of 0.5 ms. The enumeration yields 938,
935 and 851 transient classes for degree 3, 5, and 7 in 3, 8, and 97
minutes, respectively, while the simulation of 2, 000, 000 runs took
about an hour. For increasing values of the degree, the decreasing
number of transient classes can be ascribed to the increasing num-
ber of samples of the approximated PDFs that belong to the tightest
embedding DBM but not to the polyhedron. As these samples are
assigned null probability, false behaviors introduced by the approx-
imation of supports have lower probability and, thus, the number of
transient classes decreases.

The complexity of the analysis is impacted by the number of
transient classes. This depends on the number feasible events within
the time bound, which is determined by: the number of concurrent
tasks (especially sporadic tasks), the ratio between the minimum
temporal parameter and the hyper-period of the task-set, and the
mean time-to-fire duration [11]. The complexity of the analysis
is also impacted by the complexity of density functions, which is
affected by different factors for approximated and exact transient
classes. In the former case, it depends on the polynomial com-
plexity of Bernstein approximants, determined by the number of
samples. In the latter case, it depends on the complexity of domain
partitioning and expolynomial functions [16]. For the task-set of
Fig. 7, a significant number of transient classes include preemptive
behaviors, and thus the computation time increases with the degree.

As an example, Fig. 8 plots the transient probability that the
semaphoremutex is held by Tsk1, which corresponds to the prob-
ability of any marking where place p12 contains a non-null number
of tokens (and, by construction, place mutex contains no tokens).
The analysis follows the trend of the simulation with sufficient ac-
curacy, but the error becomes more relevant for behaviors undergo-
ing repeated approximations of domains and densities.
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Figure 8: Probability that mutex is held by Tsk1 for the task-
set of Fig. 7 with uniformly distributed execution times.
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Transient analysis also evidences traces where the high prior-
ity task Tsk1 undergoes a priority inversion with respect to Tsk3.
This occurs when Tsk1 is blocked on semaphoremutex (acquired
and not yet released by Tsk3) and a job of Tsk2 preempts Tsk3,
leading Tsk1 to miss its deadline. Fig. 9 shows the transient prob-
ability that two jobs of Tsk1 are active, i.e., Tsk1 is in a marking
m such that m(p11) + m(p12) > 1. This condition is caused by
a deadline miss of Tsk1, which is deterministically bound to oc-
cur at time 250 ms. The probability associated with the peak at
250 ms (0.11 in the simulation and nearly 0.14 in the analysis)
corresponds to the probability of having a deadline miss for Tsk1
before 300 ms. After the deadline miss, the task-set recovers from
the condition of having two active jobs of Tsk1, reaching a mark-
ing m′ such that m′(p11) + m′(p12) ≤ 1 before the subsequent
release of Tsk1 at 300 ms.

In this case, the approximation affects the transient reward in
a more substantial manner, by prolonging the maximum time re-
quired for the recovery, which is 270 ms in the simulation and
290 ms according to the analysis. This is a combined effect of the
approximation of supports and density functions, which results in
false behaviors with non-null probability that lower the probability
of feasible behaviors. As a future direction, the error introduced by
the extension of domains could be evaluated on a per-class basis
and employed in the computation of an error bound on the analysis
results, thus extending the cleanup procedure of [11] in a proba-
bilistic perspective.
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5. CONCLUSIONS
We proposed a novel solution technique for transient analysis

of real-time systems having non-Markovian temporal parameters
and running under fixed-priority preemptive scheduling. The ap-
proach extends [30] so as to encompass suspension and resumption
of timers taking values over a non-deterministic support, which en-
ables the representation of concurrent computations with an execu-
tion time constrained between a minimum and a maximum value.
As a notable trait, the approach addresses models that may also
include deterministic timers that are bound to be never suspended,
which is crucial to represent key features of real-time programming
such as timeouts, offsets, and periodic task releases.

In the theoretical perspective, the approach faces major chal-
lenges due to the presence of progressing and suspended non-
Markovian timers. This exacerbates the complexity of the analy-
sis, yielding time vectors distributed over polyhedral supports ac-
cording to probability density functions that assume a piece-wise

analytical form over a partition of the support in polyhedral sub-
domains. The issue is circumvented through the approximation of
both domains and density functions, by replacing the exact dis-
tributions with global Bernstein approximants supported over the
tightest embedding DBM zones of polyhedral domains. It is worth
stressing that the proposed solution technique relies on the approx-
imation of joint multivariate PDFs in the state-space rather than
on the approximation of monovariate PDFs in the model structure.
This opens the way to the analysis of other classes of models that
break the structure of DBM time domains, e.g., hybrid systems and,
notably, multi-rate systems.

In the applicative perspective, the approach is amenable to smooth
integration within a MDD methodology that was proven to be vi-
able in a non-deterministic perspective [18, 25], providing decisive
support for schedulability analysis and performance engineering of
real-time systems while avoiding to disrupt consolidated practices
of design and documentation. Specifically, since the very initial
steps of software design, the approach permits to derive a quan-
titative formal specification of the task-set where unknown distri-
butions of temporal parameters are tentatively guessed by analogy
with previous realizations. This supports rapid exploration of the
design space and early performance validation of design assump-
tions, long before the model is actually implemented on a real-time
system. During the iterations of the development process, the tem-
poral distributions are refined according to the results of the execu-
tion time profiling technique implemented in [18, 25], by deriving
expolynomial distributions that fit the measured histograms. As a
significant aspect, this comprises the main effort on the part of the
developer to manage a stochastic characterization of timers.
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