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ABSTRACT 
In this paper, we provide an overview over the PaaSage project’s 
approach to helping the developer in exploiting cloud 
environments according to their specific needs and requirements. 
Classical software engineering methodologies no longer apply in 
multi-tenant, elastic environments, if the full capabilities for cost 
reduction and availability are to be exploited. PaaSage aims at 
offering software engineering extensions covering the full 
application lifecycle from deployment to execution. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems, D.1 [Programming Techniques], D.2.11 [Software 
Engineering]: Software Architectures, I.2.5 [Artificial 
Intelligence]: Programming Languages and Software - Expert 
system tools and techniques 

Keywords 
Application Decomposition, Quality of Service, Development 
Support, Software Engineering Tools, Programming Expert 
System 

1. INTRODUCTION  
Cloud computing is revolutionising the Information Technology 
industry through its support for utility service-oriented Internet 
computing without the need for large capital outlays in hardware 
to deploy their service or the human expense to operate it. 

Currently there exist several open source and commercial 
offerings at the Infrastructure as a Service (IaaS) level, like 
Windows Azure, Amazon Elastic Compute Cloud, Flexiant 
Flexiscale, Eucalyptus, OpenNebula and many others. Software 
developers targeting the Cloud would ideally want to develop 
their software once and be able to deploy it on any of the 
available offerings, reaping the benefits of a Cloud market 
without losing on performance, availability, or any other service 
properties. An impediment to this objective is that IaaS Cloud 
platforms are heterogeneous, and the services and Application 
Programmer Interfaces (APIs) that they provide are not 
standardised. These platforms even tend to impose a specific 
architecture on deployed applications. Accordingly, there is a 
significant dependency between client applications and the 

services provided by the platform, which is not well specified or 
appropriately communicated to the user. Knowledge with respect 
to which use case is most suited for which platform and how to 
exploit these features is therefore hard and costly to gain (cf. [1]). 

It is generally up to the developer to specify and exploit these 
characteristics to her best knowledge. This however is the general 
crux: not only will the typical developer neither know how to use 
these characteristics, nor how they impact on the overall 
behaviour, and what is more, how they relate to a given Cloud 
infrastructure. This is complemented by the fact that most 
infrastructures do not even offer support to exploit these 
characteristics, such as location control, specification of scale out 
behaviour and so forth. 

The paper is structured as follows: in section 2 we investigate the 
problems faced by potential cloud uptakers, outlining what kind 
of information is required by the developer to fully exploit the 
cloud capabilities. In the following section, we will elaborate how 
PaaSage contributes to generating and providing this kind of 
expertise and how the developer can make use of it. Section 4 will 
exemplify the benefits of this approach in a very concrete use 
case of wide public interest. We conclude the paper with section 
5. 

2. CLOUD WITH NO SILVER LINING 
Even though clouds offer a high potential in reducing cost and 
increasing efficiency, reaching this potential is difficult for 
multiple reasons. Foremost, there is still a lack of experience how 
to build and maintain an application that can really exploit the 
system capabilities and still adheres to the requirements of the use 
case, respectively its users.  

This is particularly due to the fact that applications exploiting 
these capabilities need to adhere to opposing principles at the 
same time: they need to scale seamlessly, but should maintain 
data consistency; they need to be highly available, but should 
reduce the number of resources used; they should be accessible 
from anywhere anytime, but need to be secure etc. 

In order to fulfill these requirements, it is primarily necessary to 
(1) completely change the application structure, catering e.g. for 
different degrees of consistency and scalability. However, the 
characteristics of an application are not only defined by its 
structure / architecture, but are also highly influenced by (2) the 
capabilities of the underlying hosting infrastructure. Typically, 
different providers offer different capabilities and thus serve 
different needs – in particular for more complex applications, a 
combination of characteristics is needed though, depending on 
usage and requirements.  

Combined deployment and usage of “multi-cloud” requires 
however not only understanding of usage and impact of the 
system characteristics, but also (3) high expertise in deployment 
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and configuration of the environment to fully exploit its features, 
since all providers not only offer different resources, but also 
different ways of dealing with them. The following sections will 
elaborate these aspects in more detail: 

2.1 Development  
Any application can essentially be regarded as a workflow, 
following a graph model. Modern software engineering principles 
base on services as software structures, where effectively each 
service can be compared to a task in the application workflow, 
thus leading to a higher level of granularity.  

A good developer will try to break down the overall application 
requirements into sub-requirements per each task. The 
relationship between these aspects is however hardly ever clear 
and it generally requires a lot of experience and expertise on 
behalf of the developer to actually estimate the impact of each 
individual module’s behavior on the overall application. 

Whilst some general methodologies can be applied, such as 
applying asynchronous execution of some tasks, limiting the 
response times through time-outs etc., the general decomposition 
of these properties is still difficult. For example, how much a 
background task affects overall execution time due to resource 
sharing, how insecure the overall application becomes from an 
insecure database connection, whether consistency is maintained 
if two tasks are invoked asynchronously etc. 

Non-functional properties, such as performance, security, safety, 
reliability and in particular cost play a major role in acceptance 
and usability, and hence success of an application. Good software 
teams will therefore build strongly on such expertise to build the 
code accordingly.  

With the introduction of clouds, this decomposition problem has 
increased manifold in complexity: no longer is it just the 
properties of the application as a single structure that have to be 
analysed and maintained, but instead the whole usage context 
needs to be taken into consideration. 

Complex modern cloud applications are designated by integration 
of multiple different services and the necessity to be 
(dynamically) available for multiple users whilst reducing the 
resource load. The primary factors that add to classical 
application structures therefore are: (1) system specifics and (2) 
multi-tenancy behavior.  

Figure 1: a simple application workflow 

We can illustrate this with a very simple application providing 
data visualization to users consisting of a graphical user interface, 
a statistical database analyzer and a visualization service for 
displaying the resulting data (cf. Figure 1). 

This code structure is sufficient for classical software engineering 
principles, i.e. for a single instance, single user environment. 
When the capabilities should be shared between multiple users, 
however, further aspects need to be taken into consideration, such 

as which data is shared under which conditions, which tasks / 
results can be reused etc. 

In the given example, the requirements may lead to e.g. the GUI 
being required per each user (separate views, interactivity), the 
statistics being partially shared (same tasks), and the database 
being shared between all users. Visualisation in turn may be 
reused again and again for different data, if the cost for multiple 
instances is too high etc. thus leading to a dynamic view as 
depicted in Figure 2. 

This should not be confused with a deployment or an extended 
relationship view, as the actual number of instances and their 
dependencies are mostly defined by the number of users and their 
specific requirements, respectively their context of usage. This 
can hardly be depicted with modern tools, or even modeling 
languages such as UML, let alone that there is a clear way of 
breaking down the conditions into requirements per task / module.  

Figure 2: a simple application workflow 

In more complex cases, even the boundaries between the modules 
will become less clear, making it even more difficult for the 
developer to specify the behavior or even to exploit. Generally so 
far, it requires highly skilled and experienced developers to 
generate applications that are typically highly adjusted to the 
specific use case, users and… the environment: 

2.2 Provider Selection  
As noted, each task exhibits different requirements for its best 
functioning, due to the usage conditions on the one hand, but also 
due to the specific implementation details on the other.  

With respect to the example scenario in the preceding section, e.g. 
the database task is ideally hosted in an environment dedicated to 
databases, whereas statistics may require higher computing power 
and visualization benefits from GPU support – each of which may 
be offered through specialized PaaS providers dedicated to 
analysis and visualization tasks. In the simplest case, a single 
provider offers all the capabilities.  

In particular on the level of PaaS, providers offer specific 
operation support dedicated to the type of platform offered. This 
generally improves the capabilities and reduces the development 
overhead for generating the application. At the same time, it 
increases the risk that the application is locked into that specific 
provider, i.e. that movement to another provider in the future 
becomes more difficult – this is however slightly outside the 
scope of this paper. Obviously, further criteria that play an 
immediate role are cost and potential legalistic concerns. 

In complex, distributed cases, even more factors play a role in 
provider selection, though. First of all, no single provider will 
generally be able to satisfy all specified needs, but instead each 
provider will typically only address parts of the requirements, so 
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that either a compromise has to be found or a combination of 
providers need to be engaged. 

Distributed deployment over different providers leads to implicit 
communication and interaction problems that have less impact in 
a local deployment. The distribution therefore needs to be 
carefully aligned with the task relationships. This is complicated 
even more by the circumstance that instances of each task (and 
therefore within any cloud environment) may be replicated and 
relocated dynamically. This means that the communication to and 
with it may alter dynamically, depending on the relative location 
and concurrent access to it. 

In order to compensate for this behavior appropriately and in 
order to control the overall behavior according to the general 
requirements, the developer therefore not only has to provide the 
logical information of the code itself, but also of the tasks within 
the cloud. In other words, he has to provide the code logic and the 
behavioural logic in terms of how the tasks / instances replicate, 
relocate, scale down etc. 

This obviously leads back to the problem of specialization and 
implicitly of vendor lock-in, since each provider exposes his own 
way of such control and what monitoring information is offered. 
Further to this, the developer needs to implement the necessary 
communication mechanisms across these provider boundaries, not 
only in terms of message exchange between the instances, but 
also in terms of monitoring information that influences the 
behavior of related instances: 

2.3 Deployment 
As indicated, the developer cannot simply select the most 
appropriate providers and deploy his task(s) in the according 
infrastructure / platform. Instead he will first of all have to adapt 
the code to the specifics of the respective provider – in particular 
in terms of exposed APIs and supported operations. What is more, 
however, he will have to encode the monitoring-control 
information in some form that allows enactment of the cloud-
specific behavior within the destination platform. 

This includes in particular such aspects as how and when to create 
new instances, how to maintain communication links, how and 
where to relocate instances etc. but implicitly also monitoring 
data such as current load, response time, number and location of 
instances etc. Not only do the providers offer different 
information and different capabilities, but more importantly, they 
expose different APIs to execute these operations, respectively to 
request the necessary monitoring data.  

This means foremost that the developer will have to (re)program 
the respective task(s) for each destination provider individually 
and thus also has a problem migrating an application to another 
provider. This is commonly referred to as “vendor lock-in” and 
poses a serious issue in efficient usage of cloud environments. 

What is more however, also the way of deploying an instance into 
a provider environment can vary strongly, non-regarding common 
image formats such as OVF by DMTF [2]. This affects not only 
the way in which the image provided, but also the interaction with 
the provider’s infrastructure. Frequently enough, this requires 
human interaction which is difficult to automate, thus limiting the 
degree of dynamicity.  

Due to these circumstances, application providers are generally 
stuck to the selected providers, once their application has been 
created (respectively adapted) and the details for deployment been 
elaborated. This implicitly means that a large amount of effort has 

to be invested into the creation and deployment, and that 
dynamicity beyond the boundaries of the respective provider(s) is 
not possible, i.e. incorporating further clouds in order to extend 
the capabilities is only possible with a high degree of effort on 
behalf of the developer / application provider. 

2.4 Consequences 
All in all, developers and application providers face multiple 
problems when trying to adapt or create an application that makes 
effective use of the cloud infrastructure. Typical approaches will 
simply try to package and deploy the application as a whole 
without explicitly making use of the cloud capabilities. This may 
effectively lead to higher costs than straight-forward deployments 
in a dedicated data centre, depending on how well the application 
scales out as a whole and how dynamically it is used. 

To make actual use of the cloud capabilities, expertise and 
experience is generally lacking, let alone an appropriate 
development and support tool. Such tools would have to be able 
to help in the decomposition of the properties and aligning them 
to the modular architecture of the application, and assess the 
impact of a given deployment on the fulfillment of these 
properties. The properties are however strongly influenced by the 
actual use case, i.e. expected usage behavior, so that additional 
information of this type needs to be provided. 

Effectively, this means that the full application and usage context 
needs to be analysed when structuring and developing the data. 
Any support system therefore needs to integrate right into the full 
design process and use the information gained to support the 
adaptation and deployment process – this means transformation of 
the code for the respective destination cloud, provisioning of 
monitor-control loops for behavior enactment and injection of 
appropriate communication mechanisms to maintain data 
exchange according to the workflow specifications. 

 

Figure 3: the analysis and usage cycle according to PaaSage 

In order to create the desired behavior, it is implicitly necessary to 
monitor the behavior of the tasks / modules at execution time and 
on the one hand enact adaptation processes in accordance with the 
behavior policies generated during the design and modularization 
and on the other hand, distribute the information to all instances 
directly affected by the behavior, so that the application as a 
whole can react accordingly. 

This information can be put back into context of the usage 
scenario and the selected deployment, so that it may be helpful to 
reinvestigate it in future adaptation and deployment cycles. 
PaaSage aims furthermore at exploiting this information for 
further improvement of the tool’s knowledge base and thus 
capability extension. PaaSage thus foresees a development 
support cycle as depicted in Figure 3.  
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3. THE PaaSAGE TO THE FUTURE 
This chapter will elaborate the concrete support by PaaSage in 
more detail. 

3.1 Architecture 
There are three main components in our vision: 

1. An integrated development environment (IDE) 
extending the popular open source development 
platform Eclipse supporting our Cloud Modelling 
Language (CloudML) and integrating the various 
components developed by PaaSage. 

2. The executionware dealing with the platform specific 
mapping of the application to the architectural model 
and Application Programming Interfaces (APIs) of the 
execution infrastructure of the Cloud provider, and with 
capabilities of monitoring the running application and 
possible reconfiguration to optimise its behaviour. 

3. The upperware which is a collection of tools and 
components used to assist the application development 
or porting at design time, and then integrate with the 
execution ware at run-time to facilitate the optimisation 
of the running application and execution platform.  

These main parts should all integrate on the same service and 
component metadata database containing historical information 
about past service invocations like the cost of execution, the 
performance date for different execution platforms and Cloud 
providers. It should be possible for a developer to draw on  
metadata gathered by other users of the same Cloud  platform or 
software service This is important since many properties are 
stochastic and having more data available allows better decisions. 

Obviously, it is thereby up to the user whether to share this 
information in the first instance. 

This workflow covers the following logical steps (cf. Figure 4): 

3.1.1 Application definition 
If the starting point is an existing application, it is first passed 
through the profiler trying to understand the structure of the 
application, and to  automatically provide a starting point for the 
Cloud application model. The speculative profiler1 will try to 
build automatically a starting point for the Cloud ML application 
model, and estimate initially as many of the model's parameters as 
possible. A new application can be directly defined in the 
modelling language using the IDE. 

3.1.2 The application model 
PaaSage aims to cater for all types of applications, including 
parallel applications. Traditionally they have an architectural 
model consisting of a Directed Acyclic Graph (DAG) essentially 
defining the different execution models or processes of the 
application and how data is passed from one module to the next as 
execution progresses. Any application that can be seen as a 
composition of services can be viewed in this way. The DAG 
view is simplistic, as re-entrant processes or iterations requires 
cycles, and a good model will need not only a formal syntax for 
describing the relation among modules, the edges of the graph, 
but also a rich semantics with quite complex structures on the 
edge modelling the relationship between two successive modules; 
and the pre- and post-constraints for execution of each module. 

                                                                 
1 Observe that there are two uses for the output of the speculative 
profiler: The one simplistically indicated in this step, where the 
Cloud ML model is build, and another where the Cloud ML 
application is profiled. 

 

Figure 4: the detailed PaaSage workflow 
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The model will also specify the data flow model, with annotations 
covering the volume of data, the storage location and potentially 
the format of the exchanged data. Finally, the model must also 
include extra functional properties and the user's preferences for 
maximised utility - for example shortest possible execution time 
of a module, or minimal execution cost with a trade-off on how to 
balance these two potentially conflicting properties.  

3.1.3 The design time optimisation loop 
The modules and services defined in the application model can be 
seen as examples drawn from the broader class of similar modules 
and services available in the market. The role of the speculative 
profiler in the design optimisation loop is to draw on the stored 
historical metadata information on the modules and services, and 
map out alternative realisations of the application2. Note that this 
also includes choices for the execution – e.g. a data intensive 
application should be executed close to the data, whereas 
computationally intensive modules will benefit from the fastest 
possible execution platform. The intelligent stochastic reasoner 
will then try to find a feasible realisation satisfying the constraints 
of the application when the historical metadata statistics are taken 
into account.  Finally, the adaptation module evaluates 
alternatives and identifies variation points and "triggers", or 
thresholds, on extra functional properties like cost or execution 
time that can be used at run-time to initiate a "re-planning" of the 
application. For instance, a given slow service may be proposed 
by the reasoner minimising the cost, however if the application 
execution time violates a threshold this should be replaced by a 
faster, but more expensive alternative implementation. The 
adaptation module will also identify potential alternative service 
providers. The end result of this optimisation is an enhanced and 
annotated application model with provided values for expected 
values of constraints and extra functional properties informing the 
developer that executing this particular application realisation will 
take this long on average and is expected to cost this much. If this 
result is unsatisfactory for the user, she can then decide to revert 
to the modelling in step 2 to use other services or modules or 
change the application structure or parameters. If the feasible 
realisation is acceptable the user may decide to proceed to 
execution in the next step. 

3.1.4 The execution optimisation loop 
The first and major step in this loop is the instantiation of the 
application and the mapping of its modules to the architectures 
and APIs of the underlying execution environments. The core 
idea of PaaSage is to offer full flexibility to mix and match the 
best offerings from private Clouds with various commercial 
Cloud offerings and services, thus the typical mapping will be to 
map the application on many execution platforms. The result of 
this mapping is the source code of the distributed application. If 
necessary for a new application, the different communicating 
modules can then be implemented by programmers; or if this is a 
module of a legacy application the functionality can be imported 
from the corresponding legacy module.  The final stage of the 
mapping is to deploy the code on the execution platforms. During 

                                                                 
2 Please note that owing to the "combinatorial explosion", i.e. 
exponential growth in the number of possible realisations, we do 
not intend to construct them all. This is where the speculation 
comes in, as the profiler will try to use past experience and 
heuristics to identify only realisations that are likely to be 
feasible. 

execution, the different modules will be monitored. The data 
gathered serves two purposes: Firstly, it is fed back to populate 
the metadata database improving the knowledge of historical 
modules and services executions. Secondly, if some of the 
thresholds identified by the adapter during the design time 
optimisation are exceeded, the execution control is triggered to do 
a "models@runtime" adaptation and redeployment of the 
application. However, there could be cases where there is no 
better variant ready for execution identified at design time. In this 
case the execution controller may decide to invoke again the 
speculative profiler, then the stochastic reasoner, and the adaption 
to produce a new feasible application that will be mapped and 
deployed. Note that this optimisation will typically be performed 
with constraints different from the original ones with the objective 
to improve the execution of the remaining modules of the 
application run, so that the original execution targets for the 
application can be met. This optimisation may also be undertaken 
at the normal application termination in order to perform better 
next time the application is executed. 

3.2 The Issues 

Realising PaaSage architecture is highly challenging. However, 
this challenge has to be met if it is to be made possible to deploy 
elastic services across different CLOUD platforms. 

One major issue thereby is the metadata which is (a) stored in the 
metadata database and (b) wrapped around the black box artefacts 
(services, components) of PaaSage. The metadata database 
includes not only the metadata associated with the 
characterisation of the artefacts themselves (partitioned into 
functional and non-functional sets of attributes) but also the 
historical information of required characteristics (SLA, QoS) and 
the characteristics actually achieved in execution under PaaSage. 

The functional attributes cover the functional signature of the 
artifact, i.e. the variables (or data structures) input and output 
together with any functional control parameters such as optional 
controls (e.g. fixpoint, termination point, precision required).  The 
non-functional requirements come at different levels: the user 
requirement level (e.g. elapsed execution time or execution 
termination point, execution time, cost) and at the systems 
requirement level (e.g. need for multicore, need for GPUs,  
latency limits, memory requirements, dataset dependencies - 
including locality). 

It is thereby not so much the problem to identify the right 
metadata, but in particular to break it down into specific 
actionable attributes for each module that the executionware can 
apply at runtime. As such, the executionware in itself faces more 
technical challenges and constraints (API exposed by the 
infrastructure, monitorable data etc.) than a complex logic. One 
particular aspect worth mentioning in this context consists in the 
challenge of maintaining data consistency and communication 
over boundaries that were not directly foreseen by the application 
itself. It must thereby be kept in mind that the monitor-control 
loop creates further communication overhead (with the metadata-
database, other modules etc.) that further impacts on performance. 
Thus, resiliency and adaptability must be carefully weighed 
against performance of the whole system. 

3.3 The Method 

The architectural design is framed by (a) end-user requirements, 
documented as a high-level business case, a ‘recipe’ of processing 
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steps and a UML diagram; (b) the exploitation plans of the project 
partners balancing the desire for an open platform with additional 
features for commercial exploitation by the software vendors but 
also for the application stakeholders.  Within this framing - and 
coordinated by the architectural design - the upperware and 
executionware will be designed, closely linked with and by the 
CML (CLOUD Modelling Language) and the metadatabase. 

4. SERVICES FOR THE CITIZENS 
Applications in the public sector are well placed to illustrate the 
above concepts. Such applications will typically consist of an 
integration of many legacy applications, as well as interfaces 
where the citizens can provide input or get access to information 
stored on them by the public authorities. As an example one may 
consider an automated tax bill application. This will typically link 
with one or more public registers showing who lives where, 
collect information about income from employers and wealth 
from various banks using some kind of unique key, and 
information about family constellations from other registers. The 
amount of taxes due should be computed based on the legal 
framework and a tax form should be produced for each citizen. 
Finally, the citizens may themselves be invited to log into the 
system to verify and confirm the information. The final tax bill 
may then again serve as the basis for various social security 
support systems.  

It is intuitively understandable that developing this application 
will entail integrating a huge amount of applications offered as 
services by a variety of private and public institutions, with 
provider specific data protocol mappers and interfaces. Therefore, 
just designing the application as a workflow or data flow among 
different sub-systems and modules is a challenge in its own right.  

Deploying such an application in the Cloud is currently 
prohibitively difficult. There are conflicting concerns related to 
the handling of personal data which should not be put in the 
Cloud versus the elasticity of the application. There are legacy 
systems and databases, which might have been optimised for 
certain computing platforms (mainframes), and cannot be easily 
virtualised. Finally, there may be budget constraints for the 
different organisations involved that limits the flexibility.  

When this application is designed for the cloud it is important that 
all these constraints can be modelled in order to ensure that the 
legal requirements are satisfied. For instance, tightly coupled 
modules like the database containing the sensitive information on 
income and wealth should be placed in the same datacentre as the 
modules running the algorithms for the tax computations. For 
privacy reasons this datacentre should be within the national 
borders. However, for performance issues one might want to 
distribute the data on the citizens across several databases, for 
instance based on their domestic locality, and then run the tax 
computations in parallel. Thus, one would establish a private 
Cloud with several national datacentres.  

When the computations are done, one might expect that many 
citizens would want to check their tax bills when it is released so 
that there will be a huge load on the web servers for a limited 
amount of time. This part of the application could in principle be 
delegated to the public Cloud provided that one can establish a 
secure and scalable way to grant access and display or record 
information. For the tax authorities it would be cost efficient to 
rent a huge amount of virtual servers for a limited time period 
instead of investing in hardware that would remain unused for 

most of the fiscal year.  The application model must in this case 
capture the modules that can be deployed as multiple instances, 
together with the appropriate architecture for load balancing the 
incoming user sessions and the back-end database requests, and 
provide mechanisms to deploy these on heterogeneous Clouds. 

The application life-cycle finally entails monitoring of the 
running application, and ability to self-optimise in case of 
bottlenecks and self-heal in case of errors. These short term 
corrective actions must be supplemented with feedback to the 
application developer aiding the design time optimisation of both 
the structural application model as well as the deployment goals. 
Over time, this will enable the application to provide the best 
possible service to the citizens, and to guide public investments in 
both hardware and software to the places needed for removing 
bottlenecks. 

5. CONCLUSION AND FUTURE WORK 
As has been shown by this paper, full exploitation of future 
(cloud-based) infrastructures leads to multiple challenges that 
have not been properly addressed so far. In fact, to develop an 
application that really benefits from the cloud capabilities requires 
a high degree of experience and expertise by the developer – 
which cannot really be expected yet. Future approaches must not 
only address the programmability, but in particular mechanisms to 
incorporate essential expertise right from the beginning.  

The paper has presented PaaSage’s approach, which essentially 
aims at extending the capabilities of the developer to generate 
efficient cloud applications. In other words, builds a combined 
programming and execution environment that incorporates this 
expertise throughout the whole lifecycle. The project thus not 
only generates the necessary tools, but provides adjusted 
programming and execution principles that directly address 
explicit challenges and cloud provider / user will face and that 
current principles don’t reflect. 

It has been shown how applications developed according to these 
principles allow the developer to address multiple platforms with 
reduced effort in decomposing the non-functional requirements, 
as well as deploying the application in a fashion that these 
conditions are met and data relationships are maintained. PaaSage 
thus not only paves the way towards efficient cloud computing, 
but also towards exploitation and realization of federated clouds. 
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