
A Vision for Better Cloud Applications
Keith Jeffery

STFC
Harwell Oxford

Didcot OX11 0QX UK
+44 7768 446088

keith.jeffery@stfc.ac.uk

Geir Horn
SINTEF

Forskningsveien 1
0314 Oslo, Norway

+47 93 05 93 35
Geir.Horn@sintef.no

 Lutz Schubert
HLRS

Nobelstr. 19
70569 Stuttgart, Germany

+49 711 685 87262
schubert@hlrs.de

ABSTRACT
In this paper, we provide an overview over the PaaSage project’s
approach to helping the developer in exploiting cloud
environments according to their specific needs and requirements.
Classical software engineering methodologies no longer apply in
multi-tenant, elastic environments, if the full capabilities for cost
reduction and availability are to be exploited. PaaSage aims at
offering software engineering extensions covering the full
application lifecycle from deployment to execution.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems, D.1 [Programming Techniques], D.2.11 [Software
Engineering]: Software Architectures, I.2.5 [Artificial
Intelligence]: Programming Languages and Software - Expert
system tools and techniques

Keywords
Application Decomposition, Quality of Service, Development
Support, Software Engineering Tools, Programming Expert
System

1. INTRODUCTION
Cloud computing is revolutionising the Information Technology
industry through its support for utility service-oriented Internet
computing without the need for large capital outlays in hardware
to deploy their service or the human expense to operate it.

Currently there exist several open source and commercial
offerings at the Infrastructure as a Service (IaaS) level, like
Windows Azure, Amazon Elastic Compute Cloud, Flexiant
Flexiscale, Eucalyptus, OpenNebula and many others. Software
developers targeting the Cloud would ideally want to develop
their software once and be able to deploy it on any of the
available offerings, reaping the benefits of a Cloud market
without losing on performance, availability, or any other service
properties. An impediment to this objective is that IaaS Cloud
platforms are heterogeneous, and the services and Application
Programmer Interfaces (APIs) that they provide are not
standardised. These platforms even tend to impose a specific
architecture on deployed applications. Accordingly, there is a
significant dependency between client applications and the

services provided by the platform, which is not well specified or
appropriately communicated to the user. Knowledge with respect
to which use case is most suited for which platform and how to
exploit these features is therefore hard and costly to gain (cf. [1]).

It is generally up to the developer to specify and exploit these
characteristics to her best knowledge. This however is the general
crux: not only will the typical developer neither know how to use
these characteristics, nor how they impact on the overall
behaviour, and what is more, how they relate to a given Cloud
infrastructure. This is complemented by the fact that most
infrastructures do not even offer support to exploit these
characteristics, such as location control, specification of scale out
behaviour and so forth.

The paper is structured as follows: in section 2 we investigate the
problems faced by potential cloud uptakers, outlining what kind
of information is required by the developer to fully exploit the
cloud capabilities. In the following section, we will elaborate how
PaaSage contributes to generating and providing this kind of
expertise and how the developer can make use of it. Section 4 will
exemplify the benefits of this approach in a very concrete use
case of wide public interest. We conclude the paper with section
5.

2. CLOUD WITH NO SILVER LINING
Even though clouds offer a high potential in reducing cost and
increasing efficiency, reaching this potential is difficult for
multiple reasons. Foremost, there is still a lack of experience how
to build and maintain an application that can really exploit the
system capabilities and still adheres to the requirements of the use
case, respectively its users.

This is particularly due to the fact that applications exploiting
these capabilities need to adhere to opposing principles at the
same time: they need to scale seamlessly, but should maintain
data consistency; they need to be highly available, but should
reduce the number of resources used; they should be accessible
from anywhere anytime, but need to be secure etc.

In order to fulfill these requirements, it is primarily necessary to
(1) completely change the application structure, catering e.g. for
different degrees of consistency and scalability. However, the
characteristics of an application are not only defined by its
structure / architecture, but are also highly influenced by (2) the
capabilities of the underlying hosting infrastructure. Typically,
different providers offer different capabilities and thus serve
different needs – in particular for more complex applications, a
combination of characteristics is needed though, depending on
usage and requirements.

Combined deployment and usage of “multi-cloud” requires
however not only understanding of usage and impact of the
system characteristics, but also (3) high expertise in deployment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MultiCloud’13, April 22, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2050-4/13/04...$15.00.

7

and configuration of the environment to fully exploit its features,
since all providers not only offer different resources, but also
different ways of dealing with them. The following sections will
elaborate these aspects in more detail:

2.1 Development
Any application can essentially be regarded as a workflow,
following a graph model. Modern software engineering principles
base on services as software structures, where effectively each
service can be compared to a task in the application workflow,
thus leading to a higher level of granularity.

A good developer will try to break down the overall application
requirements into sub-requirements per each task. The
relationship between these aspects is however hardly ever clear
and it generally requires a lot of experience and expertise on
behalf of the developer to actually estimate the impact of each
individual module’s behavior on the overall application.

Whilst some general methodologies can be applied, such as
applying asynchronous execution of some tasks, limiting the
response times through time-outs etc., the general decomposition
of these properties is still difficult. For example, how much a
background task affects overall execution time due to resource
sharing, how insecure the overall application becomes from an
insecure database connection, whether consistency is maintained
if two tasks are invoked asynchronously etc.

Non-functional properties, such as performance, security, safety,
reliability and in particular cost play a major role in acceptance
and usability, and hence success of an application. Good software
teams will therefore build strongly on such expertise to build the
code accordingly.

With the introduction of clouds, this decomposition problem has
increased manifold in complexity: no longer is it just the
properties of the application as a single structure that have to be
analysed and maintained, but instead the whole usage context
needs to be taken into consideration.

Complex modern cloud applications are designated by integration
of multiple different services and the necessity to be
(dynamically) available for multiple users whilst reducing the
resource load. The primary factors that add to classical
application structures therefore are: (1) system specifics and (2)
multi-tenancy behavior.

Figure 1: a simple application workflow

We can illustrate this with a very simple application providing
data visualization to users consisting of a graphical user interface,
a statistical database analyzer and a visualization service for
displaying the resulting data (cf. Figure 1).

This code structure is sufficient for classical software engineering
principles, i.e. for a single instance, single user environment.
When the capabilities should be shared between multiple users,
however, further aspects need to be taken into consideration, such

as which data is shared under which conditions, which tasks /
results can be reused etc.

In the given example, the requirements may lead to e.g. the GUI
being required per each user (separate views, interactivity), the
statistics being partially shared (same tasks), and the database
being shared between all users. Visualisation in turn may be
reused again and again for different data, if the cost for multiple
instances is too high etc. thus leading to a dynamic view as
depicted in Figure 2.

This should not be confused with a deployment or an extended
relationship view, as the actual number of instances and their
dependencies are mostly defined by the number of users and their
specific requirements, respectively their context of usage. This
can hardly be depicted with modern tools, or even modeling
languages such as UML, let alone that there is a clear way of
breaking down the conditions into requirements per task / module.

Figure 2: a simple application workflow

In more complex cases, even the boundaries between the modules
will become less clear, making it even more difficult for the
developer to specify the behavior or even to exploit. Generally so
far, it requires highly skilled and experienced developers to
generate applications that are typically highly adjusted to the
specific use case, users and… the environment:

2.2 Provider Selection
As noted, each task exhibits different requirements for its best
functioning, due to the usage conditions on the one hand, but also
due to the specific implementation details on the other.

With respect to the example scenario in the preceding section, e.g.
the database task is ideally hosted in an environment dedicated to
databases, whereas statistics may require higher computing power
and visualization benefits from GPU support – each of which may
be offered through specialized PaaS providers dedicated to
analysis and visualization tasks. In the simplest case, a single
provider offers all the capabilities.

In particular on the level of PaaS, providers offer specific
operation support dedicated to the type of platform offered. This
generally improves the capabilities and reduces the development
overhead for generating the application. At the same time, it
increases the risk that the application is locked into that specific
provider, i.e. that movement to another provider in the future
becomes more difficult – this is however slightly outside the
scope of this paper. Obviously, further criteria that play an
immediate role are cost and potential legalistic concerns.

In complex, distributed cases, even more factors play a role in
provider selection, though. First of all, no single provider will
generally be able to satisfy all specified needs, but instead each
provider will typically only address parts of the requirements, so

8

that either a compromise has to be found or a combination of
providers need to be engaged.

Distributed deployment over different providers leads to implicit
communication and interaction problems that have less impact in
a local deployment. The distribution therefore needs to be
carefully aligned with the task relationships. This is complicated
even more by the circumstance that instances of each task (and
therefore within any cloud environment) may be replicated and
relocated dynamically. This means that the communication to and
with it may alter dynamically, depending on the relative location
and concurrent access to it.

In order to compensate for this behavior appropriately and in
order to control the overall behavior according to the general
requirements, the developer therefore not only has to provide the
logical information of the code itself, but also of the tasks within
the cloud. In other words, he has to provide the code logic and the
behavioural logic in terms of how the tasks / instances replicate,
relocate, scale down etc.

This obviously leads back to the problem of specialization and
implicitly of vendor lock-in, since each provider exposes his own
way of such control and what monitoring information is offered.
Further to this, the developer needs to implement the necessary
communication mechanisms across these provider boundaries, not
only in terms of message exchange between the instances, but
also in terms of monitoring information that influences the
behavior of related instances:

2.3 Deployment
As indicated, the developer cannot simply select the most
appropriate providers and deploy his task(s) in the according
infrastructure / platform. Instead he will first of all have to adapt
the code to the specifics of the respective provider – in particular
in terms of exposed APIs and supported operations. What is more,
however, he will have to encode the monitoring-control
information in some form that allows enactment of the cloud-
specific behavior within the destination platform.

This includes in particular such aspects as how and when to create
new instances, how to maintain communication links, how and
where to relocate instances etc. but implicitly also monitoring
data such as current load, response time, number and location of
instances etc. Not only do the providers offer different
information and different capabilities, but more importantly, they
expose different APIs to execute these operations, respectively to
request the necessary monitoring data.

This means foremost that the developer will have to (re)program
the respective task(s) for each destination provider individually
and thus also has a problem migrating an application to another
provider. This is commonly referred to as “vendor lock-in” and
poses a serious issue in efficient usage of cloud environments.

What is more however, also the way of deploying an instance into
a provider environment can vary strongly, non-regarding common
image formats such as OVF by DMTF [2]. This affects not only
the way in which the image provided, but also the interaction with
the provider’s infrastructure. Frequently enough, this requires
human interaction which is difficult to automate, thus limiting the
degree of dynamicity.

Due to these circumstances, application providers are generally
stuck to the selected providers, once their application has been
created (respectively adapted) and the details for deployment been
elaborated. This implicitly means that a large amount of effort has

to be invested into the creation and deployment, and that
dynamicity beyond the boundaries of the respective provider(s) is
not possible, i.e. incorporating further clouds in order to extend
the capabilities is only possible with a high degree of effort on
behalf of the developer / application provider.

2.4 Consequences
All in all, developers and application providers face multiple
problems when trying to adapt or create an application that makes
effective use of the cloud infrastructure. Typical approaches will
simply try to package and deploy the application as a whole
without explicitly making use of the cloud capabilities. This may
effectively lead to higher costs than straight-forward deployments
in a dedicated data centre, depending on how well the application
scales out as a whole and how dynamically it is used.

To make actual use of the cloud capabilities, expertise and
experience is generally lacking, let alone an appropriate
development and support tool. Such tools would have to be able
to help in the decomposition of the properties and aligning them
to the modular architecture of the application, and assess the
impact of a given deployment on the fulfillment of these
properties. The properties are however strongly influenced by the
actual use case, i.e. expected usage behavior, so that additional
information of this type needs to be provided.

Effectively, this means that the full application and usage context
needs to be analysed when structuring and developing the data.
Any support system therefore needs to integrate right into the full
design process and use the information gained to support the
adaptation and deployment process – this means transformation of
the code for the respective destination cloud, provisioning of
monitor-control loops for behavior enactment and injection of
appropriate communication mechanisms to maintain data
exchange according to the workflow specifications.

Figure 3: the analysis and usage cycle according to PaaSage

In order to create the desired behavior, it is implicitly necessary to
monitor the behavior of the tasks / modules at execution time and
on the one hand enact adaptation processes in accordance with the
behavior policies generated during the design and modularization
and on the other hand, distribute the information to all instances
directly affected by the behavior, so that the application as a
whole can react accordingly.

This information can be put back into context of the usage
scenario and the selected deployment, so that it may be helpful to
reinvestigate it in future adaptation and deployment cycles.
PaaSage aims furthermore at exploiting this information for
further improvement of the tool’s knowledge base and thus
capability extension. PaaSage thus foresees a development
support cycle as depicted in Figure 3.

9

3. THE PaaSAGE TO THE FUTURE
This chapter will elaborate the concrete support by PaaSage in
more detail.

3.1 Architecture
There are three main components in our vision:

1. An integrated development environment (IDE)
extending the popular open source development
platform Eclipse supporting our Cloud Modelling
Language (CloudML) and integrating the various
components developed by PaaSage.

2. The executionware dealing with the platform specific
mapping of the application to the architectural model
and Application Programming Interfaces (APIs) of the
execution infrastructure of the Cloud provider, and with
capabilities of monitoring the running application and
possible reconfiguration to optimise its behaviour.

3. The upperware which is a collection of tools and
components used to assist the application development
or porting at design time, and then integrate with the
execution ware at run-time to facilitate the optimisation
of the running application and execution platform.

These main parts should all integrate on the same service and
component metadata database containing historical information
about past service invocations like the cost of execution, the
performance date for different execution platforms and Cloud
providers. It should be possible for a developer to draw on
metadata gathered by other users of the same Cloud platform or
software service This is important since many properties are
stochastic and having more data available allows better decisions.

Obviously, it is thereby up to the user whether to share this
information in the first instance.

This workflow covers the following logical steps (cf. Figure 4):

3.1.1 Application definition
If the starting point is an existing application, it is first passed
through the profiler trying to understand the structure of the
application, and to automatically provide a starting point for the
Cloud application model. The speculative profiler1 will try to
build automatically a starting point for the Cloud ML application
model, and estimate initially as many of the model's parameters as
possible. A new application can be directly defined in the
modelling language using the IDE.

3.1.2 The application model
PaaSage aims to cater for all types of applications, including
parallel applications. Traditionally they have an architectural
model consisting of a Directed Acyclic Graph (DAG) essentially
defining the different execution models or processes of the
application and how data is passed from one module to the next as
execution progresses. Any application that can be seen as a
composition of services can be viewed in this way. The DAG
view is simplistic, as re-entrant processes or iterations requires
cycles, and a good model will need not only a formal syntax for
describing the relation among modules, the edges of the graph,
but also a rich semantics with quite complex structures on the
edge modelling the relationship between two successive modules;
and the pre- and post-constraints for execution of each module.

1 Observe that there are two uses for the output of the speculative
profiler: The one simplistically indicated in this step, where the
Cloud ML model is build, and another where the Cloud ML
application is profiled.

Figure 4: the detailed PaaSage workflow

10

The model will also specify the data flow model, with annotations
covering the volume of data, the storage location and potentially
the format of the exchanged data. Finally, the model must also
include extra functional properties and the user's preferences for
maximised utility - for example shortest possible execution time
of a module, or minimal execution cost with a trade-off on how to
balance these two potentially conflicting properties.

3.1.3 The design time optimisation loop
The modules and services defined in the application model can be
seen as examples drawn from the broader class of similar modules
and services available in the market. The role of the speculative
profiler in the design optimisation loop is to draw on the stored
historical metadata information on the modules and services, and
map out alternative realisations of the application2. Note that this
also includes choices for the execution – e.g. a data intensive
application should be executed close to the data, whereas
computationally intensive modules will benefit from the fastest
possible execution platform. The intelligent stochastic reasoner
will then try to find a feasible realisation satisfying the constraints
of the application when the historical metadata statistics are taken
into account. Finally, the adaptation module evaluates
alternatives and identifies variation points and "triggers", or
thresholds, on extra functional properties like cost or execution
time that can be used at run-time to initiate a "re-planning" of the
application. For instance, a given slow service may be proposed
by the reasoner minimising the cost, however if the application
execution time violates a threshold this should be replaced by a
faster, but more expensive alternative implementation. The
adaptation module will also identify potential alternative service
providers. The end result of this optimisation is an enhanced and
annotated application model with provided values for expected
values of constraints and extra functional properties informing the
developer that executing this particular application realisation will
take this long on average and is expected to cost this much. If this
result is unsatisfactory for the user, she can then decide to revert
to the modelling in step 2 to use other services or modules or
change the application structure or parameters. If the feasible
realisation is acceptable the user may decide to proceed to
execution in the next step.

3.1.4 The execution optimisation loop
The first and major step in this loop is the instantiation of the
application and the mapping of its modules to the architectures
and APIs of the underlying execution environments. The core
idea of PaaSage is to offer full flexibility to mix and match the
best offerings from private Clouds with various commercial
Cloud offerings and services, thus the typical mapping will be to
map the application on many execution platforms. The result of
this mapping is the source code of the distributed application. If
necessary for a new application, the different communicating
modules can then be implemented by programmers; or if this is a
module of a legacy application the functionality can be imported
from the corresponding legacy module. The final stage of the
mapping is to deploy the code on the execution platforms. During

2 Please note that owing to the "combinatorial explosion", i.e.
exponential growth in the number of possible realisations, we do
not intend to construct them all. This is where the speculation
comes in, as the profiler will try to use past experience and
heuristics to identify only realisations that are likely to be
feasible.

execution, the different modules will be monitored. The data
gathered serves two purposes: Firstly, it is fed back to populate
the metadata database improving the knowledge of historical
modules and services executions. Secondly, if some of the
thresholds identified by the adapter during the design time
optimisation are exceeded, the execution control is triggered to do
a "models@runtime" adaptation and redeployment of the
application. However, there could be cases where there is no
better variant ready for execution identified at design time. In this
case the execution controller may decide to invoke again the
speculative profiler, then the stochastic reasoner, and the adaption
to produce a new feasible application that will be mapped and
deployed. Note that this optimisation will typically be performed
with constraints different from the original ones with the objective
to improve the execution of the remaining modules of the
application run, so that the original execution targets for the
application can be met. This optimisation may also be undertaken
at the normal application termination in order to perform better
next time the application is executed.

3.2 The Issues

Realising PaaSage architecture is highly challenging. However,
this challenge has to be met if it is to be made possible to deploy
elastic services across different CLOUD platforms.

One major issue thereby is the metadata which is (a) stored in the
metadata database and (b) wrapped around the black box artefacts
(services, components) of PaaSage. The metadata database
includes not only the metadata associated with the
characterisation of the artefacts themselves (partitioned into
functional and non-functional sets of attributes) but also the
historical information of required characteristics (SLA, QoS) and
the characteristics actually achieved in execution under PaaSage.

The functional attributes cover the functional signature of the
artifact, i.e. the variables (or data structures) input and output
together with any functional control parameters such as optional
controls (e.g. fixpoint, termination point, precision required). The
non-functional requirements come at different levels: the user
requirement level (e.g. elapsed execution time or execution
termination point, execution time, cost) and at the systems
requirement level (e.g. need for multicore, need for GPUs,
latency limits, memory requirements, dataset dependencies -
including locality).

It is thereby not so much the problem to identify the right
metadata, but in particular to break it down into specific
actionable attributes for each module that the executionware can
apply at runtime. As such, the executionware in itself faces more
technical challenges and constraints (API exposed by the
infrastructure, monitorable data etc.) than a complex logic. One
particular aspect worth mentioning in this context consists in the
challenge of maintaining data consistency and communication
over boundaries that were not directly foreseen by the application
itself. It must thereby be kept in mind that the monitor-control
loop creates further communication overhead (with the metadata-
database, other modules etc.) that further impacts on performance.
Thus, resiliency and adaptability must be carefully weighed
against performance of the whole system.

3.3 The Method

The architectural design is framed by (a) end-user requirements,
documented as a high-level business case, a ‘recipe’ of processing

11

steps and a UML diagram; (b) the exploitation plans of the project
partners balancing the desire for an open platform with additional
features for commercial exploitation by the software vendors but
also for the application stakeholders. Within this framing - and
coordinated by the architectural design - the upperware and
executionware will be designed, closely linked with and by the
CML (CLOUD Modelling Language) and the metadatabase.

4. SERVICES FOR THE CITIZENS
Applications in the public sector are well placed to illustrate the
above concepts. Such applications will typically consist of an
integration of many legacy applications, as well as interfaces
where the citizens can provide input or get access to information
stored on them by the public authorities. As an example one may
consider an automated tax bill application. This will typically link
with one or more public registers showing who lives where,
collect information about income from employers and wealth
from various banks using some kind of unique key, and
information about family constellations from other registers. The
amount of taxes due should be computed based on the legal
framework and a tax form should be produced for each citizen.
Finally, the citizens may themselves be invited to log into the
system to verify and confirm the information. The final tax bill
may then again serve as the basis for various social security
support systems.

It is intuitively understandable that developing this application
will entail integrating a huge amount of applications offered as
services by a variety of private and public institutions, with
provider specific data protocol mappers and interfaces. Therefore,
just designing the application as a workflow or data flow among
different sub-systems and modules is a challenge in its own right.

Deploying such an application in the Cloud is currently
prohibitively difficult. There are conflicting concerns related to
the handling of personal data which should not be put in the
Cloud versus the elasticity of the application. There are legacy
systems and databases, which might have been optimised for
certain computing platforms (mainframes), and cannot be easily
virtualised. Finally, there may be budget constraints for the
different organisations involved that limits the flexibility.

When this application is designed for the cloud it is important that
all these constraints can be modelled in order to ensure that the
legal requirements are satisfied. For instance, tightly coupled
modules like the database containing the sensitive information on
income and wealth should be placed in the same datacentre as the
modules running the algorithms for the tax computations. For
privacy reasons this datacentre should be within the national
borders. However, for performance issues one might want to
distribute the data on the citizens across several databases, for
instance based on their domestic locality, and then run the tax
computations in parallel. Thus, one would establish a private
Cloud with several national datacentres.

When the computations are done, one might expect that many
citizens would want to check their tax bills when it is released so
that there will be a huge load on the web servers for a limited
amount of time. This part of the application could in principle be
delegated to the public Cloud provided that one can establish a
secure and scalable way to grant access and display or record
information. For the tax authorities it would be cost efficient to
rent a huge amount of virtual servers for a limited time period
instead of investing in hardware that would remain unused for

most of the fiscal year. The application model must in this case
capture the modules that can be deployed as multiple instances,
together with the appropriate architecture for load balancing the
incoming user sessions and the back-end database requests, and
provide mechanisms to deploy these on heterogeneous Clouds.

The application life-cycle finally entails monitoring of the
running application, and ability to self-optimise in case of
bottlenecks and self-heal in case of errors. These short term
corrective actions must be supplemented with feedback to the
application developer aiding the design time optimisation of both
the structural application model as well as the deployment goals.
Over time, this will enable the application to provide the best
possible service to the citizens, and to guide public investments in
both hardware and software to the places needed for removing
bottlenecks.

5. CONCLUSION AND FUTURE WORK
As has been shown by this paper, full exploitation of future
(cloud-based) infrastructures leads to multiple challenges that
have not been properly addressed so far. In fact, to develop an
application that really benefits from the cloud capabilities requires
a high degree of experience and expertise by the developer –
which cannot really be expected yet. Future approaches must not
only address the programmability, but in particular mechanisms to
incorporate essential expertise right from the beginning.

The paper has presented PaaSage’s approach, which essentially
aims at extending the capabilities of the developer to generate
efficient cloud applications. In other words, builds a combined
programming and execution environment that incorporates this
expertise throughout the whole lifecycle. The project thus not
only generates the necessary tools, but provides adjusted
programming and execution principles that directly address
explicit challenges and cloud provider / user will face and that
current principles don’t reflect.

It has been shown how applications developed according to these
principles allow the developer to address multiple platforms with
reduced effort in decomposing the non-functional requirements,
as well as deploying the application in a fashion that these
conditions are met and data relationships are maintained. PaaSage
thus not only paves the way towards efficient cloud computing,
but also towards exploitation and realization of federated clouds.

6. ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement n° 317715.

The views expressed in this paper are those of the authors and do
not necessarily represent those of the consortium.

7. REFERENCES
[1] Schubert, L., Jeffery, K., Neidecker-Lutz, B. (2012):

Advances in Clouds – Research in Future Cloud Computing.
Cordis (Online). Brussels, BE: European Commission.
Retrieved from. http://cordis.europa.eu/fp7/ict/ssai/docs/
future-cc-2may-finalreport-experts.pdf

[2] DMTF (2010): Open Virtualization Format Specification
v1.1.0. Retrieved from: http://dmtf.org/sites/default/files/
standards/documents/DSP0243_1.1.0.pdf

12

