
A Broker-based Framework for Multi-Cloud Workflows

Foued Jrad
∗

foued.jrad@kit.edu
Jie Tao

jie.tao@kit.edu
Achim Streit

achim.streit@kit.edu
Karlsruhe Institute of Technology KIT

Steinbuch Centre for Computing
Hermann-von-Helmholtz-Platz 1

Eggenstein-Leopoldshafen 76344, Germany

ABSTRACT
Computational science workflows have been successfully run
on traditional HPC systems like clusters and Grids for many
years. Today, users are interested to execute their workflow
applications in the Cloud to exploit the economic and tech-
nical benefits of this new emerging technology. The deploy-
ment and management of workflows over the current existing
heterogeneous and not yet interoperable Cloud providers,
however, is still a challenging task for the workflow devel-
opers. In this paper, we present a broker-based framework
for running workflows in a multi-Cloud environment. The
framework allows an automatic selection of the target Clouds,
a uniform access to the Clouds, and workflow data manage-
ment with respect to user Service Level Agreement (SLA) re-
quirements. Following a simulation approach, we evaluated
the framework with a real scientific workflow application in
different deployment scenarios. The results show that our
framework offers benefits to users by executing workflows
with the expected performance and service quality at lowest
cost.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.4 [Performance of Systems]: Modeling techniques, Per-
formance attributes; C.2.4 [Computer-Communication
Networks]: Distributed Systems

Keywords
Cloud Computing; Intercloud Computing; Cloud Broker;
Cloud Workflow; Multi-Cloud

1. INTRODUCTION
Workflow is a technology that allows users to split a com-

plex problem into small partitions that can be solved using
a single computing unit, like a computing node of a cluster

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MultiCloud’13, April 22, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2050-4/13/04 ...$15.00.

system. According to [12], scientific workflows are “coarse-
grained parallel applications that consist of a series of com-
putational tasks logically connected by data- and control-
flow dependencies”. The workflow technology has been well
established on different computing infrastructures, for ex-
ample, the Grid.

Following the Grid model, Cloud computing provides an-
other computing paradigm that focuses on the on-demand
provisioning of computing resources, including hardware,
software, storage and network. The concept of Cloud com-
puting has been commonly accepted by different scientific
domains. As the number of Cloud users has been widen-
ing, the number of Cloud providers is also continuously in-
creased. The currently available Cloud platforms distinguish
themselves in the service type, the cost, the Quality of Ser-
vice (QoS) as well as performance. This fact brings Cloud
customers the flexibility of freely selecting their target archi-
tecture from a broad range of Cloud platforms. However, it
raises at the same time the interoperability problem between
the different Clouds.

In the last years many researchers have migrated workflow
systems onto the Cloud. However, the current implementa-
tions mainly address a single Cloud. This means that the
workflow applications can still not be run on a federated en-
vironment that involves multiple Clouds. The approach of
running a workflow application within a single Cloud may
work well for workflows with small requirements on comput-
ing resources and small data input. Nevertheless, there are
scenarios where a single Cloud cannot run a workflow effi-
ciently as users are expecting, or even the workflow cannot
be deployed on a single Cloud. For example, some tasks of
a workflow application may have special demand on the un-
derlying hardware, which cannot be fulfilled by the target
Cloud. Large scientific workflows contain several thousands
of tasks, where the required computing and storage capac-
ity may exceed the limit of an individual Cloud platform.
Moreover, like any Cloud customer, workflow users also ex-
pect the best performance with the lowest payment. For
these use cases a multi-Cloud workflow framework that exe-
cutes workflow applications using multiple Clouds will show
its advantage in terms of service quality, cost-saving and
the capability of running workflows with specific hardware
requirements.

Motivated by the above considerations, this work devel-
oped a multi-Cloud workflow framework. The framework is
based on a Cloud service broker we actually developed for
automatically selecting a suitable Cloud for the users with
consideration of the users’ hardware requirements, SLAs of

61

the providers, as well as the cost and the load on a Cloud.
With the help of the service broker, different Clouds are
selected to run the workflow tasks towards a better perfor-
mance/cost behavior. For the workflow framework, we ex-
tended the service broker with a data management compo-
nent for dealing with the data flow across the workflow tasks.
We also implemented a scheduling mechanism to distribute
the workflow tasks to the selected Clouds. In summary, this
work made the following contributions:

1. A broker-based framework to support the execution of
workflow applications on a multi-Cloud environment.

2. A simulation environment to evaluate the framework.

3. The scheduling and matching policies for selecting the
suitable Clouds to run the workflow tasks based on the
user requirements.

4. An evaluation of the cost and performance gains of
running workflows on top of the broker framework.

The conducted simulation experiments show that our imple-
mented workflow framework offers benefits in term of per-
formance and cost compared to the use of a single Cloud.
We found that our proposed broker-based solution unbur-
dens the user in many ways from the complexity of choosing
the suitable providers for running workflow applications. We
demonstrated also how the use of state of the art Cloud stan-
dards can resolve the rising heterogeneity problem of Clouds
that hindered the multi-Cloud workflow deployment.

The rest of the paper is organized as follows: Section 2
presents the related work on workflow management systems
for Grid and Cloud. Section 3 describes the architecture
of the implemented broker-based workflow execution frame-
work. Section 4 presents the simulation-based environment
and the workflow application used to validate and evalu-
ate the framework. Section 5 shows the performance and
cost evaluation results gathered from the simulation experi-
ments. Finally, Section 6 concludes the paper and provides
the future work.

2. RELATED WORK
Cloud computing is a novel computing paradigm. How-

ever, it is based on existing technologies such as Grid and
utility computing. This section describes related work in the
field of workflow management on Grid and Cloud, where
the common problem as this work, i.e., how to automate
the deployment of service workflows over heterogeneous, dis-
tributed computing resources, have to be solved.

2.1 Workflow Management Systems for Grid
Grid computing allows the community based sharing of

computing resources across different administrative domains.
Due to the heavy heterogeneity and geographical distribu-
tion of the Grid resources, it is mandatory to have a kind
of orchestrator component responsible for workflow’s tasks
management across the Grid sites. This component is called
Workflow Management System (WfMS). The main tasks
performed by a WfMS are: workflow description, resource
discovery, task scheduling, data movement and monitoring.
A comprehensive taxonomy and detailed comparison of ex-
isting WfMSs for Grid is provided by Yu and Buyya [17] as
well as in the Grid Workflow Forum1.
1http://gridworkflow.org

The execution of scientific workflows over Grid resources
has been heavily investigated for more than a dozen of years
by researchers in the field of distributed computing. Many
well-known Grid middleware stacks already integrated a work-
flow engine as a part of their distribution. Examples are the
workflow service [7] contained in UNICORE2, the DAGMan
component provided within the Condor middleware3 and the
Karajan workflow engine developed as an extension to the
Globus toolkit4. Alternatively, the workflow engine can be
implemented as a single high level component to be inde-
pendent from the Grid middleware, e.g. the Gridbus Work-
flow Engine (GWFE) developed in the context of the Grid-
bus Project5 at the CLOUDS Lab, University of Melbourne,
and the P-Grid Portal6, which supports both the gLite7 and
Globus-enabled resources. Some workbench-based WfMSs,
originally designed to run a user’s workflow on the client ma-
chine, such as Kepler8 and Taverna9, have been extended to
make remote calls to Grid services for processing specific
tasks inside the workflow. A major issue of this approach
is that the client computer needs to stay online during the
workflow execution.

A well established WfMS used to plan, execute and mon-
itor scientific workflows on the Grid is Pegasus10. It can
interact with Condor as well as Globus Grid services and
is actually used to run large scale workflows in many aca-
demic infrastructures like FutureGrid11. Another widely
used Grid WfMS by the German D-Grid communities12 is
GWES (Generic Workflow Execution Service)13. Its de-
ployment as Web service allows the easy integration of this
framework into Grid portals and with other workflow plat-
forms like Taverna. Although the GWES modular design
allows the support for several Grid middleware stacks, the
current implementation supports only Globus.

2.2 Workflow Management Systems for Cloud
Cloud computing adopts many of the gained experiences

in workflow management from Grid computing. Although
Cloud brings many technological benefits [12] to the work-
flow developers, such as on-demand provisioning, elasticity,
provenance and reproducibility, it also brings them new chal-
lenges [6]. In addition to the resource heterogeneity and
the lack of common Cloud standards, other factors, such as
the economic and the QoS considerations, known as non-
functional service requirements, become crucial with the ex-
ecution of workflows on the Cloud. Furthermore, the data
management and security issues need to be concerned before
migrating workflows to the Cloud. While WfMSs for Grids
are established in the market, the automation of workflows
in Cloud environments is currently in the research phase.
The following are several existing works dealing with the
execution of workflows on the Cloud.

2http://www.unicore.eu
3http://research.cs.wisc.edu/condor/
4http://www.globus.org
5http://www.cloudbus.org/broker/
6http://portal.p-grade.hu
7http://web.infn.it/gLiteWMS/
8https://kepler-project.org
9http://www.taverna.org.uk/

10http://pegasus.isi.edu
11https://portal.futuregrid.org
12http://www.d-grid.de/
13http://gridworkflow.org/kwfgrid/gwes-web/

62

A common approach for deploying workflows on the Cloud
is to adapt existing Grid WfMSs to the Cloud environments.
An example is the work in [9], which extended the Kepler
WfMS to use Amazon EC214 Cloud services. Juve et al. [13]
evaluated the cost-performance trade-off of executing real
workflow applications on EC2 with data pre-staged from the
Amazon S315 Cloud storage. For this, they used the Wran-
gler tool [13] together with the Pegasus WfMS to provision
and configure virtual clusters on top of the EC2 instances
on the same way as on the HPC/Grid clusters. They found
that the choice of a storage system has a significant impact
on the workflow runtime and execution costs. Buyya et al.
[14] propose, in context of the Cloudbus project, a visionary
architecture for market-oriented Cloud computing. A key
component of the proposed architecture is a Market-Maker
broker, acting as a mediator between user requests and the
available Cloud resources, and a workflow engine used to
schedule workflow tasks to the resources based on the QoS
requirements. The Cloudbus framework is still under devel-
opment, but a first prototypical implementation based on
the Aneka Cloud platform [3] using EC2 proved the perfor-
mance benefits of the envisioned architecture in executing
workflows on the Cloud. The EU funded mOSAIC16 project
aims to simplify the development of Cloud applications in-
cluding workflows. It proposes a framework composed of a
Cloud Agency, which maintains the best resources configu-
ration that satisfies the application SLA requirements, and a
platform-independent programming model called mOSAIC
API to support Cloud federations. A first prototypical im-
plementation of the framework based on the agent technol-
ogy is available and its evaluation with real applications and
Clouds is ongoing. One of the shortcomings of this approach
for workflow developers is that they need to rebuild their ap-
plications to be compatible with the mOSAIC API. In [5]
Oliveira et al. introduce the SciCumulus middleware, which
follows the Many Task Computing (MTC) paradigm [15] to
automate the execution of workflows on the Cloud. Their
simulation-based evaluation of the SciCumulus architecture
shows the performance gains from using parameter sweep
and data fragmentation as parallelism techniques but not yet
the monetary impact in executing workflows on commercial
Clouds. Garcia et al. [8] propose a multi-agent architecture
for the concurrent and parallel execution of workflows on
multi-Clouds, where consumers, brokers, Cloud providers,
and Cloud resources are represented by agents. Based on a
simulation testbed, they evaluate the performance benefits
from the agent-based workflow execution. However, their
used service selection mechanism based on the Contract-Net
Protocol (CNP) does not support yet the negotiation of non-
functional SLA constraints. Further, Tao et al. [16] present
a framework for Intercloud service combination consisting
of a workflow system, capable of managing workflow tasks
running on different Clouds, and a cost-performance predic-
tion model. The prototype implementation of the framework
is restricted to the EC2-based Cloud services and does not
support yet the automatic service selection.

To the best of our knowledge, only few of the mentioned
approaches, i.e., [8, 14], have investigated the deployment of
workflows in multi-Cloud environments. Although many of

14http://aws.amazon.com/ec2/
15http://aws.amazon.com/s3/
16http://www.mosaic-fp7.eu/

Figure 1: Software architecture of the multi-Cloud
workflow framework

the approaches promise the support of heterogeneous Clouds,
their concrete implementations mostly support only homo-
geneous Cloud environments. Moreover, most of the ap-
proaches, except [13], ignore to investigate the data trans-
fer and inter-network communication between the workflow
tasks, which are crucial for Intercloud computing. Further-
more, the selection of the needed Cloud resources for the
workflow deployment is mostly based on functional SLA re-
quirements and costs, while the non-functional SLA require-
ments are usually not considered.

The broker-based workflow framework proposed in this
paper aims to solve the above issues by providing interest-
ing features, such as SLA negotiation, automatic SLA-based
service selection, Cloud interoperability as well as data man-
agement. In addition, its high-level generic architecture de-
sign allows more extendability and integration into current
Cloud infrastructures. The framework components has been
implemented in a simulation environment using latest Cloud
standards and workflow technologies.

3. THE WORKFLOW FRAMEWORK
Based on a previous work, the Cloud Service Broker [11],

we designed a broker-based workflow framework supporting
Intercloud computing.

Figure 1 depicts the software architecture of the proposed
workflow framework. The Cloud Service Broker, as shown
in the middle of the architecture, serves as a mediator be-
tween the users and the Cloud providers. As mentioned, this
broker is actually developed to help Cloud customers find a
suitable target platform for running their applications. Its
main component is a Match Maker that performs a matching
process, where the requirements of users are compared to the
SLA properties as well as the runtime status of the Clouds.

63

Figure 2: Workflow deployment flow

For this, it considers both the functional and non-functional
SLA parameters. The former are hardware/software config-
urations such as number of cores, memory size or OS type.
The latter are QoS related metrics like price, throughput and
availability. We implemented different matching algorithms
to make a trade-off between cost and performance of the se-
lected Clouds. A scheduler is used to assign workflow tasks
to the selected resources. The Data Manager is additionally
included in the broker architecture to support the workflow
data management. The details about its implementation
will be given in Section 4. In addition, the service broker
contains several other components, which are out of the fo-
cus of this paper. The Identity Manager is adopted to handle
user authentication issues. The SLA Manager takes care of
the SLA negotiation process. The Monitoring and Discovery
Manager acquires the SLA and runtime information about
the underlying Clouds. The Deployment Manager finally
deploys the user-requested services on the selected Clouds.
The service broker includes also an abstract Cloud API to
interact with the underlying heterogeneous Clouds. This in-
teraction is realized through the provider-hosted Intercloud
Gateways, which provide a common interface to their corre-
sponding vendor Cloud platforms.

The workflow system works on top of the Cloud Service
Broker. An editor is offered for users to describe and submit
their workflow applications. The Workflow Engine delivers
the workflow tasks to the underlying Cloud Service Broker
and takes care of their dependencies. In this way, it releases
tasks to the Cloud Service Broker only when their parent
tasks are terminated and their input data are available. The
Match Maker component of the broker adopts its matching
algorithm to assign the tasks to the Clouds that best fit the
user requirements. The broker scheduler brings then the

tasks to the selected Cloud platforms according to different
scheduling policies, while the Data Manager takes care of
the data transfer across the tasks.

Figure 2 shows the needed interactions between the Work-
flow Engine, the Cloud Service Broker and the Cloud plat-
forms for a workflow deployment. In a first step, the user
submits a workflow description to the Workflow Engine. Af-
ter parsing the description (step 1), the Workflow Engine
starts a clustering process (step 2) to reduce the number of
workflow tasks. In a next step, the user submits his func-
tional and non-functional SLA requirements (step 3). As
response, a new workflow request is generated (step 4) and
then forwarded to the Cloud Service Broker. In the follow-
ing, the Match Maker is requested to match the Clouds that
can fit these requirements by applying different matching
policies (step 5). Additional tasks are added to the workflow
by the Data Manager to prepare the data stage-in/out (step
6). After that all the requested resources are deployed on the
selected Clouds (step 7), the Workflow Engine asks (step 8)
the broker for assigning the workflow tasks to the underlying
Clouds. The broker makes a scheduling plan (step 9), where
each task is ordered to a target Cloud according to differ-
ent scheduling policies. In the following, the broker brings
the tasks to the Clouds and manages the data flow between
them. Finally, it delivers the results of the execution to the
user via the Workflow Engine (step 10).

In summary, we designed and implemented a software ar-
chitecture of a workflow framework with the focus on imple-
menting a working solution rather than a theoretical model.
Therefore, the implemented technical features are the fun-
damental ones, leaving space for more advanced ones to be
added at a later stage. The overall architecture is therefore
stable to work with and extensible for future work.

64

Figure 3: Simulation environment

4. VALIDATION PLATFORM

4.1 Simulation Environment
In oder to validate the proposed framework presented in

Section 3 and to evaluate its provided workflow execution
features, we implemented a simulation environment based on
the CloudSim toolkit [2], which is able to model and mon-
itor Infrastructure As a Service (IaaS) Clouds provisioned
by large scale datacenters with internal brokers, physical
hosts, as well as virtual machines (VMs). The simulation
environment, as depicted in Figure 3, contains a CloudSim
Intercloud Gateway that establishes a unified frontend inter-
face for accessing the underlying datacenters (i.e., Clouds)
and their local SAN storage. The lntercloud Gateway is
implemented as a server using the Open Cloud Computing
Interface (OCCI)17 API to assure a minimum compatibility
with the current Cloud standards. The Cloud Service Bro-
ker components were implemented as value-added services
on top of the modeled CloudSim datacenters. For managing
large scale workflows, we simply applied WorkflowSim [4], a
modeled WfMS developed on top of CloudSim. Similar to
the Pegasus WfMS, WorkflowSim contains a Workflow Map-
per to map abstract workflows to concrete workflows, which
are dependent on execution sites, a Workflow Engine to han-
dle the tasks and data flow dependencies, and a Clustering
Engine to reduce the number of tasks by applying differ-
ent merging techniques. For the purpose of this work, we
extended WorkflowSim to use the Cloud Service Broker as
the scheduler instead of using an external one. In addition,
a Replica Catalog keeps a list of data replicas by mapping
input/output filenames to their current site locations. Cur-
rently, the data transfer is initiated by workflow tasks during
their execution on the respective datacenters, whereas the
Replica Catalog is managed by the Data Manager. We are

17http://www.occi-wg.org

now working to extend the Data Manager to handle all the
workflow file transfer tasks. We assume that at the begin of
the workflow execution all input files are located in the client
local storage. The used data transfer policy by each task T
executed on a datacenter D with respect to its type (stage-
in/out or regular) and input files locations is described using
the following pseudo-code:

Input : task T, datacenter D, r e p l i c a ca ta l og R

F i l e L i s t=T. g e tF i l e L i s t ()
For a l l f i l e s F in F i l e L i s t Do
I f tasktype (T)=stage−in Then

t r a n s f e r F from Cl i en t to D
Else i f tasktype (T)=stage−out Then

t r a n s f e r F from D to Cl i en t
Else
I f f i l e t y p e (F)=input Then

I f R. get (f i l ename (F))= nu l l Then
e x i t

Else
s i t e L i s t=R. get (f i l e ame (F))
I f D in s i t e L i s t Then

t r a n s f e r F from l o c a l SAN of D
Else

For a l l s i t e s S in s i t e L i s t Do
I f S=Cl i ent Then

bwth=Client−To−Cloud (D)
Else i f r eg i on (S)=reg ion (D) Then

bwth=Cloud−To−Cloud Intra−con t i n en ta l
Else

bwth=Cloud−To−Cloud Inter−con t i n en ta l
Endif
I f bwth>maxBwth Then

maxBwth=bwth and SourceS i t e=S
Endif

Endfor
t r a n s f e r F from SourceS i t e to D

Endif
Endif

Else i f f i l e t y p e (F)=output Then
t r a n s f e r F to l o c a l SAN of D

Endif
Endif

Endfor

4.2 Simulation Setup
In order to model a heterogeneous IaaS multi-Cloud en-

vironment, we configured up to 20 datacenters located in
four world regions. Each datacenter is made up of 50 hosts,
which are equally divided between two different host types.
The detailed configuration for each datacenter is depicted in
Table 1. All the datacenters are characterized by their own
pricing policies and SLA parameters, which are availability,
Client-to-Cloud throughput and response time. The pricing
information for each modeled datacenter is acquired from a
respective real IaaS provider, while the information on avail-
ability, response time and throughput was acquired from
CloudSleuth18 and CloudHarmony19 from the same client
host. The cost for network traffic and storage is not con-
sidered yet. For the purpose of evaluation, we modeled two
simulation scenarios. In the first scenario, named “single
Cloud”, we deploy all the workflow tasks on the EC2 UK
Cloud. In the second scenario, named “multi-Cloud”, we use
all the configured 20 datacenters and let the broker automat-
ically select the suitable datacenters to deploy the workflow
according to the used matching policy. For all the exper-
iments, we configured the Match Maker component to use
a simple matching policy called “Sieving” [10]. This policy

18http://www.cloudsleuth.net
19http://www.cloudharmony.com

65

Table 1: Datacenters Setup
Parameter Value or Range

Number of hosts per datacenter 50
CPU cores per host 8..16

Host CPU speed 1860..2660 MHZ
Host RAM size 8..16 GB

Host local storage 1 TB

VM-to-local-SAN bandwidth 100 Mbit/s
Intra-continental 30 Mbit/s

Cloud-to-Cloud bandwidth
Inter-continental 10 Mbit/s

Cloud-to-Cloud bandwidth

Number of datacenters 20
Datacenters’ regions Europe, USA,

Asia and Australia

Table 2: Number of Jobs with different Cluster
Numbers k

k 20 40 60 80 100
Jobs number 92 152 212 272 332

selects only the datacenters that satisfy all the user prede-
fined functional and non-functional requirements. In case
that more than one datacenter is matched, a random one
is selected. In addition, the broker scheduler is configured
to use the round robin scheduling policy. This policy allo-
cates tasks to the first free VMs regardless of their type or
datacenter location.

4.3 Workflow Application
For evaluating our workflow framework, we used a sam-

ple trace of the Montage workflow application generated by
a real execution of the Pegasus WfMS on the FutureGrid
Cloud testbed. Montage [1] is an astronomy application
used to construct large image mosaics of the sky. A Montage
workflow can be modeled as directed acyclic graph (DAG),
where the vertices represent tasks, and the edges represent
either data-flow or control-flow dependencies. All the tasks
at a horizontal level are invocations of the same binary code
operating on different input data. The used sample trace
contains 7463 tasks within 11 horizontal levels, requires 3.07
GB of input data and produces about 31,06 GB of output
data. As Montage spends more than 80% of the execution
time in data transfer operations, it is considered as a data-
intensive workflow. We imported the workflow trace format-
ted as DAG XML into the simulation environment with the
help of the WorkflowSim Workflow Mapper. The runtime as
well as the file size information for each task are imported
from separate text files. Each task requires 1 CPU core to
run. In order to reduce the scheduling overhead resulted
when executing all the 7463 tasks, we use horizontal clus-
tering with different cluster numbers to merge tasks at the
same horizontal levels into clustered jobs. The cluster num-
ber k is defined as the maximum number of clustered jobs
per horizontal level. Table 2 shows the resulted jobs number
for each used k. In order to run the above described Montage
workflow, the user requests 10 VMs of the type small and
10 VMs of the type medium. The resource requirements for
each VM type are reported in Table 3. Both of the VM types

Table 3: VMs Setup; 1 CPU Core: 1GHZ Xeon 2007
Processor of 1000 MIPS; OS: Linux 64 bits.

VM Type Cores RAM (GB) Disk (GB)
small 1 1.7 75

medium 2 3.75 150

Table 4: User non-functional SLA Requirements;
Availability (Av); Response time (Rt); Throughput
(Th).

Max willingness Min Av Max Rt Min Th
US$/hour (%) (sec) (Mb/s)

2.7 96 10 10

are offered by the modeled IaaS Clouds. We assume that all
the VMs deployed on the same datacenter share a local SAN
storage. The non-functional SLA requirements, given in Ta-
ble 4, express the maximum payment willingness of the user
as well as his minimum values of the SLA attributes to de-
ploy the workflow with an acceptable QoS. These values are
consumed by the brokering policy for a decision making to
select the datacenters on which the requested 20 VMs will
be deployed.

5. EXPERIMENTAL RESULTS
To evaluate the proposed framework with a real large scale

workflow, we conducted a series of experiments using the
above described simulation environment. All the simulations
experiments are done on a host located in Germany. In
all our conducted experiments we suppose that the client is
located in Germany. The simulations results are presented
in details in the following subsections.

5.1 Scalability Results
In order to evaluate the scalability of the implemented

brokering framework with respect to increasing cluster num-
ber k, we measured in a first experiment the total time
needed to execute a single run of the sample Montage work-
flow in minutes for both the single and the muti-Cloud sce-
nario. In addition, for the single Cloud scenario, we sim-
ulated the case of adding a stage-in job to transfer all re-
quired input files before executing the workflow tasks. We
repeated the experiment five times and then computed the
average value. Figure 4 illustrates the results achieved: Note
that the measured execution time includes a layered over-
head composed of the clustering delay, workflow engine de-
lay, postscript delay, and the queue delay. The used delay
values were extracted from the workflow trace to make the
simulation realistic as possible. The Workflow Engine can
release maximal 5 jobs to the broker in a scheduling interval.
As depicted in the figure, a 20 stepwise increase of k results
for all the simulated scenarios in an increase of about 10
minutes in the workflow execution time. This demonstrates
that our framework scales well with increasing number of the
workflow jobs. Clearly, the single Cloud case benefits from
a shorter execution time because for the multi-Cloud case
the Intercloud data transfer is more time-consuming than a
transfer from the local SAN storage. However, when adding
a stage-in job to the single Cloud case, the execution of the
workflow spends more time, as all the other tasks should wait
for the stage-in job to finish before their execution start.

66

Figure 4: Workflow execution time with different
cluster numbers k

5.2 Data Transfer Overhead
We conducted another experiment to evaluate the resulted

data transfer overhead during a workflow deployment with
the multi-Cloud scenario. We repeated the previous experi-
ment to measure the proportion of time consumed to trans-
fer all the required files compared to the total pure runtime
(includes clustering delay) for all workflow tasks. The re-
sults with different cluster numbers are shown in Figure 5.
Note that for the Intercloud transfer time calculation the
real network latency between Clouds is not considered yet.
It can be seen from the figure that the total pure runtime de-
creases with larger k. This decrease is caused by the logically
decrease of the clustering delay, since with a bigger cluster
number the number of merged tasks in a clustered job is
reduced. On the other hand, the data transfer time remains
between 180 and 190 minutes for a k between 20 and 100. To
show the benefit from using clustering, we repeated the same
experiment by disabling the clustering. We found that about
the double time is spent for the data transfer compared to a
deployment with enabled clustering. In order to classify the
types and origins of the transferred files, we counted during
the simulation the VM-to-SAN-Storage (local), Cloud-to-
Cloud (Intercloud) and Client-to-Cloud transfers for each of
the workflow tasks. The total number and size of the trans-
ferred files during a deployment with k=20 are depicted in
Figure 6. The results approve that the transfer time over-
head is heavily affected by the Intercloud transfers. There-
fore, a reduction of the number of transfers between the
Clouds will probably approve the workflow execution per-
formance. One possible solution for this is to use an opti-
mized brokering and scheduling policy in the Cloud Service
Broker.

5.3 Service Quality
We compared the average non-functional SLA values (cost,

availability, response time and throughput) of the matched
datacenters for the multi-Cloud case with the corresponding
values in the case of deploying the workflow on the single
EC2 UK Cloud. The results are depicted in Table 5. It can
be seen that besides EC2 UK, FlexiScale UK20 and City-
Cloud Sweden21 also fulfill all the SLA user requirements

20http://www.flexiscale.com
21http://www.citycloud.eu

Figure 5: File transfer overhead for the multi-Cloud
case with different cluster numbers k

Figure 6: Total size (left) and number (right) of
transferred files for the multi-Cloud case with k=20

listed in Table 4. The other Clouds fail either because their
expected execution costs are above the maximum user’s pay-
ment willingness or they cannot deliver the minimal required
Client-to-Cloud throughput due to their non-closeness to the
client (i.e., they are not located in the same geographical
region as the client). The table shows also that the multi-
Cloud case works better than the single Cloud case in terms
of cost-saving. This lies in the fact that FlexiScale and City-
Cloud deliver the requested VM types with lower costs and
with almost the same or a better service quality than EC2.

5.4 Results Discussion
As described above, we performed different simulation ex-

periments and measured the workflow execution time, the
data transfer time as well as the quality parameters. Overall,
our experimental results show that one Cloud may execute
a workflow application faster than using multiple Clouds be-
cause the inter-task data transfer is performed within a sin-

Table 5: Average non-functional SLA Values For the
matched Datacenters.
Datacenters cost Av Rt Th

US$/h (%) (sec) (Mb/s)
single-Cloud (EC2 UK) 2.55 99.97 3.63 19.11
multi-Cloud (EC2 UK
+FlexiScale UK+ 2.27 99.86 3.91 21.66
CityCloud SW)

67

gle platform. However, when the input data of the workflow
task must be transferred from other locations, e.g. other
Clouds, to the target platform, the multi-Cloud workflow
framework may work better in terms of execution time. We
found also that clustering is a necessary technique for run-
ning workflows on multiple Clouds because it reduces the
number of tasks and hence reduces the amount of data to
be transferred between the tasks. Finally, the broker-based
workflow framework generally introduces better QoS while
reducing the user payment by selecting Clouds with lower
cost and better service quality.

6. CONCLUSIONS AND FUTURE WORK
This work implemented a workflow framework for running

workflow applications on a multi-Cloud environment. The
framework is based on a Cloud Service Broker we devel-
oped to help users choose the target platform with respect
to their requirement on hardware, cost, performance, etc.
The developed framework was validated with a large scale
workflow application in different scenarios. The experimen-
tal results show the advantages of running workflows with
multiple Clouds, in contrast to the case of using a single
Cloud platform.

In the next step of this research work, we will take care of
the data locality issues in the multi-Cloud environment. A
locality mechanism will be implemented to bring the com-
putation to its data for use cases where the input data of the
workflow tasks are distributed across different Clouds. The
mechanism aims to reduce the time for data transfer between
the Clouds. Furthermore, we will extend the framework to
support Storage as a Service (STaaS) Clouds like S3 and to
consider the cost for network traffic and storage usage. Fi-
nally, we will try different brokering and scheduling policies
(e.g. MCT scheduling) in order to improve the workflow
execution performance.

7. ACKNOWLEDGMENTS
We would like to thank Weiwei Chen from the University

of Southern California for his contribution to this work by
providing us with the WorkflowSim source code.

8. REFERENCES
[1] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob,

D. S. Katz, C. Kesselman, A. C. Laity, T. A. Prince,
G. Singh, and M.-H. Su. Montage: a grid-enabled
engine for delivering custom science-grade mosaics on
demand. In Proceedings of the Society of Photo-Optical
Instrumentation Engineers Conference, volume 5493
of SPIE 04, pages 221–232, September 2004.

[2] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
F. D. Rose, and R. Buyya. CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource
Provisioning Algorithms. Software: Practice and
Experience, 41(1):23–50, January 2011.

[3] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and
R. Buyya. The Aneka platform and QoS-driven
resource provisioning for elastic applications on hybrid
Clouds. Future Generation Computer Systems,
28(6):861–870, June 2012.

[4] W. Chen and E. Deelman. WorkflowSim: A Toolkit
for Simulating Scientific Workflows in Distributed

Environments. In Proceedings of the 8th IEEE
International Conference on eScience, Chicago, USA,
October 2012.

[5] D. de Oliveira, E. Ogasawara, F. Baião, and
M. Mattoso. SciCumulus: A Lightweight Cloud
Middleware to Explore Many Task Computing
Paradigm in Scientific Workflows. In Proceedings of
the 3rd IEEE International Conference on Cloud
Computing, CLOUD ’10, pages 378–385, Washington,
DC, USA, 2010.

[6] E. Deelman, G. Juve, and G. B. Berriman. Using
Clouds For Science, is it Just Kicking The Can Down
the Road? In Proceedings of the International
Conference on Cloud Computing and Services Science,
CLOSER 2012, pages 127–133, Porto, Portugal, April
2012.

[7] B. Demuth, S. Bernd, H. Sonja, M. D. Jason,
G. André, H. Valentina, and S. Sulev. The UNICORE
Rich Client: Facilitating the Automated Execution of
Scientific Workflows. In Proceedings of 6th IEEE
International Conference on eScience, pages 238–245,
2010.

[8] J. O. Gutierrez-Garcia and K. M. Sim. Agent-based
Cloud Workflow Execution. Integrated
Computer-Aided Engineering, 19:39–56, 2012.

[9] M. Hardt, T. Jejkal, I. Campos, E. Fernandez,
A. Jackson, D. Nielsson, B. Palak, and M. Plociennik.
Transparent Access to Scientific and Commercial
Clouds from the Kepler Workflow Engine. Computing
and Informatics, 31:1001–1015, 2012.

[10] F. Jrad, J. Tao, R. Knapper, C. M. Flath, and
A. Streit. A utility-based approach for customised
cloud service selection. Int. J. Computational Science
and Engineering, forthcoming.

[11] F. Jrad, J. Tao, and A. Streit. SLA Based Service
Brokering in Intercloud Environments. In Proceedings
of the International Conference on Cloud Computing
and Services Science, CLOSER 2012, pages 76–81,
Porto, Portugal, April 2012.

[12] G. Juve and E. Deelman. Scientific Workflows in the
Cloud, pages 71–91. Computer Communications and
Networks. Springer London, 2011.

[13] G. Juve, E. Deelman, G. Berriman, B. P. Berman, and
P. Maechling. An Evaluation of the Cost and
Performance of Scientific Workflows on Amazon EC2.
Journal of Grid Computing, 10:5–21, 2012.

[14] S. Pandey, D. Karunamoorthy, and R. Buyya.
Workflow Engine for Clouds, pages 321–344. John
Wiley, Inc, 2011.

[15] I. Raicu, I. T. Foster, and Y. Zhao. Many-Task
Computing for Grids and Supercomputers. In
Proceedings of the IEEE Workshop on Many-Task
Computing on Grids and Supercomputers, MTAGS 08,
pages 1–11, Austin, TX, USA, November 2008.

[16] J. Tao, D. Franz, H. Marten, and A. Streit. An
Implementation Approach for Inter-Cloud Service
Combination. International Journal on Advances in
Software, 5:65–75, 2012.

[17] J. Yu and R. Buyya. A Taxonomy of Scientific
Workflow Systems for Grid Computing. SIGMOD
Rec., 34(3):44–49, September 2005.

68

