
Moving an Application to the Cloud – An Evolutionary

Approach
Alexander Gunka

BOC Information Systems GmbH
Operngasse 20B

1040 Vienna, Austria
+43-1-905 10 81 - 0

alexander.gunka@boc-eu.com

Stepan Seycek
BOC Information Systems GmbH

Operngasse 20B
1040 Vienna, Austria
+43-1-905 10 81 - 0

stepan.seycek@boc-eu.com

Harald Kühn
BOC Information Systems GmbH

Operngasse 20B
1040 Vienna, Austria
+43-1-905 10 81 - 0

harald.kuehn@boc-eu.com

ABSTRACT
When planning to move a legacy style application to the cloud

various challenges arise. The potential size and complexity of such

a project might especially discourage small or medium companies

trying to benefit from the advantages the cloud promises. In

addition, the field they have to address is still young and very

dynamic and related technologies are rapidly changing.

Based on on-going work in the context of the MODAClouds EU

project, this paper describes an evolutionary, iterative approach to

accomplish the migration of an existing application to a cloud

based environment. Model based techniques are used to support

the steps of this transition process by providing a baseline for the

development of appropriate deployment architectures and the

selection of suitable cloud providers. In addition they provide

necessary abstractions in order to be less dependent on a specific

technology stack or cloud provider.

In order to show how we imagine the developed approach to be

applied in practice we describe an existing traditional 3-tier

application based on the meta-modeling platform ADOxx and how

it could be moved to the cloud from the perspective of a medium-

sized software manufacturing company.

Categories and Subject Descriptors

C.0 [General]: Modeling of computer architecture, System

architectures

C.2.4 [Computer-Communication Networks]: Distributed

Systems – distributed applications

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – Restructuring, reverse engineering, and

reengineering

Keywords

Cloud; Cloud deployment; Evolutionary Approach; ADOxx

1. INTRODUCTION
Cloud computing offers a range of novel opportunities, especially

for small and medium-sized enterprises (SME). In particular SMEs

can now exploit the economies of scale offered by cloud

computing, giving them affordable access to sophisticated

 computing resources previously available only to large companies

[1]. However, for SMEs who want to move parts of their

applications to the cloud taking high efforts to redesign existing

mature applications, while considering all kinds of cloud related

aspects, can be a risky step.

This paper contributes to help solving this issue by describing an

evolutionary strategy to migrate an existing application to the

cloud. The main steps of this transition are 1) porting the

application to an IaaS, 2) adding load balancing on the

presentation and business logic layer, and 3) partially moving the

app to a PaaS. Along with each of the steps described multi-cloud

strategies will be considered in order to be able to mitigate risks by

employing redundant, independent systems and to ensure service

proximity for customers at different locations. Furthermore

decision support is needed to help identifying the best-matching

cloud platforms for each step. The MODAClouds EU [2] project is

expected to provide tools and methods and modeling techniques

which will help to address these issues.

The evolutionary approach is first described in a general way and

later applied to an existing application developed by the authors’

company.

2. SCENARIO
BOC is a medium-sized software manufacturing and consulting

company with locations in different European countries. With the

Management Office suite BOC offers a comprehensive tool set

that supports the introduction and implementation of standardized

management approaches in the areas of Strategy and Performance

Management, Business Process Management, Supply Chain

Management, and IT Management. The company is involved in

the MODAClouds [2] EU project as a case study partner. The main

objective of the provided case study is to move an instantiation of a

process modeling tool based on our ADOxx meta-modeling

platform to the cloud.

The case study application follows a classical 3-tier architecture

supporting relational database systems at the database layer, a

Windows application server and a web application based on Java

Servlets and hosted inside a JEE Web Container (typically Apache

Tomcat) (see Figure 1). The web application provides browser-

based access to business process modeling including graphical

online modeling and the creation of various reports.
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MultiCloud’13, April 22, 2013, Prague, Czech Republic.

Copyright © 2013 ACM 978-1-4503-2050-4/13/04...$15.00.

35

Figure 1 - ADOxx 3-tier architecture

Currently the application is typically installed on site leaving the

provision and maintenance of the underlying (virtual)

infrastructure and system environment to the user organization.

The deployment and setup process includes several manual steps

and is typically supported by technical staff either directly on site

or using remote access to the customer’s infrastructure.

To provide test installations of the software to the customers BOC

uses virtual machines on dedicated servers in its in-house

datacenter. By providing a standardised environment for the

software, it is possible to minimize platform related issues during

operation. Owning and controlling the system also allows to

deploy, monitor, and maintain the software in a more efficient

way. In addition, the benefit of economies of scale can be already

exploited at this stage e.g. by using one database for multiple

customers and scaling the database according to the needs.

Due to the already mentioned advantages BOC gradually wants to

extend its hosting offers but does not want to invest in

infrastructure and operations just for the sake of being able to

handle significant workloads in the future. The clouds possibilities

seem to be what BOC is looking for.

While moving the application to the cloud, in addition to the topics

mentioned before, a number of other objectives related to the

scenario can be identified. These objectives include:

- Extending our present hosting solutions gradually and

moving from a testing environment towards production

without the need for large initial investments.

- Minimizing deployment efforts by using a standardized

environment and automated deployment.

- Benefiting from economies of scale by providing one elastic

solution for multiple customers.

- Gradually moving our web based application towards a pay as

you go Software as a Service solution.

- Monitoring and maintaining our solutions in a more efficient

way.

- Defining high availability SLAs based on SLAs of the

underlying infrastructure.

- Defining and testing disaster recovery scenarios.

- Ensuring privacy of the customers’ data.

- Considering multi-site deployments in order to be able to

provide service proximity.

- Obtaining infrastructure requirements for a given user count –

needed for accurate cost calculation.

- Being able to meet these objectives in a cloud provider

independent way to avoid vendor or technology lock-in.

Regarding all those objectives being able to accomplish at least

some of them already in rather short term is regarded as crucial.

Without having a large development team available from the

beginning, which has been trained in all cloud specific aspects of

application development, and considering the high dynamics of the

field a policy of rather small steps seems to be most suitable.

Above all, BOC’s present internal software development processes

already follow agile principles. For all those reasons the company

favours an iterative, evolutionary approach to accomplish the

migration. The first steps include choosing a particular cloud

provider constituting the “best match” for our existing application

and deploying it in the cloud as fast as possible. Further steps

reconfigure and rearrange the application to take better advantage

of additional cloud features.

3. BACKGROUND
Several approaches which support describing and analysing an

application and its architecture regarding cloud related aspects and

migrating applications to the cloud already exist.

The REMICS project [3] aims at supporting the migration of

legacy systems to the cloud based on a Service-Oriented

Architecture with a set of model-driven engineering tools and

methods. REMICS seeks for overcoming several gaps identified

by analysing existing methodologies for developing service-

oriented systems from scratch by integrating a set of developing

methods, languages, transformations and tools “in an agile, model-

driven service-oriented methodology for modernizing legacy

systems”.

The MODAClouds project [2] will leverage results of the

REMICS project and extend them by providing an additional

abstraction level for cloud provider independent modeling by

developing a domain-specific language named MODACloudML.

In addition, MODAClouds aims at “providing methods, a decision

support system, an open source IDE and run-time environment for

the high-level design, early prototyping, semi-automatic code

generation, and automatic deployment of applications” [2] to the

cloud. One of the main innovations targeted by MODAClouds in

this context is to provide techniques for migration, data mapping,

and synchronization among multiple clouds.

4. RELATED WORK
According to Gartner [4] organizations seeking to move

applications into the cloud have the following five options: Re-

host on infrastructure as a service (IaaS), refactor for platform as a

service (PaaS), revise for IaaS or PaaS, rebuild on PaaS, or replace

with software as a service (SaaS). The options differ in the targeted

cloud environment (IaaS or PaaS) but also in the degree of efforts

taken in order to adapt the application to exploit cloud capabilities.

For Gartner re-hosting an application on IaaS means to take an

application without any changes of the implementation, change its

configuration according to the target infrastructure and redeploy it

to a cloud IaaS environment. Gartner highlights this option can

provide a fast migration solution but that the primary disadvantage

is that benefits like scalability will be missed compared to

applications which have been explicitly designed to exploit these

cloud characteristics.

36

Gartner describes refactoring an application for PaaS as running

an existing application in a PaaS environment with only minor

adaptations. Preserving the applications original architecture helps

reducing adaptation efforts. On the other hand with this approach

the potential gain in elasticity is limited depending on the design of

the application.

Especially older “legacy” applications are not designed in a way

that would allow them to really benefit from cloud characteristics

like the possibility to leverage distributed computing resources. In

order to make better use of the cloud’s elasticity and hence to lay

the foundation of a possible later pay-as-you-go SaaS solution,

Gartner suggests revising the application for either IaaS or PaaS

which means to modify and extend the existing code base to

support legacy modernization requirements as also mentioned in

[3].

Another option Gartner mentions is to rebuild and re-architect an

existing solution from scratch targeting a PaaS environment in a

“cloud-optimal” way. Since in this case optimization is very likely

to be done taking into account only a limited set of cloud

providers, measures have to be taken to avoid lock-in.

MODAClouds [2] will address this challenge by providing an

abstract layer for cloud provider independent modeling.

Finally Gartner mentions that from a software customer’s point of

view replacing a traditional application with an existing SaaS

solution might be another option.

While Gartner focuses on choosing one out of several alternative

options this paper points out how these options can be seen as steps

of an evolution where one step builds on the other. The fact that

MODAClouds will provide support for both PaaS and IaaS

deployment is expected to help accomplishing smooth transitions

when moving from one step to the other.

Another article [5] introduces a phase-driven step-by-step strategy

for migrating applications to the cloud. After the cloud assessment

phase (1) a proof of concept is performed (2). Then application

data (3) and the application itself (4) are migrated. Auto-scaling,

edge caching, auto-recovery, and elasticity are considered in the

leverage the cloud phase (5). Finally the application is optimized in

terms of cost savings (6). Even though the article mainly focuses

on AWS the approach might be somewhat generalizable. During

phase (6) other services might be introduced in order to increase

efficiency. At that point, in contrast to the approach introduced in

this paper, the article only focuses on additional AWS features and

services and does neither take into account adapting the

deployment architecture nor the possibility of moving to another

cloud provider.

5. EVOLUTIONARY APPROACH FOR

CLOUD MIGRATION
This section discusses arguments for moving an existing

application from an on-premise environment to the cloud and

suggests a step-by-step transition approach that shall guarantee

business continuity during the migration process.

5.1 Motivation
The first argument pro cloud and especially pro multi-cloud is

availability. While a standard setup of a service implemented on

‘bare metal equipment’ – one server with hardware maintenance

contracts and a backup/restore strategy hosting the application – is

well suited for a non-critical service, the availability that can be

guaranteed for such a system is not sufficient for business critical

applications or SaaS business cases with corresponding SLAs. In

order to satisfy the availability requirements in the on-premise

environment, major capital expenditures must be considered as all

single points of failure need to be eliminated. A multi-cloud based

infrastructure can introduce redundancy of all components with

much lower additional costs as usually only utilized resources are

charged by the cloud vendors. Another important motivation for

cloud deployments is scalability. As usually the utilization of an

application is not constant over time, the infrastructure must

provide sufficient performance for covering high peak scenarios.

Cloud infrastructures promise to provide on-demand horizontal

scalability by spawning additional nodes when needed and to tear

them down in times of lower loads. Combined with the usual

pricing model where the customer is charged for the time where

computing instances are running, this not only provides the

required technical elasticity, it also delivers an infrastructure with

the desired cost efficiency.

Obviously these facts are a clear indicator that a company that

decides to take the step to provisioning its software to its clients in

an SaaS business model should do this technically by migrating

the service to the cloud in order to be ready to react to load changes

seamlessly without having to pay for resources not utilized most of

the time.

5.2 The Migration Process
What does “migrate to the cloud” mean? This heavily depends on

the application’s architecture. In order to benefit from the cloud’s

elasticity a software system must be designed according to certain

cloud patterns. If it has a web frontend, the web application must

be ready for load balancing. That means that management of state

must have been considered with load balancing in mind. If the

application relies on persistent state held in a database, which

usually is the case for typical enterprise applications, then there

should be an abstraction layer allowing for plugging in different

database engines. If the application consists of multiple modules

that leverage message oriented middleware for asynchronous

processing again an abstraction will be needed so that it can be

integrated with the various message broker implementations.

Of course, for an application that has not been developed with a

cloud service portfolio in mind, challenges arise in terms of

architectural change. The aforementioned design requirements

result in major software changes, which makes for efforts and risks

that need to be evaluated and quantified.

Based on the results of this assessment a strategy for the actual

migration has to be developed. In many cases it will turn out that a

big bang approach encompassing the change of infrastructure and

redesigning the application’s architecture in order to get out the

maximum flexibility from the cloud deployment introduces too

many risks that cannot be properly handled and may affect the

business continuity for services related to the considered

application. Especially if the application provides a service central

to the company’s business a restrained strategy will be chosen.

5.2.1 Transition to IaaS
In the given situation the first decision in favour of an evolutionary

service migration should be to separate development related issues

from operations related ones. This can be accomplished by moving

the whole application as is to an IaaS instance provided in the

cloud as suggested as the option with the lowest risk by Gartner

[4]. This does not sound like a very challenging task; however,

there are several infrastructural aspects that need to be considered

here and the multi-cloud approach results in additional complexity

(as introduction of redundancy usually does).

As the first step the sizing has to be done. The natural approach for

this is to analyse the relevant parameters in the on-premise

37

environment and then pick an IaaS offer that meets these

requirements. At this point MODAClouds’ decision support tool

should provide assistance for selecting appropriate providers.

Usually the performance parameters for determining the best

matching IaaS offer will be CPU power, RAM size, (virtual) disk

size, disk IO performance in terms of IOPS, latency and

bandwidth, as well as network bandwidth and latencies for internal

traffic within the cloud as well as to/from the internet on the public

interfaces and the replication paths to the multi-cloud peers.

Aside from these performance parameters other peripheral

operations aspects need to be considered. These aspects are:

- Snapshotting options

- Backup options

- RTO in case of file system corruption

- Vertical scaling capabilities

- Firewalling

- Availability of private networks

- Availability of VPN connectivity

- Privacy of data stored in the cloud

- Monitoring interfaces

- Suitability for data replication in multi-cloud setups

Once the choice has been made based on the required features, the

contract conditions and costs, the technical preparation phase can

start. The operations staff will verify whether the infrastructure

provided by the cloud vendors really provides the performance

that has been calculated by MODAClouds’ decision support tool.

Benchmarks run by independent analysts (see [6] and [7]) have

shown that even if one cloud provider offers one product in

different locations the performance of the provisioned systems

may differ.

After the performance of the provisioned infrastructure has been

validated, firewalls need to be configured to provide the desired

isolation. Here some vendors offer centralized systems others rely

on the operating system’s packet filtering capabilities. The

complexity of the firewall setup varies depending on the

application’s communication requirements with other services. In

some cases it may just open inbound ports for access to the

application’s web frontend plus a management port like ssh,

however, in a multi-cloud setup an IPSec tunnel connecting the

private networks is obligatory.

As the next step backup has to be set up and restore tests must be

conducted on all involved multi-cloud sites. For an application that

is expected to run 24x7 off-line backup is not an option, therefore

generating an application consistent backup by taking the whole

machine down is not possible. In most cases a crash consistent

backup will be performed utilizing the cloud provider’s

snapshotting functionality and transferring the snapshots to a

secondary storage. At Amazon AWS for example backing up an

EC2 instance data would require taking a snapshot of the

underlying EBS volume and uploading the snapshot to a S3 bucket

or Glacier vault.

Having the infrastructure including backup in place the actual

deployment of the application stack can be started. In most cases a

database tier is required as the persistence layer. Depending on the

application’s nature and its transaction patterns it might be

necessary to equip the virtual machine with some high IO block

storage. Here again the MODAClouds decision support tool shall

provide information about the availability and the guaranteed

performance of such storage tiers for the managed cloud providers.

Of course also here the actually delivered performance must be

validated by means of IO test tools like iometer [8] or fio [9].

As the final deployment step the application itself is installed on

the prepared infrastructure. At this point, having all operational

components configured, monitoring and alarming needs to be set

up and tested. In most cases an existing monitoring solution can be

taken as is because the application itself has not been changed and

the environment prepared for it does not really differ from the on-

premise datacenter, however, integrating some additional

performance indicators might be a good idea for providing long

term performance data.

With the application setup finished, testing can be done. Nowadays

with agile patterns like behaviour driven development probability

is high that the company already has a good coverage of scenarios

as well as massive load tests available in an automated test suite.

This is a very good starting point for verifying the new platform’s

functionality. Nonetheless manual testing will be required as well

in order to be able to assess the application’s responsiveness and

the overall user experience. Additionally the multi-cloud take-over

scenario must be tested with special attention being paid to split

brain potential and data replication lag.

Assuming that the tests have not yielded any issues, the migration

of data and clients may be started. Based on the structure and the

separation of customers’ data it might be possible to perform a

one-by-one migration. Of course, if the application is for example

some kind of collaboration platform cutting away portions of data

is not an option and the whole customer base must be migrated at

once. In any case, if the amount of data is large and the

maintenance window for transferring it from the on-premise

datacenter to the cloud environment would not be accepted by the

clients, a backup and restore procedure can be applied consisting

of restoring a full backup set at one point in time and then right

before switching the traffic applying only the differential backup

on top. Of course being able to switch back to the on-premise

environment is an essential risk management measure. In most

cases this just means that the transactions that have been

committed on the cloud infrastructure must be replayed on the in-

house database and the traffic must be switched back.

Having gone through all these steps brings the company to the

point where they have their application ported to the cloud so the

operations team does not need to deal with hardware availability

and maintenance in the corporate datacenter any more. If scaling

becomes an issue in this stage either vertical scaling provided by

some of the cloud vendors, e.g. ProfitBricks [10] can be

considered, or alternatively setting up additional identical

machines and distributing the clients might be an option. But

again, if the application relies on data exchange between the

clients the database cannot be partitioned in this way. So it would

be necessary to launch the new instances without private databases

and interlink them with the database on the first instance. A private

network within the cloud provider’s infrastructure then is a must as

the SQL traffic shall by no means be transported over any public

network resource.

Nowadays this is definitely not considered an elegant way to scale

an application hosted in the cloud.

In summary the steps required for moving an application to IaaS

are:

1. vendor selection

2. sizing

3. performance verification

4. network configuration

5. backup/restore verification incl. disaster scenario

6. database setup

7. monitoring/alarming

38

8. automated and manual tests including multi-cloud fail-

over

9. migration of data and customers

5.2.2 Introducing load balancing
The state of the art technique to accomplish application scaling is

to use load balancing, at least for applications served on the web.

So, having successfully moved the application to a (multi-)cloud

hosted infrastructure and usually after having gained some

operations experience and re-adjusted monitoring and maybe some

flows in the application time has come to make the next step and

let the developers contribute to a software architecture that is

prepared for load balancing.

The major decision with respect to load balancing is handling of

non-persistent state. Basically, there are four options available:

- avoiding non-persistent state

- letting the client manage the state and resubmit it with every

request that yields a modification of the persisted state

- replicating the state between all nodes that form the load

balanced tier e.g. by means of HTTP session replication

within a web container cluster or a distributed, replicated

cache solution like Infinispan [11] in applications that

maintain additional state apart from the users’ HTTP

sessions

- utilizing a message oriented infrastructure which provides a

centralized service with the purpose of distributing

information among the load balanced tier members

If the software cannot provide any of these, persistent load

balancing is required. This ensures that subsequent requests related

to one session are always forwarded to the same worker node that

has created the client’s session. The drawback of this approach is

that the load of the worker nodes is only taken in account for

requests outside sessions and that a node failure results in lost

session data. Furthermore, if persistent sessions are used, the

developers must make sure that other state (held by singleton

instances) is not relevant to other nodes as the singletons lose their

uniqueness once there are more than one worker nodes running.

After having either adapted the software for sharing state among

nodes or decided to go with persistent sessions the load balancer

can be set up. Usually the cloud provider will provide a highly

available HTTP load balancer that supports persistent sessions

with configurable session token (cookie name or GET parameter

name). MODAClouds’ decision tool shall provide this information

for managed cloud providers. In case a provider has no load

balancing offerings, of course, a solution based on standard OSS

tools like nginx [12] can be set up, however, this requires a high

availability solution on IaaS and results in additional maintenance

efforts.

With the load balancer in place one major step has to be made

before additional workers can be spawned. Assumed that the

infrastructure provides low latency private networks – this actually

is a must-have for scaling systems – a dedicated, centralized, well

sized node for providing the database service to all worker nodes

is set up. This should be easy to do as long as the original database

has been set up on dedicated block storage. This block storage

simply needs to be re-assigned to the newly created database node

after the DBMS has been installed there. Then only the connection

for the database has to be reconfigured for the application.

Once the database has been successfully moved to its dedicated

virtual machine, additional instances of the application can be

created by means of the cloud provider’s portal – MODAClouds’

runtime could provide an abstraction for this – and registered with

the load balancer. At this point sophisticated performance

monitoring is essential to provide information about system

components running into limits. Especially the load of the database

machine has to be analysed in terms of IO and CPU as well as

database specific performance indicators like cache hit ratio and

query times.

The system is prepared for elastic scaling now, where nodes can be

added on demand and removed when load goes down. The

limitation in most cases will be the database backend as a standard

relational database system does not provide the horizontal

scalability that would be required push the limits here and the

virtualization layer does not provide the computing power

available with ‘bare metal servers’, however, a vertically scaling

IaaS product like ProfitBricks [10], MD5 Cloud [13] or Global

Technologies Company [14] used for hosting the database can be

of some benefit.

In short introducing load balancing requires the following steps:

1. adaptation of state handling in the application for load-

balancing

2. centralization of database on dedicated IaaS

3. deployment of additional presentation- and business tier

IaaS instances

4. load balancer configuration

5. testing

5.2.3 Moving modules to PaaS
At this point the application environment has been taken to the

most flexible point regarding scalable deployment that is possible

without major design changes. After having eliminated all flaws

that might have been introduced by the changes made for load

balancing the utilization of cloud provided services should be

considered as this is where operations efforts can be reduced and

transparent scaling can be achieved.

As an example the web tier of a JEE application could be moved to

web container based PaaS product like Amazon Beanstalk [15],

Google App Engine [16] or Heroku [17] that provides clustering

including HTTP session replication load balancing and automatic

resource management. The business logic tier of the application

implemented by means of EJBs could be handed over to EJB

container based PaaS like OpenShift [18] or Jelastic [19]. This

step is expected to introduce some challenges as JEE 5 and 6 do

not provide any cluster-wide singleton specification. However,

since singleton is a very common design pattern in business logic

tiers, most application will use vendor specific extensions to

achieve their centralized task and data management. In order to

make the EJB artifacts cluster-enabled this has to be accomplished

by other mechanisms like distributed replicated data grids, e.g.

Infinispan [11].

Another aspect of the transition to a distributed deployment is that

EJB clients will no more be able to access the session beans

through their local interfaces. Instead the standard case will be

remote invocation which has an impact on performance – on one

hand because of the network round trip, on the other hand because

of pass-by-value arguments with marshalling and un-marshalling

instead of pass-by-reference method arguments. To cope with this

some algorithms will require adjustments replacing many “small”

remote calls with a call to a specialized method encapsulating

bigger parts of the algorithm.

As for the database two strategies for going PaaS can be

considered:

- Leverage a cloud provided RDBMS service

- Migrate to a cloud provided NoSQL service

39

Cloud provided RDBMS services such as Amazon’s RDS usually

offer QoS guarantees in terms of I/O performance and switching to

a product with higher load capabilities is seamless. MODAClouds’

decision support tool should consider this feature to provide

valuable information on database deployment.

If the application does not rely on transactions encapsulating more

than one object changing in the database and the consequences of

the CAP theorem [20] are acceptable one of the available NoSQL

products could be considered as the meanwhile quite mature

systems provide high scaling capabilities, both in terms of data

storage and in data processing. Systems like HBase [21] and

Hadoop [22] on top HDFS [23] for example provide scalability

over thousands of servers favouring local storage over SAN. This

results in a highly efficient and cost-effective solution with

configurable redundancy. If processing of collected data is part of

the application Hadoop will provide distributed processing of the

collected data taking data locality in account which results in

reduced network traffic and higher performance.

Here are the steps required when leveraging PaaS infrastructure:

1. adaptation of software eliminating dependency on

container vendor

2. adaptation of software for PaaS based storage

3. adaptation of software eliminating remote calls with

high overhead caused by remote invocations

4. transition of the database from IaaS to a scalable

RDBMS service (database as a service)

6. THE EVOLUTIONARY APPROACH

APPLIED TO ADOXX
The ADOxx platform is a meta-modeling-based development and

configuration platform for implementing modeling tools. It is the

technological basis of the BOC Management Office. Its hybrid

architecture has been designed for the rich client scenario and the

web scenario both bound to the same relational database. The rich

client deployment provides a fully-fledged desktop application

leveraging either a central database in collaborative environments

or a local database in case of single user installations.

This case study focuses on the web scenario implemented by

means of the three tier application architecture described in Figure

1. Currently the scenario is hosted in the on-premise datacenter

and the absolute need for a low risk strategy when transferring the

service to the cloud makes it an obvious candidate for the

evolutionary approach introduced in the previous section. While

the final goal is to leverage as many cloud patterns as possible

resulting in higher availability, elasticity and cost effectiveness, it

is not considered a viable approach to do it all at once.

6.1 ADOxx on IaaS
As ADOxx already is layered according to Figure 1 and also

operated with a dedicated database server the move from on-

premise to cloud infrastructure differs slightly from the approach

proposed in section 5.2.1. The requirements for the infrastructure

provided on each of the multi-cloud peers are:

- Two small Windows instances for the Windows active

directory with private IPv4 addresses.

- One medium sized Windows instance for the web tier and the

business logic tier with a public IPv4 address for traffic

to/from the internet and a private IPv4 address for database

and active directory traffic.

- One high I/O Windows instance with sufficient CPU

resources (vertically scalable if possible) for MS SQL Server.

This instance shall have no public IP. The block storage

backing the database shall be dedicated and equipped with

I/O guarantees. Striping over multiple volumes will be

considered.

- One smaller instance running Linux for monitoring purposes.

- An IPsec connection available to connect the in-house

datacenter with the private network of the cloud installations

and another one for the multi-cloud peer connectivity.

- Data located in Europe

- Operated by a European company

The MODAClouds decision support tool is expected to list cloud

providers matching these requirements and BOC will evaluate the

offerings from this list.

BOC will then contract with the chosen provider, and set up the

basic infrastructure by means of the MODAClouds runtime. The

operations team will then harden the operating systems regarding

security, set up the monitoring system and configure the RDBMS.

Next the backup for the operating systems and database will be

established and restore tests will be performed.

At this point the infrastructure for deploying the application will be

in place, so both the business logic tier and the web tier can be

installed. A windows installer package will be used for this task as

it provides all necessary steps in terms of configuration and

initialization of the whole stack. Finally the monitoring system

will be adjusted to provide full monitoring for all application

layers. This procedure has to be performed for every of the current

deployments reflecting the various product configurations in use.

The installation step is completed by configuring reverse proxy

mappings for standard HTTP and HTTPS to the ports locally

bound by the installed web containers.

The QA departments will then run automated penetration tests and

round out then with interactive smoke tests to verify correct and

smooth operation of the deployed products. Operations will then

verify correct behaviour and data consistency after a multi-cloud

fail-over. After this quality gate has been successfully passed the

client migration will be triggered.

Groups of clients of the BOC online services will be informed

about the maintenance window needed for running an application

level export of their respective data, transferring it to the new

infrastructure and importing it there. They will also receive the

new DNS name which shall be used for accessing the services.

This is needed because not all clients will be migrated at once and

also a DNS switch would not work reliably due to DNS cache

lifetime violations. In parallel with the import of the data the active

directory entries of the clients will be created in the cloud

infrastructure based on the directory contents of the on-premise

catalogue. During the whole process the services will still be

available in the old infrastructure albeit in read-only mode, of

course. After the import has been finalized and the flawless

operation confirmed by quality assurance the clients will be

granted access to the new infrastructure.

6.2 Load balancing ADOxx
After successful migration of all online service clients to the new

platform, availability and scaling will be tackled by introducing

load balancing on the presentation tier and the business logic tier.

The aspect of managing non-persistent state will be handled by

means of sticky sessions.

For the session between the client and the web application this will

be done by configuring the corresponding session cookie as the

persistence token of the load balancer. The drawback of being

bound to one web application instance within one user session will

40

be accepted as the already planned distributed state management

will not yet be available at that time.

Load balancing between the business logic nodes exposing SOAP

interfaces will be a little bit more complex. The nodes will be

grouped to QoS groups representing highly interactive services on

one hand and off-line processing tasks on other hand. The different

groups will be accessible through different endpoint URIs. The

nodes will also maintain sessions and set the corresponding

cookies in their responses. The SOAP clients (i.e. web application

instances) will then be able to decide for every request whether or

not they rely on state held in the business tier and which service

category (QoS group) the actual request belongs to.

For the load-balanced setup the Windows image holding the

bundle consisting of reverse proxy, presentation tier and business

tier needs to be duplicated. For this purpose a “gold master” image

should be created from the existing instance and re-used with

every extension step.

MODAClouds run-time is expected to provide support for this task

as automatic scaling might be necessary in the deployment engine

anyway.

6.3 Partial move to PaaS
Starting with the web tier transition from a (potentially clustered)

web container hosted on an IaaS platform to a web container PaaS

product promises transparent scaling and reduced operations

efforts for the web containers, the underlying IaaS instances and

the load balancer configuration. It follows Gartner’s suggestion [4]

for revising the application for PaaS.

What adaptation is necessary in order to make the ADOxx based

web application PaaS ready? One task is definitely to solve the

management of non-persistent state so that session stickiness for

load balancing is not required any more. This is necessary as sticky

sessions are not always available with PaaS offerings and of course

stateless nodes offer better robustness compared to their stateful

counterparts. Another change that might become necessary is the

removal of any file based persistence. Whenever persistence is

required a central database should be considered. In case of a store

that is only relevant for the node itself a key/value or blob store

could be considered. Alternatively a document based NoSQL

service like MongoDB could be the right choice. Therefore the

application must be analyzed spotting usage of local storage and

adapted accordingly. As this refactoring pattern is expected in

most web applications MODAClouds should provide an

abstraction with vendor specific code generation for configuring

and accessing the store. Finally all container runtime specifics

must be eliminated. The result must be a Java EE 1.5 compatible

artifact relying only on Java Servlet 2.5 and Java Server Pages 2.1

specifications. If a relational database is used an abstraction layer

like Hibernate [24] shall be introduced.

With the web tier restructured according to the PaaS requirements

the deployment process must be adjusted. As this part differs from

vendor to vendor varying from git push to specialized APIs among

others, MODAClouds shall provide an abstraction for this.

Nevertheless this means that the MODA deployment approach

must be integrated into BOC’s continuous integration and release

processes.

While the transfer of the presentation tier to PaaS seems very

rewarding for the business logic tier the situation is different

because of the technology used. It is written in C++ and deployed

as a windows service controlled by the service control manager.

Currently there are no PaaS products targeting this kind of

application other than MS Azure worker role which actually is a

Windows IaaS instance. Porting the whole tier to CLR in order to

open the doors to .NET PaaS vendors is not an option as the

application is neither in early state where such a change would be

acceptable nor is it to be considered legacy where a rewrite would

be justified. Therefore the business tier will be kept deployed on

Windows IaaS.

Both, the load balanced IaaS architecture and the PaaS architecture

are expected to run into limits with a central database hosted on an

IaaS instance. With reduction of operations efforts and improved

scalability in mind a migration to a RDBMS PaaS (DBaaS)

provided by the cloud vendor is desirable. For the ADOxx

business tier this means that an adaptation of the data access layer

is required to match the used RDBMS. Utilizing the existing

ODBC connector with vendor specific SQL statements is most

probably the best matching solution as the technology can be

considered mature and general and should be available for all

major database services. A migration to NoSQL technologies does

not seem to be an option now, as the business tier heavily relies on

referential integrity and transactions with massive changes made in

the object repository that need to be consistent. However, with the

introduction of new functionality, e.g. the extensions of the

analytical engine with graph based algorithms utilization of

NoSQL engines as a supplement to the RDBMS store is

considered and MODAClouds’ abstraction is expected to provide

modules for attaching to these services in the cloud.

6.4 Proposed target architecture
Figure 2 visualizes the steps an evolutionary migration of ADOxx

to the cloud will go through. Starting with an on-premise setup on

two servers the existing deployment artefacts will be moved to

IaaS instances that are a drop-in replacement of the servers. In a

second step cloud-provided load balancers will be applied to scale

over IaaS instances of the presentation and business tiers. Finally,

the presentation tier will be moved to a PaaS environment and will

replace the IaaS database with a DBaaS (database as a service)

provided by the cloud service provider.

Figure 2 - Evolutionary steps migrating ADOxx to the cloud

7. SUMMARY AND OUTLOOK
Companies who consider moving existing applications to the cloud

are confronted with a number of strategic decisions to be made.

Business risks which are introduced when changing an existing

system have to be carefully considered. An evolutionary approach

as it has been proposed in this paper can help to reduce risks by

only taking one step at a time. Each phase of the transformation

process described adds additional benefits by better exploiting

advantages like scalability, availability, and cost efficiency the

cloud provides. During this process model based techniques will

41

help ensuring consistency during the transition from one phase to

another and reducing the risk of lock-in to a specific cloud

provider or technology. The transition approach introduced here

will be verified during the migration of BOC’s ADOxx products

from an on-premise environment to a multi-cloud infrastructure as

a case study within the scope of the MODAClouds project. As a

preparation an additional risk assessment will be conducted for

each of the steps mentioned in this paper and the findings will be

contributed to MODAClouds’ decision support tool.

8. ACKNOWLEDGMENTS
The research leading to these results has received funding from the

European Community's Seventh Framework Programme

[FP7/2007-2013] under grant agreement n° 318484

(MODAClouds).

ADOxx is a registered trademark of BOC Information

Technologies Consulting AG.

9. REFERENCES
[1] Microsoft, “European SMEs in the Cloud” [Online].

Available: http://www.microsoft.eu/default.aspx?tabid=231.

[Accessed 16 January 2013].

[2] MODAClouds, “MOdel-Driven Approach for design and

execution of applications on multiple Clouds” 2012.

[Online]. Available: www.modaclouds.eu. [Accessed

January 2013].

[3] M. Parastoo and S. Thor, “Software Engineering Challenges

for Migration to the Service Cloud Paradigm - On-going

Work in the REMICS Project” July 2011. Available:

http://www.remics.eu/system/files/REMICS-Mohagheghi-

camera-ready.pdf

[4] Gartner, “Gartner Identifies Five Ways to Migrate

Applications to the Cloud” 16 May 2011. [Online].

Available: http://www.gartner.com/it/page.jsp?id=1684114.

[Accessed January 2013].

[5] J. Varia, “Migrating your Existing Existing Existing

Applications to the AWS Cloud - A Phase-driven Approach

to Cloud Migration” 2010. [Online]. Available:

http://media.amazonwebservices.com/CloudMigration-

main.pdf.

[6] CloudHarmony, “Benchmarking in the Cloud” 29 May 2010.

[Online]. Available:

http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-

benchmarking-in-cloud.html. [Accessed 29 January 2013].

[7] M. B. Uddin, B. He and R. Sion, “Cloud Performance

Benchmark Series” Stony Brook University, 2010. [Online].

Available: http://digitalpiglet.org/research/sion2010cloud-

http.pdf. [Accessed 29 January 2013].

[8] Open Source Community, “Iometer” [Online]. Available:

http://www.iometer.org/. [Accessed 29 January 2013].

[9] axboe, “fio” [Online]. Available:

http://freecode.com/projects/fio. [Accessed 29 January

2013].

[10] ProfitBricks, “ProfitBricks” [Online]. Available:

https://www.profitbricks.com. [Accessed January 2013].

[11] RedHat, “Infinispan” [Online]. Available:

http://www.jboss.org/infinispan. [Accessed 29 January

2013].

[12] I. Sysoev, “nginx HTTP server” [Online]. Available:

http://nginx.org/. [Accessed 29 January 2013].

[13] M. Hosting, “M5 Cloud Hosting” [Online]. Available:

http://www.m5cloud.com/. [Accessed January 2013].

[14] G. T. C. P. Ltd., “Global Technologies Company” [Online].

Available: http://www.globaltechnologies.com.au. [Accessed

January 2013].

[15] Amazon, “Amazon Elastic Beanstalk” [Online]. Available:

http://aws.amazon.com/de/elasticbeanstalk/. [Accessed

January 2013].

[16] Google, “Google App Engine” [Online]. Available:

https://developers.google.com/appengine/. [Accessed 29

January 2013].

[17] Heroku, “heroku” [Online]. Available:

http://java.heroku.com/. [Accessed 29 January 2013].

[18] RedHat, “OpenShift Enterprise” [Online]. Available:

https://openshift.redhat.com/app/. [Accessed 29 January

2013].

[19] M. Sprava, “Benefit from EJB in the Cloud” [Online].

Available: http://blog.jelastic.com/2012/08/09/benefit-from-

ejb-in-the-cloud/. [Accessed 29 January 2013].

[20] J. Browne, “Brewer's CAP Theorem” 2009. [Online].

Available:

http://www.julianbrowne.com/article/viewer/brewers-cap-

theorem. [Accessed 29 January 2013].

[21] Apache, “Apache HBase” [Online]. Available:

http://hbase.apache.org/. [Accessed 29 January 2013].

[22] Apache, “Apache Hadoop” [Online]. Available:

http://hadoop.apache.org/. [Accessed 29 January 2013].

[23] Apache, “Apache Hadopp/HDFS” [Online]. Available:

http://hadoop.apache.org/docs/hdfs/current/hdfs_design.html.

[Accessed 29 January 2013].

[24] JBoss, “Hibernate” [Online]. Available:

http://www.hibernate.org/. [Accessed 29 January 2013].

[25] OMG, “Architecture Driven Modernization” [Online].

Available: http://adm.omg.org/. [Accessed January 2013].

[26] CSS Corporation, ”Migrating Existing Applications to the

Cloud” 2011. [Online]. Available:

http://www.csscorp.com/cloud/solutions/migrating-existing-

applications-to-the-cloud.php.

42

