
SPACE4CLOUD: A Tool for System PerformAnce and Cost
Evaluation of CLOUD Systems

Davide Franceschelli
Politecnico di Milano

Dipartimento di Elettronica,
Informazione e Bioingegneria
davide.franceschelli@mail.polimi.it

Danilo Ardagna
Politecnico di Milano

Dipartimento di Elettronica,
Informazione e Bioingegneria
ardagna@elet.polimi.it

Michele Ciavotta
Politecnico di Milano

Dipartimento di Elettronica,
Informazione e Bioingegneria

ciavotta@elet.polimi.it

Elisabetta Di Nitto
Politecnico di Milano

Dipartimento di Elettronica,
Informazione e Bioingegneria

dinitto@elet.polimi.it

ABSTRACT
Cloud Computing is assuming a relevant role in the world of
web applications and web services. Cloud technologies allow
to build dynamic systems which are able to adapt their per-
formance to workload fluctuations delegating to the Cloud
Provider the intensive tasks of management and mainte-
nance of the cloud infrastructure. Which is the best provider
for our application? The application will guarantee the re-
quired service level objectives (SLOs)? Those are relevant
issues that call for a tool able to carry on cost and perfor-
mance analysis of the system before its actual development.
In designing a software application to be executed in a cloud
environment, the most relevant issues to be addressed are
determining which cloud provider to use and verifying if the
target system will present the required performance levels.
The goal of this work is to provide a model-driven approach
to performance and cost estimation of cloud and multi-cloud
systems. We considered the IaaS (Infrastructure-as-a-Service)
and PaaS (Platform-as-a-Service) levels.
The modelling of such systems has involved different ab-
straction levels, starting from the representation of cloud
applications and ending with the modelling of the under-
lying insfrastructure/platform belonging to specific Cloud
Providers. An initial prototype supporting our approach is
also presented.

Categories and Subject Descriptors
C.4 [Performance attributes]: Performance of Systems;
D.2.11 [Software Engineering]: Software Architectures;
I.6.5 [Simulation and Modeling]: Model Development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MultiCloud’13, April 22, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2050-4/13/04 ...$15.00.

Keywords
Model-Driven Software Development, Performance Predic-
tion, Cloud Computing

1. INTRODUCTION
Verifying that a software system has certain non-functional

properties is now a primary concern in software engineering.
Cloud Computing offers many interesting features but, at
the same time, it may introduce some non-negligible issues
and new challenges in application development. First, the
technology offer and the pricing models are currently very
heterogeneous and the selection of the cloud solution that
fits the application requirements, minimizing the costs, is
a non-trivial task. Nowadays, in fact, there is a consider-
able number of cloud providers each of them offering a pro-
prietary cloud solution with certain configurations and cost
profiles. This means that cloud costumers should consider
multiple architectures and should be able to evaluate costs
and performance for each of them. This task can be very
challenging, even unfeasible if performed manually, as the
number of possible solutions, given by the available providers
and the resource configuration, may become very high.
Secondly, Cloud systems are usually multi-tenant and their
performance can vary with the time of day, according to
the congestion level and the competition among the ap-
plications. Therefore, analytical techniques and automatic
or semi-automatic tools are needed in order to predict the
Quality of Service (QoS) and to reason on software sys-
tems properties at design time. The current practice for
software development tends, in fact, to relegate the non-
functional features of the application to the final phases of
the development process. Therefore, the entire system is
designed, developed and deployed and only afterwards the
QoS is measured and eventually corrective actions are un-
dertaken. Finding out in the last phases of a project that
a software system is not compliant with some required non-
functional properties can be detrimental for the success of
the project itself. It is, therefore, of paramount importance
to accurately evaluate costs and performance of the system
at design time. Several tools which permit the prediction
of costs and performance on proprietary systems from de-
sign models have been developed and presented in literature,

27

but they do not support cloud systems and they still lack
the proper level of automation envisioned by Model-Driven
Software Development. In this paper, we propose a model
driven approach and SPACE4CLOUD, a tool for the evalu-
ation of the performance and costs of cloud and multi-cloud
systems proposing an extension to the Palladio Component
Model (PCM) and its Palladio Bench for QoS evaluation
[8]. PCM is a Domain Specific Language (DSL) for the de-
scription of software architecture, resource and analysis of
non-functional requirements but it is limited to enterprise
systems and it lacks support for cloud systems. Further-
more, PCM has been developed with the goal to predict
the behaviour of a static system assuming the workload, the
hardware configuration and its performance are constant in
time. On the contrary, on cloud based systems are dynamic
by their own nature and for this reason time-dependent pa-
rameters have to be considered to predict their performance.
In light of these considerations the rationale of this work is
to analyse the most common cloud systems in order to de-
rive general cloud meta-models, mapping their concepts into
those defined within PCM and Palladio, considering time-
dependent profiles for the most important performance pa-
rameters and developing a module in charge of the cost eval-
uation for the resulting model.
The remainder of the paper is organized as follows. In sec-
tion 2 we summarize the state of the art for the model-based
performance prediction problem. Section 3 shows the pro-
posed meta-models while their implementation by means of
the SPACE4CLOUD tool is described in Sections 4 and 5.
Section 6 presents a case study based on the SPECWeb2005
benchmark and, finally, conclusions are drawn in Section 7.

2. RELATED WORK
Our research lays in the area of Model-Driven Quality Pre-

diction (MDQP). The starting point of the MDQP process
is a set of models that describe the software system using an
established modelling language such as the UML. The Ob-
ject Management Group (OMG) presented two versions of
the UML (the UML SPT profile [22] and the UML MARTE
profile [23]) in order to support resources, allocation and
non-functional properties. Other approaches, however, do
exist and leverages languages specifically designed for this
purpose, such as KLAPER [15] and the Palladio Component
Model (PCM) [8]. The second phase of the MDQP process
is the automated transformation of architecture-level mod-
els into predictive performance models like Layered Queuing
Network (LQN) or Markov Chains (see, e.g., [26]). Meta-
models supporting model-based performance predictions are
surveyed in [7] and more recently in [17] and [5]. Most
of the approaches aim on the evaluation of different de-
sign options and support manual or automated optimisa-
tion of the architecture at design time. We categorise the
most relevant solutions presented in literature using the fol-
lowing classes: rule-based, meta-heuristic, generic Design
Space Exploration (DSE), quality-driven model transforma-
tions. The first class of approaches is based on feedback
rules. An example of tool that exploits this class of ap-
proaches is the QVT-Rational framework proposed in [11,
12]. This tool uses the Query/View/Transformation (QVT)
language proposed by the OMG for model-to-model trans-
formations. Basically a QVT extension has been provided
in order to support feedback rules defined on non-functional
requirements. In this way it is possible to derive in an auto-

matic or semi-automatic way system variants which satisfy
the defined rules. Xu et al. [27], described a semi-automatic
framework for PUMA [26] and proposed the JESS script-
ing language to specify feedback rules. Other rule-based
approaches, like the ones by Smith et al. [25] make use of
the so called anti-patterns. These are a collection of prac-
tices which should be avoided in the design/development of
software systems. Bondarev et al. [9] presented the de-
sign space exploration DeepCompass framework developed
on the ROBOCOP Component Model.
The second class is more specific and leverages particular
algorithms to efficiently explore the design space in search
of solutions to optimize particular quality metrics. Exam-
ples of techniques which are usually adopted are evolution-
ary algorithms [18] and integer linear programming. Both
ArcheOpterix [6] and PerOpterix framework [20] use ge-
netic algorithms to generate candidate solutions. Kaviman-
dan and Gokhale [16] presented a heuristic-based model-
transformation algorithm, improving an existing bin pack-
ing algorithm to optimise real-Time QoS configurations in
distributed, embedded component-based systems.
Generic Design Space Exploration approaches work simi-
larly to metaheuristic techniques, exploring the design space,
but they try to encode feedback provisioning rules as a con-
straint satisfaction problem. The DESERT framework [21,
13], for example, can be programmed in order to support
generic DSE. Finally, quality-driven model transformation
approaches use model transformation to specify feedback
rules or to navigate the design space. The transformations
are directed by quality concerns and feedback rules can be
expressed through existing languages without the need to
propose new ad-hoc languages. These approaches require
human intervention and they select alternatives a priori,
without concretely evaluating the quality attributes. None
of the above mentioned works support the design and opti-
misation of applications with a target cloud deployment.

3. CLOUD PLATFORM META-MODELS
In order to evaluate performance and cost of cloud appli-

cations, a general model representing a cloud environment
is needed. Using different levels of abstraction it is pos-
sible to model cloud systems and to evaluate performance
indices and costs with different granularity levels. Further-
more, to some extent it is also possible to perform analysis
abstracting the characteristics of the solutions offered by the
providers and obtain bounds for performance and costs. The
goal of this work is to extend the Palladio Framework imple-
menting a new tool referred to as System PerformAnce and
Cost Evaluation for Cloud, hereinafter SPACE4CLOUD.
Cloud applications performance and costs will be derived
proposing suitable cloud meta-models and generating a map-
ping between them and the Palladio Component Model. Pal-
ladio is then used to evaluate performance and cost of cloud
applications. We followed a model-driven approach and
three meta-models have been defined: Cloud Independent
Model (CIM), Cloud Provider Independent Model (CPIM)
and Cloud Provider Specific Model (CPSM). This three-
layered architecture permits the developer to work only at
the higher abstraction level, thinking of its application in
terms of generic cloud elements. Afterwards, it is responsi-
bility of the system to map the generic cloud elements into
specific ones automatically deriving one or several CPMs.

28

3.1 CIM
A CIM represents a component based application inde-

pendent from the underlaying hardware architecture. The
goal of the CIM is to specifiy the components building an
application, their mutual interdependencies, and the QoS
constraints for the end-users. Currently we are re-using
PCM Repository, System and RDSEFF s models [8] ama-
zoncpsmmicroinstancedetailsextended with annotations for
specifying QoS constraints.

3.2 CPIM
The CPIM is located between the CIM and the CPSM.

Its goal is to represent the general structure of a cloud envi-
ronment, without expressing in detail the features of cloud
services offered by the available cloud providers. The CPIM
proposed in this paper is derived by the generalization of
the Amazon Web Services , Windows Azure , Google Ap-
pEngine , and Flexiant cloud environments.
The Palladio Resource Model is not suitable to represent
applications running on cloud infrastructures, so it must be
extended in order to support the modeling of cloud applica-
tions. This extension can be performed through a mapping
between the CPIM and the Resource Model. Working at
the CPIM intermediate level it is possible to evaluate, for
example, if a cloud application has good performance or not
without considering any particular cloud provider. It it pos-
sible to do this since the CPIM can contain a general rep-
resentation of a cloud system with specifications and costs
derived from real offers. In this way a model can be cre-
ated having instances of a certain category (low, medium or
high) with the minimum processing rate and the maximum
cost for that category. The minimal resources configuration
needed to obtain certain performance levels can be calcu-
lated using such a representation. The same analysis can be
performed on costs in order to find a lower bound or to set
an upper bound to the total expenditure. To obtain more
detailed performance metrics and better cost estimations
specific CPSMs are required. Figure 1 introduces CPIM
general concepts. A Cloud System is owned by a Cloud
Provider that is a specialization of the general abstract con-
cept of Provider. Typically, a Cloud Provider offers to the
end-users several Cloud Services. A Cloud Service can be
classified into three main classes: IaaS, PaaS, and SaaS. A
Cloud Element represents either a Cloud Resource, a Cloud
Platform or a Cloud Software and can be characterized by
a Cost Profile that defines a set of Costs. The cost profile is
required to model costs that vary with the time of the day
(see e.g., Amazon instances prices [1]), or costs related to the
total use of resources (see, for example the storage pricing
models [2, 3]). The Costs specify a unit, a value, a reference
period (which is used to express the cost variability during
a given time horizon which is in hour case of 24 hours), a
lower bound and an upper bound. A Cloud Service can also
have Service Level Agreement Templates which define tem-
plates for SLAs between the Cloud Provider and the Cloud
costumers. A Cloud Service can also have Scaling Policies,
which are composed by Scaling Rules describing the met-
ric of interest, the threshold value and the activation rule;
scale-in and scale-out scaling rules are defined. The Scaling
Policy itself is defined on one or more Resource Pools, which
aggregate one or more homogeneous Compute resources.
Figure 2 represents other features of Cloud Resources, Cloud
Platforms and Cloud Softwares. For some Cloud Resources

Figure 4: AWS CPSM - EC2 Micro Instance Details
(yellow: CPIM classes, cyan: CPSM classes)

it is possible to define a Location (expressed in terms of Re-
gion, SubRegion and Virtual Area), which specifies where
is located the hardware infrastructure providing the cloud
resource. A Cloud Platform is a software framework ex-
posing a defined set of APIs that can be used to develop
custom applications and services. The platform also pro-
vides also an execution environment. Frontend, Middle-
ware, Backend and Database platforms are three possible
specializations of a Cloud Platform. Frontend platforms can
host frontend services, which are directly exposed to the end
users and are supposed to interact with them providing data
to backend services. Backend platforms can host backend
services, which are supposed to process data coming from
frontend services eventually providing them some interme-
diate results. Middleware platforms can host services which
are used to decouple Frontend instances from Backend in-
stances. A Database platform is able to store structured or
semi-structured data and can be classified into Relational
DB or NoSQL DB. A Cloud Software is an application or
a service that can be deployed on Cloud Platforms or can
run directly on Cloud Resources. A Cloud Resource repre-
sents the minimal resource unit of a given Cloud Service and
can be classified into Compute or CloudStorage. A Compute
unit represents a general computational resource, like a Vir-
tual Machine. A Storage unit is a resource able to store
any kind of unstructured data and it can be classified into
Filesystem Storage or Blob Storage. Figure 3 shows detailed
features of a Cloud Resource that is a particular Cloud Ele-
ment and a Cloud Element can be tied to one or more Cloud
Elements through point-to-point Links in order to create a
virtual network of Cloud Elements. A Resource Pool is a
set of Compute Cloud Resources associated to an Alloca-
tion Profile, that is a set of Allocations which specify how
the number of allocated instances within the Resource Pool
changes in a certain reference period. A Cloud Resource is
composed by Virtual Hardware Resources, which can be Vir-
tual CPUs, Virtual Storage units or Virtual Memory units.
Virtual HW Resources and Links can be characterized by an
Efficiency Profile which specify how the efficiency (e.g., the
processing rate of a Virtual CPU) changes with the time of
the day due to the congestion for accessing cloud resources.
In this way it is possible to represent the variability of the
efficiency for both virtual hardware resources and links.

29

Figure 1: CPIM (Cyan: services, Yellow: free quotas and costs, Grey: SLA, Orange: elements, Purple:
scaling policies, Green: provider)

Figure 2: CPIM (Purple: resources, Green: platforms, Cyan: softwares, Yellow: locations)

Figure 3: CPIM-IaaS (Cyan: virtual HW, Yellow: links and costs, Purple: profiles, Green: compute resource)

30

3.3 CPSM
A CPSM can be thought as a particular CPIM instance

representing the features of cloud services offered by a par-
ticular cloud provider. For space limitations, in this sec-
tion we will present one example of Cloud Provider Specific
Model referred to Amazon Web Services (AWS). Consid-
ering the Amazon cloud, we can distinguish some relevant
IaaS services like: Elastic Compute Cloud (EC2), Sim-
ple Storage Service (S3), Elastic Block Store (EBS), Re-
lational Database Service (RDS) and the NoSQL database
DynamoDB. Amazon itself can be considered as a realiza-
tion of the Cloud Provider concept within the CPIM. Since a
Cloud Provider provides one or more Cloud Services, we can
extend the relation provides to all the aforementioned cloud
services. Some of them can be classified as IaaS-Services,
like EC2, S3 and EBS; the others (RDS and DynamoDB)
can be classified as PaaS-Services. Considering that S3 pro-
vides a storage with a flat filesystem, an S3 Instance is a
realization of the Blob Storage of the CPIM. As far as Ama-
zon S3 is concerned, we can define a Cost Profile for that
type of instances representing the cost variability. This is
compulsory because the S3 service is charged on the base of
different price ranges, depending on the allocated capacity.
EBS, instead, provides volumes with standard filesystems,
so an EBS Instance is a realization of the Filesystem Storage.
Finally, Amazon EC2 provides a set of EC2 Instances, each
of which is a realization of a Compute Cloud Resource. EC2
Instances are characterized by different EC2 Prices which
are essentially Costs from the CPIM. Within EC2 it is pos-
sible to specify EC2 Auto Scaling Groups which are sets of
homogeneous EC2 Instances and can be referred to the Re-
source Pools defined within the CPIM. Also, EC2 Scaling
Policies can be defined on these EC2 Auto Scaling Groups
in order to set the rules which control the scaling activities.
An EC2 Scaling Policy derives from a generic Scaling Policy
of the CPIM. For an EC2 instance it is possible to specify
the Location in order to control reliability and delays. Also
virtual hardware resources (Virtual HW Resources) can be
specified and for each of them it is possible to specify an Ef-
ficiency Profile. Considering, as an example, the EC2 Micro
Instance it is composed by two virtual hardware resources:
EC2 Micro Instance V Memory and EC2 Micro In-
stance V CPU. This instance does not provide any local
storage, so it must use an external EBS Volume. Figure 4
summarize what has been discussed before about the EC2
Micro Instance, showing also the relation with the SubRegion
and Region of the CPIM. Within EC2, it is possible to de-
fine Virtual Areas (EC2 Micro Availability Zone) within
sub-regions and to associate EC2 instances to them. The
Figure shows also other features of EC2, such as the possi-
bility to define Resource Pools (EC2 Micro Auto Scaling
Group) composed by EC2 instances with the same config-
urations. It is also possible to associate to these pools Al-
location Profiles (EC2 Micro Allocation Profile) which
specify how many instances of a given type are allocated in
a given time period.

4. EXTENDING PALLADIO
In this section we present our mapping of CPIM and

CPSM to PCM. Palladio has been developed in order to
design and simulate the performance of web applications
running on physical hardware resources. Cloud-based appli-

cations, in turn, run on virtualised hardware resources, so a
suitable mapping between the concept of physical resource
within Palladio and the concept of virtualised resource needs
to be found. In Palladio each Software Component must be
allocated on a specific Resource Container and this is done
specifying the Allocation Model. So, a Resource Container is
a collection of Processing Resources which can be classified
into CPU, Storage and Delay. Each processing resource
is characterized by a scheduling policy defining the way the
incoming requests are served and by other parameters such
as the processingRate and the numberOfReplicas.
A generic resource container, therefore, can be compared to
a generic Cloud Resource provided by a IaaS cloud provider.
In fact, each Cloud Resource has well defined characteris-
tics such as a virtual CPU, a virtual memory and a virtual
storage. So we can define a one-to-one mapping between
the CPU resource defined within Palladio and the virtual
CPU which characterises a Cloud Resource. For what con-
cerns memory, we do not consider a possible mapping at
this level because it will be taken into account in the CPIM
and in the CPSM when comparing different configurations.
A Palladio storage resource (HDD) can be mapped on the
virtual storage of a Cloud Resource, that can be either a
local storage of a VM or an external storage used to store
application data. Finally, a Palladio Processing Resource is
characterised by the attribute numberOfReplicas represent-
ing the actual number of its processors. This attribute is
mapped into the number of cores of a virtual CPU. Since the
attribute is assigned to each resource type, we will express it
for a general virtual hardware resource rather than only for
a virtual CPU. Even a Cloud Platform can be mapped to
one or more Palladio Resource Containers depending on the
information available, in the worst case, in which no infor-
mation about the used hardware is provided, it can always
be represented as a Delay Center. The Efficiency Profile
is used to retrieve the efficiency factor of a Cloud Resource
in a given moment, so that the real value of the processing
rate is derived from the product between the efficiency fac-
tor and the maximum processing rate of the cloud resource.
This value is then used as the processingRate parameter of
the corresponding Palladio Processing Resource. The Al-
location Profile is used to retrieve the number of allocated
instances in a pool of Cloud Resources. This information
is needed to represent the variability of the pool size, so it
can be used to scale the parameter numberOfReplicas within
Palladio Processing Resources. In other words, as in [24]
since VM instances in a pool are homogeneous, they are
represented as a single processing resource sized with the
comulated capacity of the VMs it represents. The mapping
between the Palladio hardware component model and the
CPIM Cloud Resources is shown in Figure 5. For simplic-
ity, the mapping does not consider also the Allocation Pro-
file and the Efficiency Profile. but it gives an idea of how
to model a basic cloud resource within a Palladio Resource
Environment. The Cost Profile does not affect the Resource
Environment definition, so it is not considered in the map-
ping but it is used by SPACE4CLOUD to evaluate costs.
SPACE4CLOUD will be presented in the next Section.

5. DESIGN AND ANALYSIS TOOL
SPACE4CLOUD supports performance and cost evalua-

tions on a 24 hours time period for cloud systems extending
the features offered by the Palladio Framework.

31

Figure 5: Mapping between Palladio and Cloud IaaS

We used the model-driven approach introduced in section 3
to represent cloud systems and we derive Palladio models
suitable for performance analysis through model to model
transformation. The tool has been developed in Java tech-
nologies as an Eclipse plug-in. We have implemented a step-
by-step wizard to create the mapping bateween CPIM and
CPSM to PCM models and launch automatically the perfro-
mance analysis. Since multiple providers can be specified at
the CPSM layer, the tool allows to support what-if analyses
and perform design time exploration considering multiple
clouds as candidate for the final deployment.
Since the Palladio cost model is limited and cannot include
the cost characteristics of cloud systems, the cost derivation
is complex and will be discussed in details in the following.
The tool SPACE4CLOUD provides support for cost deriva-
tion, considering each association between Cloud Elements
and Palladio Resource Containers. For each couple Cloud
Element - Palladio Resource Container, we have the follow-
ing parameters:

A = Allocation Profile
C = Set of Costs related to the Cloud Element
H = Set of “per hour” costs within C
G = Set of “per GB/month” costs within C
V HR[c] = Virtual Hardware Resource associated to cost c
CP = Cost Profile related to the Cloud Element

CCP = Set of costs within CP

HCP = Set of ”per hour” costs within CCP

GCP = Set of ”per GB/month” costs within CCP

V HRCP [c] = Virtual Hardware Resource associated to cost c

We can distinguish two kinds of costs: costs which are fixed
with respect to the time (H, G) and time-variant costs
(HCP , GCP). The firsts are those costs not associated to
any cost profile, whereas the others are associated to a cost
profile and each of them is defined for a certain period value.
Furthermore, the H,HCP sets represent the sets of costs
which are charged on a “per hour” basis, while the G,GCP

sets represent the costs which are charged on a “per GB/-
month” basis. Since the costs belonging to the G,GCP sets
are related to storage units, they are not affected by the
allocation specification within the Allocation Profile speci-
fied for the container, because these resources do not scale.

Costs belonging to the H,HCP sets, instead, are related to
scalable compute resources, so they are affected by the allo-
cation specifications defined within the Allocation Profile.
Taking into account the previous considerations, we can de-
rive the total cost given by the H set in the following way:

COSTH =
∑
h∈H

(
value(h) ∗

∑
a∈A

size(a)

)
So, for each element of H we compute the cost related to the
“total equivalent hours”by multiplying the cost value for the
sum of allocated resources. This is equivalent to sum up the
products between the cost value and the allocation specifi-
cation, because costs belonging to H are not time-variant.
For what concerns costs belonging to G, they do not de-
pend neither on allocation specifications, neither on time.
These costs depend only on the size of the allocated storage
unit, so we need to retrieve the size of the Virtual Hard-
ware Resource (VHR) which is expressed in terms of GB.
Costs related to storage units can be associated to capacity
ranges, so we need a function F to derive the partial cost
related to the allocated size. Furthermore, the derived cost
is expressed in terms of $/month, while we want it in terms
of $/day. Considering the most simple case in a month we
have 730 hours so in order to derive the daily costs, we have
to divide the monthly cost by 730, obtaining the hourly cost,
and then multiply for 24. So, the total cost related to G is:

COSTG =
24

730
∗
∑
g∈G

F (g, size(V HR[g]))

The F function take into account the cost specification g,
the associated lowerBound and upperBound and the size of
the virtual resource in order to calculate the cost. The time-
variant costs belonging to the HCP set are derived using the
following expression:

COSTHCP =
∑

h∈HCP

(value(h) ∗ size(A[period(h)]))

The HCP set is supposed to contain 24 cost specifications,
one for each hour of the day. The sub-expression A[period(h)]
corresponds to the allocation specification related to the
same period on which is defined the actual cost h. So, the
total cost is given by the sum of the products between the
cost values and the sizes of the allocation specifications hav-
ing the same period value.
Costs belonging to GCP , as usual, do not depend on allo-
cation specifications, so we can use an expression similar to
the one used for COSTG:

COSTGCP =
∑

g∈GCP

F
(
g, size(V HRCP [g])

)
730

with

Finally, the total daily cost for a given container is given by:

COST = COSTH + COSTG + COSTHCP + COSTGCP

6. CASE STUDY: SPECWEB2005
In this section we discuss some preliminary analyses we

performed with the SPACE4CLOUD tool. We studied the
SPECWeb2005 benchmark under varying workload and de-
ployment conditions. SPECweb2005 is an industry bench-
mark for evaluating the performance of web systems [4].

32

SPECweb2005 includes a Web Server, a Back-End Simu-
lator, and several Clients. The Web Server is the main el-
ement and represents the System Under Test. The Back-
End Simulator (BESim) is the component used to simulate
a database serving requests coming from the web server for
dynamic page generation. Finally, clients act as load injec-
tors according to a closed workload model.
For what concerns the available workloads (SpecWeb2005
provides multiple and standardized workloads) we choose
the Banking suite and we considered four main pages which
are the most resource intensive: Account information ac-
cess and maintenance, Bill pay, Money transfer, and Loan.
Five clients have been used during the experiments, the Web
Server has been deployed on an Amazon EC2 Medium In-
stance, while the clients and the Back-End Simulator have
been hosted by Amazon EC2 Extra-Large Instances to guar-
antee they are not the system bottleneck.
Using the SPACE4CLOUD tool we have been able to create
a Palladio representation of the system and we run several
experiments on it. Initially we performed the calibration of
the performance model, indentifying PCM resource demand
parameters. We ran several tests varying the number of
users on Amazon EC2 considering 1, 1500, 3900, and 5100
users that correspond to a CPU utilization of 1%, 10 %, 50
%, and 80 %, respectively, in the real system. The response
time measured during the tests have been used to estimate
the CPU time of individual pages execution.

Class CPU Time

login 0.0019
account summary 0.0007

check details 0.0023
logout 0.003

Table 1: PCM SPECweb Model - CPU Time

Results are reported in Table 1 and have obtained by con-
sidering the regression technique proposed in [19]. More
details are reported in [14].
For model validation, we ran several additional tests consid-
ering 1, 10, 50, 100, 300, 900, 1500, 2700, 3900, and 5100
users. The response time measures were compared against
the performance measures obtained by Palladio feed by the
CPU estimates determined as result of the model calibra-
tion. We performed the tests twice with population values
of 1500 and 3900 and three times the test with a popu-
lation value of 5100. Palladio performance measures were
obtained by simulations through Palladio Simucom by us-
ing 95 % confidence interval as stopping criteria. Figure 6
shows the response times related to the login page obtained
in the real system and by the Palladio performance model.
We can notice that the response times obtained with Palla-
dio are similar to the ones obtained in the real system for
light load. When the number of users increases, the differ-
ence between the model estimates and the real measures be-
comes larger but the model still remains conservative. This
is more evident when considering the tests with 5100 users.
For model validation, we performed three different measures
and we obtained response time varying by an order of mag-
nitude. We argue that this variability mainly depends on
the system congestion or possibly to a VM live migration
performed by infrastructure management software used by
the provider. A similar behaviour has been obtained also
for the other pages. The obtained results, unsatisfactory

Figure 6: SPECweb2005 VS Palladio - login re-
sponse times

for heavy workloads, demonstrate that the Layered Queue-
ing Network (LQN) models used by Palladio needs to be
extended in order to cope with cloud system performance
variability. We are planning to extend LQN by considering
phase type distributions [10]
In a second class of analysis, we compared the services of two
well-known cloud provider, Amazon and Flexiscale, when
running the SPECweb2005 Banking suite. For what con-
cerns the workload profile, we considered a closed workload
with a population that varies during the day. In particu-
lar, we considered realistic workloads created from a trace
of requests relative to the web-site of a large university in
Italy. We choose Amazon EC2 Medium Instances (web-
server) and EC2 Amazon Extra-Large Instances (BESim).
As far as Flexiscale is concerned we adopted servers with
configurations with performance similar to those of Ama-
zon machines, we used Flexiscale Servers with one virtual
core (webserver) and two virtual cores (BESim); For sim-
plicity, we report here only the results obtained during the
peak hours, that is between 10:00 and 17:00. A suitable
Allocation Profile (where the number of instances varies be-
tween four and five) has been generated and used for both
Amazon and Flexiscale. The average response time on the
two infrastructures was in the range 40-170 ms. We no-
ticed that Amazon always performs better than Flexiscale
and this is due to the fact that Amazon machines are more
powerful than the Flexiscale ones. However, the difference
between the response times is not constant for all the consid-
ered time intervals. On average, Amazon provides response
times which are from 12%, to 20% lower than the ones of
Flexiscale.
The SPACE4CLOUD tool also calculated the costs for both
solutions that are reported in Figure 7. In this case, Ama-
zon instances are more expensive than the Flexiscale, around
52.94% higher.

7. CONCLUSIONS
Cloud technologies are promising but provider selection,

performance and cost evaluation are challenging for compa-
nies that decide to deploy their applications in the cloud.
This work provides a model-driven approach to address this
problem. We have proposed a Cloud Provider Independent
Model to represent general cloud systems focusing on those
aspects which affect performance and costs. Furthermore,
we have implemented a Java tool that exploits the features
offered by Palladio to run performance analysis for cloud

33

Figure 7: Amazon VS Flexiscale - Cost Comparison

systems and that support cost evaluation. The preliminary
results we achieved to validate our approach have shown
that the performance estimates are accurate for light work-
loads, while are very conservative for heavy loads. As part of
our future work, we plan to extend LQN models to achieve
higher accuracy in the performance estimates and take into
account cloud performance variability. Finally, we plan to
create an optimization engine able to explore the space of
all the possible configurations returning to the end-user the
best (in terms of costs, for instance) solution that satisfies
the QoS constraints and supporting the cloud provider se-
lection.

8. ACKNOWLEDGEMENTS
The research reported in this article is partially supported

by the European Commission grant no. FP7-ICT-2011-8-
318484 (MODAClouds).

9. REFERENCES
[1] http://aws.amazon.com/ec2/#pricing.

[2] http://aws.amazon.com/s3/#pricing.

[3] http://www.windowsazure.com/en-
us/pricing/details/.

[4] Specweb2005 - http://www.spec.org/web2005/.

[5] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and
I. Meedeniya. Software architecture optimization
methods: A systematic literature review. Software
Engineering, IEEE Transactions on, PP(99):1–1, 2013.

[6] A. Aleti, S. Stefan Björnander, L. Grunske, and
I. Meedeniya. Archeopterix: An extendable tool for
architecture optimization of aadl models. In Proc. of
Workshop MOMPES 2009.

[7] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. Software
Engineering, IEEE Transactions on, 30(5):295–310,
2004.

[8] S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance
prediction. Journal of Systems and Software,
82(1):3–22, 2009.

[9] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock.
Exploring performance trade-offs of a jpeg decoder
using the deepcompass framework. In Proc. of the
Workshop WOSP 2007.

[10] G. Casale, P. G. Harrison, and M. G. Vigliotti.
Product-form approximation of queueing networks
with phase-type service. SIGMETRICS Performance
Evaluation Review, 39(4):36, 2012.

[11] M. Drago. Quality Driven Model Transformations for
Feedback Provisioning. PhD thesis, Italy, 2012.

[12] M. L. Drago, C. Ghezzi, and R. Mirandola. A quality
driven extension to the qvt-relations transformation
language. Computer Science - R&D, 27(2), 2012.

[13] B. Eames, S. Neema, and R. Saraswat. Desertfd: a
finite-domain constraint based tool for design space
exploration. Design Automation for Embedded
Systems, 14(1):43–74, 2010.

[14] D. Franceschelli. Space4cloud an approach to system
performance and cost evaluation for cloud. Master’s
thesis, Politecnico di Milano, Italia, 2012.

[15] V. Grassi, R. Mirandola, and A. Sabetta. From design
to analysis models: a kernel language for performance
and reliability analysis of component-based systems.
In Proc. of the Workshop WOSP 2005.

[16] A. Kavimandan and A. Gokhale. Applying model
transformations to optimizing real-time qos
configurations in dre systems. Architectures for
Adaptive Software Systems, pages 18–35, 2009.

[17] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 67(8):634–658, 2010.

[18] R. Li, R. Etemaadi, M. T. M. Emmerich, and
M. R. V. Chaudron. An evolutionary multiobjective
optimization approach to component-based software
architecture design. In Proc. of Congress, CEC 2011.

[19] Z. Liu, L. Wynter, C. Xia, and F. Zhang. Parameter
inference of queueing models for it systems using
end-to-end measurements. Performance Evaluation,
63(1):36–60, 2006.

[20] A. Martens, H. Koziolek, S. Becker, and R. Reussner.
Automatically improve software architecture models
for performance, reliability, and cost using
evolutionary algorithms. In Proc. of Conference
WOSP/SIPEW 2010.

[21] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
Constraint-based design-space exploration and model
synthesis. In Embedded Software, pages 290–305, 2003.

[22] OMG. UML Profile for Schedulability, Performance,
and Time Specification, 2005.

[23] OMG. A uml profile for marte: Modeling and analysis
of real-time embedded systems, 2008.

[24] C. Rathfelder, S. Becker, K. Krogmann, and
R. Reussner. Workload-aware system monitoring using
performance predictions applied to a large-scale e-mail
system. In WICSA/ECSA, 2012.

[25] C. Smith and L. Williams. More new software
performance antipatterns: Even more ways to shoot
yourself in the foot. In Proc. of Conference CMG 2003.

[26] M. Woodside, D. Petriu, D. Petriu, H. Shen, T. Israr,
and J. Merseguer. Performance by unified model
analysis (puma). In Proc. of Workshop WOSP 2005.

[27] J. Xu. Rule-based automatic software performance
diagnosis and improvement. In Proc. of Workshop
WOSP 2008.

34

